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Abstract—We provide the first machine-checked proof of
privacy-related properties (including ballot privacy) for an elec-
tronic voting protocol in the computational model. We target the
popular Helios family of voting protocols, for which we identify
appropriate levels of abstractions to allow the simplification
and convenient reuse of proof steps across many variations of
the voting scheme. The resulting framework enables machine-
checked security proofs for several hundred variants of Helios
and should serve as a stepping stone for the analysis of further
variations of the scheme.

In addition, we highlight some of the lessons learned regarding
the gap between pen-and-paper and machine-checked proofs,
and report on the experience with formalizing the security of
protocols at this scale.

I. INTRODUCTION

Ensuring accuracy and security of electronic elections is a

challenge that goes far beyond the scope of safety and security

as traditionally considered in computer science. Nevertheless,

previous audits of voting systems [40], [42] suggest that many

of the most mundane issues could be prevented by using

open source and formally verified implementations. However,

the formal verification of voting systems down to deployed

software is particularly challenging, for several reasons. First,

defining security properties for voting systems remains an

active topic of investigation [13], [22]; moreover, many defini-

tions are expressed in a simulation-based style whereas most

efforts to formally verify cryptographic constructions (with a

few notable exceptions such as [4]) focus on the game-based

style. Second, “real-world” adversary models for electronic

voting would need to consider adversarial models that go

beyond the usual view of provable security, and account for

the possibility that the voting system might be backdoored

or run in corrupted environments. Third, protocols often

have multiple variants, with subtle but theoretically significant

differences in their security analysis. Last, electronic voting

systems are distributed, with multiple implementations of

voting clients, introducing additional complexity for reasoning

about their implementations. Taken together, these challenges
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make end-to-end formal verification of voting systems out of

reach of current technology.

Scope of work: We provide the first machine-checked

computational proofs of privacy properties for Helios [2], [26],

an emblematic voting protocol that has received significant

analysis and has also been used in several elections. Our proofs

establish ballot privacy and related properties introduced

in [13] on algorithmic descriptions of a broad family of Helios

variants. The proofs1 are built using EasyCrypt [8], [9], an
interactive proof assistant focused on constructing proofs of

computational security for cryptographic constructions.

Technical contributions: Using EasyCrypt, we develop a

machine-checked framework for proving ballot privacy for a

broad class of voting protocols from the Helios family. In order

to manage the complexity of the proof and to accommodate

the large number of instances of the protocol we consider (a

few hundred), we factor out the proof in several steps:

We first introduce Labelled-MiniVoting, a core voting proto-
col that enhances the MiniVoting protocol defined in [14] with
labels. The construction relies on an arbitrary labelled public-

key encryption scheme (used to encrypt the votes) and an

abstract proof system used by the tallying authorities to show

the validity of the election result. The addition of labels is

essential to instantiate our scheme more broadly. We formalize

Labelled-MiniVoting and build a machine-checked proof that

it achieves ballot privacy, as well as strong consistency and

strong correctness, as defined in [13]. Informally, these prop-

erties respectively capture the idea that voting is anonymous,

that tallying does not leak any information, and that honestly

created ballots are always considered valid. The proofs are car-

ried out under the assumptions that the underlying encryption

scheme achieves (an adaptation to the case of labelled schemes

of) IND-1-CCA security, and that the underlying proof system

satisfies zero-knowledge and voting friendliness (a property

that we introduce and which captures simple requirement for

an abstract proof system to be compatible with ballot privacy).

1https://github.com/catalindragan/minivoting-privacy.
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We then carry out the proofs of these three properties

(ballot privacy, strong correctness and strong consistency)

through to a partial instantiation of Labelled-MiniVoting, called
PreHelios, in which the labelled public-key encryption scheme
is specified as the composition of a public-key encryption

scheme and of a proof system (as in Helios). The machine-

checked proofs of privacy for PreHelios simply follow from

the generic theorems on Labelled-MiniVoting. We introduce
two broad families of Helios variants:

Helios-mix, a mixnet-based variant that refines PreHelios by
instantiating the counting function to reveal the multiset

of votes and tallying using a secure mixnet, and

Helios-hom, a homomorphic variant that refines PreHelios by
instantiating the counting function to be the sum of all

votes, and tallying by homomorphically computing the

sum before decrypting the final result.

In both cases, carrying the results obtained on PreHelios down
to the relevant variant is not done using a direct instantiation,

but requires in-depth changes to the tallying algorithm. This

refactoring is supported by machine-checked proofs of black-

box equivalence between the tallying algorithms of PreHelios
and its variants (under suitable assumptions). One main advan-

tage of our proof framework is its modularity, which allows

us to easily replace one component of the scheme (here, the

tallying algorithm) with an equivalent one, without having to

reprove the entire scheme. We use the same proof technique

to derive the security of Helios-hom-IDweed, a variant of

Helios-hom where the weeding of invalid ballots performed

before tallying–an important process, often overlooked, that

may lead to privacy breaches [24]–is made lighter without

loss of security. This yields a machine-checked proof of ballot

privacy, strong consistency and strong correctness for Helios-
mix, Helios-hom, and Helios-hom-IDweed.
Finally, we derive specifications and machine-checked

proofs of privacy for large families of secure variants of

Helios from Helios-mix, Helios-hom, and Helios-hom-IDweed.
The proofs are obtained by further instantiating our earlier

results and discharging all additional hypotheses introduced by

our abstractions. More precisely, we provide a simple design

interface, that allows the user to select various parameters (for

example, the counting function, or the function that selects

information about the ballot to be published on the bulletin

board). The resulting voting scheme can then be automatically

generated and proved secure in EasyCrypt. In total, we prove
the security of more than 500 variants of Helios. In particular,

we retrieve existing implemented variants of Helios such as

Helios-v3-mix, Helios-v3-hom, and Helios-v4.

Related work: Automatic proofs of privacy for voting pro-

tocols have been provided for some protocols of the literature

such as FOO [27], Helios [24], or the Norwegian e-voting pro-

tocol [25]. However, these proofs are conducted in symbolic

models, which are considerably more abstract than crypto-

graphic models. Moreover, the use of automatic tools (such as

ProVerif [17]) often requires significant simplifications of both

the protocol and the underlying cryptographic primitives (for

example, the ballot box may only accept ballots in a certain

order). Helios has also been proved private in rF∗ [20], still
assuming perfect cryptographic primitives (the adversary may

only call the primitives through an abstract, ideal library). We

are not aware of any machine-checked proof of voting schemes

in cryptographic models, assuming standard cryptographic

primitives. While pen-and-paper proofs for Helios exist [13],

[14], we emphasize that our work is not a simple translation
of those proofs into the EasyCrypt language. First, many
crucial details that are typically omitted in hand proofs (for

example, a careful treatment of the random oracles) had to

be filled-in. More importantly, our formalization considerably

generalizes existing proofs, providing machine-checked proofs

for hundreds of variants of Helios. This would have been

impossible to achieve with pen-and-paper, and with the same

degree of confidence.

A note on concrete vs asymptotic security: EasyCrypt
adheres to the principles of practice-oriented provable secu-

rity, and our formal proofs always state concrete bounds on

adversarial advantages. For simplicity, we place most of the

discussion below in an asymptotic context. For precision, we

give concrete statements for our main security theorems. These

are backed up by the formal EasyCrypt development, available

from https://github.com/catalindragan/minivoting-privacy.

II. VOTING

We first introduce some basic cryptographic primitives, used

in the voting schemes we consider. We then recall useful

security notions for voting systems (ballot privacy, strong

consistency and strong correctness) [13], and state our main

result.

A. Building blocks

We present the cryptographic building blocks used in voting

systems. Our presentation is based on two primitives and their

associated security notions: labelled public-key encryption
schemes and non-interactive proof systems. All of our models
and proofs are set in the random oracle model, which we recall

first.

RANDOM ORACLE MODEL. The random oracle model is a

model for hash functions: to compute the value of the hash

function on a point, any party can invoke an oracle O that

implements a truly random function from some domain D to

some range C. One way to think about this oracle is that O
maintains a table T , initially empty. Whenever an algorithm

calls O(d) for some d ∈ D, O checks if there exists an entry

(d, c) in T and, if so, it returns c; otherwise O randomly

generates a value c′ ∈ C, adds (d, c′) to T , and outputs c′.
Strictly speaking, in the random oracle model all algorithms

are given oracle access to O; to avoid cluttered notations,

we choose to not explicitly show this dependency, but we

emphasize it whenever appropriate.

In particular, the presence of random oracles has a signifi-

cant impact on the difficulty of the EasyCrypt formalization.
We discuss this and associated insights in Section V.

LABELLED PUBLIC-KEY ENCRYPTION SCHEME. The notion

of labelled public-key encryption scheme extends the classical
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Exppoly-ind1cca,β
B,E,n (λ)

1 : encL← [ ]

2 : (pk, sk)← KGen(1λ)

3 : β′ ← BOc,Od(1λ, pk)

4 : return β′

Oracle Oc(p0, p1, �)

1 : c← ⊥
2 : if |encL| < n then

3 : c← Enc(pk, �, pβ)

4 : encL← encL+ [(c, �)]

5 : return c

Oracle Od(cL)

1 : mL← [ ]

2 : for (c, �) in cL do

3 : if (c, �) /∈ encL then

4 : mL← mL+ [Dec(sk, �, c)]

5 : else mL← mL+ [⊥]
6 : return mL

Fig. 1. In Exppoly-ind1cca,βB,E,n , the adversary B has access to the set of oracles {Oc,Od}. The adversary is allowed to call the Od oracle at most once.

definition of a public-key encryption scheme by including a

tag, called a label [35], [38], [39]. Essentially, the tag is data

that is non-malleably attached to the ciphertext and can be

used, for example, by whoever encrypts to specify the context

in which the ciphertext is to be used. In particular, decryption

using the incorrect label should not reveal any information

about the original plaintext. Formally, a labelled public-key

encryption scheme is defined as follows.

Definition 1. A labelled public-key encryption scheme with

public keys in PK, secret keys in SK, plaintexts in M,
ciphertexts in C, and labels in L, is a triple of algorithms

E = (KGen,Enc,Dec) where:
KGen is a randomized algorithm which on input a security

parameter λ, produces a key pair in PK× SK;
Enc is a randomized algorithm which on input a public key in

PK, a label in L and a plaintext in M outputs a ciphertext

in C;
Dec is a deterministic algorithm which on input a secret key in

SK, a label in L and a ciphertext in C outputs an element

in M⊥, that is either a plaintext in M or a special error

symbol ⊥.
We demand that for any (pk, sk) output by KGen, any label
� ∈ L and any message m ∈ M⊥, if C ← Enc(pk, �,m) then
Dec(sk, �, C) = m.

We note that if the label is fixed or is empty, labelled

public-key encryption scheme reduces to the standard notion

of public-key encryption.

Encryption schemes used in electronic voting protocols are

often required to be homomorphic, allowing some limited

forms of computation on encrypted data without decrypting

it (for example, homomorphic tallying).

Definition 2. A homomorphic public-key encryption scheme is
a public-key encryption scheme E together with a deterministic
algorithm Add where the space of plaintexts can be equipped
with a commutative monoid structure (M, 0,+) such that

Dec(sk,Add(cL)) =

|cL|∑
i=1

Dec(sk, cL[i]),

for any list of ciphertext cL, and any secret key sk.

That is, addition of ciphertexts has as effect addition on

the underlying plaintexts. There are multiple security defi-

nitions for encryption schemes. The security of the proto-

cols we consider in this paper relies on indistinguishability
under chosen-ciphertext attack with one parallel decryption
query (IND-1-CCA) [12] of the underlying labelled public-

key encryption scheme. Intuitively, IND-1-CCA requires that

no adversary can distinguish between encryptions of two

messages of the same length with probability significantly

greater than 1/2, even if provided with a one-time access to
a batch decryption oracle.

A related, apparently stronger notion considers a multi-

challenge version (where the adversary sees polynomially

many challenge queries). We write poly-IND-1-CCA for this

latter security notion.

These notions are formalized by the experiment

Exppoly-ind1cca,βB,E,n defined in Figure 1. The experiment considers

an adversary B with at most n access to the challenge oracle

Oc (that encrypts the left message if β = 0 and the right

message if β = 1) and one-time access to the decryption

oracle Od defined using the encryption scheme E .
The advantage of the poly-IND-1-CCA adversary B over the

scheme E is defined as:

Advpoly-ind1ccaB,E,n (λ) =∣∣∣Pr
[
Exppoly-ind1cca,0B,E,n (λ) = 1

]
− Pr

[
Exppoly-ind1cca,1B,E,n (λ) = 1

]∣∣∣ .

We say that a labelled public-key encryption scheme E is

n-challenge poly-IND-1-CCA-secure if Advpoly-ind1ccaB,E,1 (λ) is

negligible (as a function of λ) for all p.p.t. B. Note that

Advpoly-ind1ccaB,E,1 (λ) is essentially the advantage for the single-

challenge IND-1-CCA notion. The following lemma estab-

lishes, by a standard hybrid argument, that multi-challenge

security is asymptotically the same as single challenge secu-

rity.

Lemma 1. A labelled public-key encryption scheme E
is IND-1-CCA-secure if and only if it is n-challenge
poly-IND-1-CCA-secure for some polynomially bounded n.
Specifically, for any polynomially bounded adversary A there
exists a polynomially bounded adversary B such that for any
n and any λ the following statement holds:

Advpoly-ind1cca
B,E,1 (λ) =

1

n
· Advpoly-ind1cca

A,E,n (λ).

For example, El Gamal is a homomorphic encryption

scheme, which, together with a proof of knowledge of the

randomness used for the encryption, has been shown to be
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IND-1-CCA-secure [15]. Interestingly, in Helios which uses

this scheme, the proof of knowledge is primarily used to ensure

that the voter encrypts a valid vote, yet this proof also protects

the ciphertext from being modified. Notice that ciphertexts

still have an El Gamal component, which can be used to

homomorphically calculate over plaintexts.

PROOF SYSTEMS. Proof systems are a useful tool to ensure

that certain operations have been performed correctly. The

formalization starts with a relation R ⊆ X × W where the

elements of X are called statements and those of W are called

witnesses.2 For example, in Helios, a typical relation is that
the ciphertext (the statement) corresponds to the encryption

of 0 or 1. One can use as a witness the randomness used to

form the ciphertext. A proof system consists of a prover and

a verifier algorithm which work on a common input x ∈ X;
the prover has an additional input w ∈W. In a non-interactive

proof systems (as those considered in this paper) the prover

uses its inputs to compute a proof π ∈ PR and sends it to the

verifier who then takes a binary decision. More formally:

Definition 3. A non-interactive proof system for relation R
is a pair of efficient algorithms Σ = (P,V). P has as input

a statement in X and a witness in W, and produces a proof

π ∈ PR; V takes as input a statement in X and a proof in PR,
and produces an output in {0, 1}. For clarity, we write ΣR for

a proof system for relation R.
Useful proof systems need to satisfy three properties, sound-

ness, completeness, and zero-knowledge. Here we only recall

the latter two, as soundness has no bearing on vote privacy.

A proof system is said to be complete, if the prover can
produce a valid proof whenever the statement holds. Formally,

if for any (x,w) ∈ R, if π is a proof output by P(x,w) then
V(x, π) returns true with probability 1.

A proof system ΣR is zero-knowledge, if the proof does not
leak any information besides the fact that the relation is valid.

This is usually formalized by demanding the existence of a

p.p.t. simulator S that produces valid-looking proofs for any

statement x ∈ X without access to a corresponding witness.

More formally, consider the zero-knowledge adversary B in

the following experiments:

Expzk,0
B,P,R(λ)

1 : (x,w, state)← B(1λ)
2 : π ← ⊥
3 : if (R(x,w)) then

4 : π ← P(x,w)

5 : β′ ← B(state, π)
6 : return β′

Expzk,1
B,S,R(λ)

1 : (x,w, state)← B(1λ)
2 : π ← ⊥
3 : if (R(x,w)) then

4 : π ← S(x)

5 : β′ ← B(state, π)
6 : return β′

The advantage of a zero-knowledge adversary B over the

2In typical instantiations R is an NP-relation.

proof system ΣR = (P,V), and simulator S is defined as:

AdvzkB,P,S,R(λ) =∣∣∣Pr
[
Expzk,0B,P,R(λ) = 1

]
− Pr

[
Expzk,1B,S,R(λ) = 1

]∣∣∣ .
Recall that we work in the random oracle model. Here, the

simulator has the additional capability (or responsibility) of

answering any calls the adversary makes to random oracles

used in the proof system. To keep notation simple we do

not show this dependence in the above formalization but, of

course, we account for it in our proofs.

B. Vote privacy in single-pass voting schemes

In this section we recall the syntax and security properties

of single-pass voting schemes, the class of schemes that we

treat in this paper. First we recall their syntax and then give

an overview of their desired properties related to vote privacy.

A single-pass voting system [13] is a tuple of algorithms

V = (
Setup, Vote, Valid, Publish, Tally, Verify

)
.

Setup(1λ,m): Returns a pair of keys (pk, sk), and creates a
map uL that assigns m voter identities to their associated

labels.

Vote(id, �, v, pk): Constructs a ballot b that voter id uses to

cast their vote v, with label �.
Valid(BB, uL, b, pk): Checks the validity of ballot b with

respect to the ballot box BB and the label mapping uL.
Publish(BB): Returns the public view pbb of BB called the

public bulletin board; for example, the public bulletin

board can contain the whole content of the ballot box,

only the labels involved in ballots, or no information at

all.

Tally(BB, sk): Computes the result r of the election and a

proof Π of correct computation from BB.
Verify((pk, pbb, r),Π): Checks that Π is a valid proof of

correct computation for result r and public ballot box pbb.
In this section we recall several properties of single-pass

voting schemes. We start with ballot privacy, the key security

guarantee that these schemes need to satisfy.

BALLOT PRIVACY PROPERTY. A voting scheme V ensures

ballot privacy [13] (BPRIV, for short) if the ballots themselves

do not reveal any information about the votes that were cast.

This holds even for adversaries that can cast arbitrary ballots

in the voting process. This idea is formalized via a game-based

definition, that uses the experiment in Figure 2. The goal of the

adversary is to distinguish between two worlds. In the process,

the adversary chooses votes to be submitted by honest voters,

and may submit ballots on behalf of the corrupt users. The

adversary gets access to the bulletin board corresponding to

the real world (β = 0) or the ideal world (β = 1), where fake
votes are submitted by honest parties. The adversary always

learns the real result, that is, the tally is always performed on

BB0. The result comes with the real proof of validity if β = 0
or a fake proofs when β = 1. This fake proof is created by
an efficient simulator (who only has access to the visible part

of the board). The adversary is expected to determine if it
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Expbpriv,βA,V,Sim(λ,m)

1 : BB0,BB1 ← [ ]

2 : (pk, sk, uL)← Setup(1λ,m)

3 : β′ ← AO(1λ, pk, uL)

4 : return β′

Oracle Ocast(b)

1 : if
(
Valid(BBβ , uL, b, pk)

)
then

2 : BB0 ← BB0 + [b]; BB1 ← BB1 + [b]

Oracle Oboard()

1 : return Publish(BBβ)

Oracle Otally() for β = 0

1 : (r,Π)← Tally(BB0, sk)

2 :

3 : return (r,Π)

Oracle Otally() for β = 1

1 : (r,Π)← Tally(BB0, sk)

2 : Π′ ← Sim(pk,Publish(BB1), r)

3 : return (r,Π′)

Oracle Ovote(id, v0, v1)

1 : �← uL[id]

2 : if
(
� �= ⊥) then

3 : b0 ← Vote(id, v0, �, pk); b1 ← Vote(id, v1, �, pk)

4 : if
(
Valid(BBβ , uL, bβ , pk)

)
then

5 : BB0 ← BB0 + [b0]; BB1 ← BB1 + [b1]

Fig. 2. In the experiments Expbpriv,βA,V , the adversary A has access to the set of oracles O = {Ocast, Ovote,Otally, Oboard}. The adversary is allowed
to call the Otally oracle at most once.

was playing with β = 0 or β = 1. Security demands that no
adversary can tell the difference between the two world: so the

board leaks no information about the content of the ballots,

and neither does the proof that accompanies the result.
We capture the adversarial abilities using the formal def-

initions of oracles in Figure 2. We provide below informal

descriptions of what these abilities represent.
Ovote : Receives two potential votes (v0, v1) for voter id.

Then, using the label � assigned to id (if such a label

exists) it creates ballots b0 from v0 and b1 from v1. If
ballot bβ is valid with respect to board BBβ , then b0 is
added to BB0 and b1 is added to BB1;

Ocast : Lets the adversary cast a ballot on behalf of a

corrupted voter;

Oboard : Limits the adversary’s view of the bulletin board

to its public version, given by the Publish algorithm.

This public version of the board can vary very broadly,

with the following variants–among others–being used in

practice: the exact board, publish only the ciphertexts

from the ballots, or the empty set.

Otally : Computes the result on board BB0, and produces the

proof of correct computation using the output of the tally

algorithm for β = 0 or the proving simulator Sim for

β = 1.

Definition 4 (Ballot Privacy [13]). A voting scheme V has

ballot privacy if there exists a simulator Sim such that no

efficient adversary A can distinguish between the games

Expbpriv,0A,V,Sim(λ,m) and Expbpriv,1A,V,Sim(λ,m) defined in Figure 2.
That is, the expression

AdvbprivA,V,S(λ,m) =∣∣∣Pr
[
Expbpriv,0A,V,Sim(λ,m) = 1

]
− Pr

[
Expbpriv,1A,V,Sim(λ,m) = 1

]∣∣∣
is negligible in λ, for any m ∈ N.

Intuitively, ballot privacy captures potential privacy breaches

that may occur during the voting process. The notion does

not account however for breaches that may occur during the

tally procedure. It turns out that privacy of the tally phase

can be enforced by demanding two additional security proper-

ties: strong correctness and strong consistency, as introduced

in [13]. Together with ballot privacy, these two additional

properties imply simulation-based notions of vote privacy [13].

STRONG CONSISTENCY. A voting scheme V is called strongly
consistent [13], if the scheme ensures that its Tally algorithm
behaves "as expected", i.e. it returns the result of applying the

result function ρ to the votes underlying the (valid) ballots that
are stored on a bulletin board. The following definition adapts

the one of Bernhard et al. [13] to the slightly more general

syntax that we adopt in this paper.

Definition 5 (Strong Consistency [13]). A voting scheme V
is strongly consistent if there exists:

• An extraction algorithm Extract((id, �, c), sk) that takes
as input a secret key sk and a ballot (id, �, c), and outputs the
id with either a vote in Vo or the special error symbol ⊥; and

• A ballot validation algorithm ValidInd((id, �, c), pk) that
returns true iff the ballot (id, �, c) is “well-formed” with

respect to some notion of well-formedness determined in

advance by the election.

These algorithms must satisfy the following conditions:

1) For any (pk, sk, uL) obtained from Setup(λ,m), and any
(id, �, v) if b ← Vote(id, v, �, pk) then Extract(b, sk) returns
(id, v) with overwhelming probability.
2) For any adversarially produced (BB, b), if

Valid(BB, uL, b, pk) returns true, then ValidInd(b, pk)
returns true as well.

3) For any adversary B that returns a ballot box with ballots
that satisfy ValidInd, the experiment Expconsis

B,V (λ,m) specified
in Figure 3 returns true with a probability negligible in the

security parameter.

STRONG CORRECTNESS. This property requires that honestly

created ballots will not be rejected by the validation algorithm;
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Setup(1λ,m)

1 : (pk, sk)← KGen(1λ)

2 : for i in 1..m do

3 : id←$ ID

4 : uL[id]← Flabel(id)

5 : return (pk, sk, uL)

Vote(id, �, v, pk)

1 : c← Enc(pk, �, v)

2 : return (id, �, c)

Valid(BB, uL, b, pk)

1 : (id, �, c)← b

2 : e1 ← ∀id′. (id′, �, c) /∈ BB

3 : e2 ←
(
� = uL[id]

)

4 : e3 ← ValidInd(b, pk)

5 : return (e1 ∧ e2 ∧ e3)

Tally(BB, sk)

1 : dbb = [ ]

2 : for i in 1..|BB| do
3 : (id, �, c) = BB[i]

4 : dbb[i]← (id,Dec(sk, �, c))

5 : r ← ρ(dbb)

6 : pbb← Publish(BB)

7 : Π← P((pk, pbb, r), (sk,BB))

8 : return (r,Π)

Fig. 4. Algorithms defining the Labelled-MiniVoting scheme

Expconsis
B,V (λ,m)

1 : (pk, sk, uL)← Setup(1λ,m)

2 : BB← B(1λ, pk, uL)
3 : (r,Π)← Tally(BB, sk)

4 : for i in 1..|BB| do
5 : dbb[i]← Extract(BB[i], sk)

6 : r′ ← ρ(dbb)

7 : return (r �= r′)

Fig. 3. The Strong Consistency experiment

we demand that this property holds even with respect to an

arbitrary ballot box chosen adversarially.

Definition 6 (Strong Correctness [13]). A voting scheme V
is strongly correct if the advantage of any efficient adversary
B, defined by Acorr

B,V(λ,m) = Pr[ExpcorrB,V(λ,m) = 1] (where
ExpcorrB,V(λ,m) is defined in Figure 5) is negligible as a function
of λ.

Expcorr
B,V(λ,m)

1 : (pk, sk, uL)← Setup(1λ,m)

2 : (id, v,BB)← B(1λ, uL, pk)
3 : � = uL.[id]

4 : ev ← true

5 : if
(
� �= ⊥) then

6 : b← Vote(id, v, �, pk)

7 : ev ← Valid(BB, uL, b, pk)

8 : return ¬ev

Fig. 5. The Strong Correctness experiment

III. LABELLED-MINIVOTING

The MiniVoting scheme was introduced by Bernhard et

al. [14] as an abstraction that captures several constructions

in the literature. The key feature of this scheme is that it can

be used to reason about the privacy properties of schemes in

this class only from minimal assumptions on the cryptographic

primitives.

In this paper we refine the scheme in two different ways.

First, we enlarge the class of schemes that the scheme covers

by introducing labels – public information associated to users,

yielding the Labelled-MiniVoting scheme. Labels can be used

to represent arbitrary information such as user’s pseudonyms

or their public verification keys. Second, since we attempt to

carry out most of the proofs at the highest possible level of

abstraction, we introduce some additional conditions on the

algorithms in the definition of single-pass voting schemes. In

particular, we demand that the algorithms that comprise the

voting scheme are defined in terms of the following (abstract)

algorithms, functions, and relations:

ValidInd(b, pk): Evaluates ballot b with respect to public key
pk, and determines if the ballot is valid in isolation.

Flabel(id): Returns the label associated to an identity id.

ρ((idi, vi)i): Computes the election’s result from a list of

identities and votes.

R(
(pk, pbb, r), (sk,BB)

)
: The relation enforced by the proof

system. Instantiating the relation in different ways allows

us to deal both with verifiable or non-verifiable voting

schemes.

Usually, ρ is defined as ρ(L) = Count ◦ Policy(L) for two
algorithms Count and Policy. Policy(L) filters the list L and

selects which vote is counted for each voter in case multiple

votes appear on the bulletin board. Count(L) computes the
result from the filtered list of votes and may be probabilistic.

The following definition presents our generalization of the

MiniVoting scheme, as a particular case of a single-pass voting
scheme.

Definition 7. Let E be a labelled public-key encryption

scheme, and ΣR = (P,V) be a proof system. Given algo-

rithms ValidInd,Publish,Flabel and ρ we define the Labelled-
MiniVoting scheme

MV(E ,ΣR,ValidInd,Publish,Flabel, ρ),

as the single-pass voting scheme defined by the algorithms in

Figure 4, which we informally describe below.

Setup(1λ,m): Generates a pair of keys (pk, sk) using the key
generation algorithm of the encryption scheme E , and
creates a map uL where exactly m ids are assigned to

labels.
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Vote(id, �, v, pk): Constructs a ballot that contains the identity

id of the voter, the label � assigned to that voter, and a
ciphertext obtained by the encryption algorithm E using
the public key pk over the vote v and label �.

Valid(BB, uL, (id, �, c), pk): Performs three checks to ensure

that the ballot is well-formed with respect to the board.

First, it checks that the ciphertext and label (�, c) are
unique with respect to the existing ballots in the ballot

box BB. Then, it verifies the use of the correct label

� for user id using the map uL. Finally, it calls the

ValidInd algorithm. Remark that this last step depends

on an abstract algorithm that might be instantiated to not

perform any additional checks.

Publish(BB): Publishes (arbitrary) information about the con-

tent of the ballot box.

Tally(BB, sk): Computes the result of the voting process in

two steps: first it decrypts the entire board, and then it

applies a result function ρ (that might or might not filter
some of the votes based on a predefined voting policy, for

example: keep the last valid vote for any id). Additionally,

it provides a proof that the tally was done correctly by

calling the prover P.
Verify((pk, pbb, r),Π): Calls the verify algorithm of the veri-

fier V, to show that the tally was done correctly.

VOTING FRIENDLY RELATION. Since we keep the relation R
that is used to certify the tally procedure abstract, we need

to ensure that the relation R is compatible with the result of

the election (computed with ρ). That is, we require that if

the result r corresponds to the votes obtained by decrypting
the ballot box BB using the key sk, if pbb corresponds to

the public board of BB and pk is the public key associated

to sk then r can be proved to be the correct result, that

is, R((pk, pbb, r), (sk,BB)) holds.3 Note that this notion is

unrelated to voting friendly encryption as defined in [14],

which designates a class of IND-1-CCA encryption schemes

that have embedded a homomorphic part.

The formal definition of a voting-friendly relation, uses

the following convenient notation. Given a bulletin board

BB = [(id1, �1, c1), . . . , (idn, �n, cn)] (seen as an ordered list
of bulletin board entries), we write Dec∗ for the algorithm that

decrypts each line and returns the ordered list of plaintexts:

Dec∗(sk,BB) =(
(id1,Dec(sk, �1, c1)), . . . , (idn,Dec(sk, �n, cn))

)

Definition 8. Let E be a labelled public-key encryption

scheme, and ΣR be a proof system for some relation R. Given
the abstract algorithms ρ and Publish, we say that R is a

voting-friendly relation with respect to ρ and Publish, if for
any efficient adversary B, the following experiment returns 1
with negligible probability.

3We do not put any restrictions on the relation R; in particular R may
depend on some random oracle.

Expvfr
B,E,ΣR,ρ,Publish(λ)

1 : (pk, sk)← KGen(1λ)

2 : BB← B(1λ, pk)
3 : dbb← Dec∗(sk,BB)
4 : r ← ρ(dbb)

5 : pbb← Publish(BB)

6 : return ¬ R(
(pk, pbb, r), (sk,BB)

)

We provide machine-checked proofs [1] that the Labelled-
MiniVoting scheme is ballot private, strongly consistent and

strongly correct.

Strong correctness is implied by the IND-1-CCA security

assumption of the encryption scheme: any p.p.t. adversary can

only obtain a collision with already-produced ciphertexts when

making an encryption query with negligible probability.

Theorem 1 (strong correctness). 4 Let V = MV(E ,ΣR,
ValidInd, Publish,Flabel, ρ) with ValidInd((id, �, c), pk) true
for c ← Enc(pk, �, v), and any pk, �, v, id. For any p.p.t.
adversary A, there exists an adversary B such that:

Acorr
A,V(λ,m) ≤ Advpoly-ind1cca

B,E,1 (λ),

for any m voters.

The next theorem establishes that the Labelled-MiniVoting
scheme satisfies ballot privacy, under standard assumptions on

its components. One quirk that is worth remarking is that we

actually prove a slightly stronger statement which requires the

weaker hypothesis that the underlying encryption scheme is

strongly correct. For simplicity, we use the above theorem

and rely on the non-malleability of the underlying encryption

scheme which, in turn, implies strong correctness.

Theorem 2 (ballot privacy). 5 Let V =MV(E ,ΣR, ValidInd,
Publish,Flabel, ρ) with ValidInd((id, �, c), pk) true for c ←
Enc(pk, �, v), and any pk, �, v, id. For any m voters, and any
adversary A that makes at most n voting queries, there exists
a simulator S and three adversaries B, C and D such that:

AdvbprivA,V,S(λ,m) ≤ 2× Pr[ExpvfrD,E,ΣR,ρ,Publish(λ) = 1] +

AdvzkB,P,S,R(λ) + 3n× Advpoly-ind1cca
C,E,1 (λ).

The intuition for the ballot privacy component of the above

theorem is based on two key points. First, one can replace

with negligible loss of security a proof from a zero-knowledge

proof system with a simulated one, provided that the relation

is (with overwhelming probability) satisfied by a ballot privacy

adversary. At this stage of the proof the relation is left

unspecified, thus bounded by a voting friendly constraint.

Secondly, one uses the IND-1-CCA security assumption for

the encryption scheme to replace the view of the adversary on

the ballot box.

Theorem 3. (strong consistency) 6 Let V = MV(E ,ΣR,
ValidInd,Publish,Flabel, ρ). Then, V is strongly consistent.

4Lemma scorr in ../MiniVotingSecurity.ec
5Lemma bpriv in ../MiniVotingSecurity.ec
6Lemmas consis1, consis2, consis3 in ../MiniVotingSecurity.ec
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The proof for strong consistency easily follows from the

definition of the Labelled-MiniVoting scheme, using the ex-

tractor defined by

∀ id , �, c. Extract((id, �, c), sk) = (id,Dec(sk, �, c)).

IV. APPLICATIONS

We now show how to apply the general results discussed

in Section III to the security of several hundred variants

of Helios, including most of its existing versions–either im-

plemented, or mentioned in publications. We first instan-

tiate Labelled-MiniVoting to a scheme we call PreHelios,
instantiating the labelled public-key encryption scheme with

a construction that combines a public-key encryption scheme

with a proof of knowledge. PreHelios then serves as a basis
for further instantiations and refinements.

In particular, we show that PreHelios corresponds, assuming
secure mixnets, to the variant Helios-mix of Helios with

mixnets. We further prove that the security of PreHelios
is equivalent, assuming a secure homomorphic encryption

scheme, to that of a variant Helios-hom, which uses homomor-
phic tally. In both cases, we show that remaining parameters

of Helios-mix and Helios-hom (for example, validity check or

result functions . . . ) can be instantiated in many ways, yielding

about 540 secure variants each, all equipped with a machine-

checked proof automatically based on our framework theorem.

Labelled-MiniVoting requires–quite strictly–that the ballot box
carefully discards duplicate ciphertexts. We also explain how

to (securely) relax this condition, yielding another variant

Helios-hom-IDweed that only discards duplicate ciphertexts

when they correspond to the same ID. This check is more

practical since it can easily done while deadling with revoting.

Finally, we point to several implemented voting schemes,

whose privacy properties are directly captured as machine-

checked instantiations of one of our Theorems.

Our results are summarized in Figure 6. We equip all the

schemes we discuss with machine-checked proofs of privacy.

Rectangular nodes are not fully instantiated, and represent

families of schemes whose privacy may rely on some non-

standard hypotheses. All leaves represent fully-instantiated

schemes: their security relies only on that of their crypto-

graphic primitives (encryption scheme and proof systems).

A. PreHelios

Helios constructs its labelled public-key encryption scheme

by composing El Gamal encryption with a proof of knowl-

edge.7 Let us consider a labelled public-key encryption scheme

LPKE(E ′,Σ′
R′), built from a public-key encryption scheme E ′

and a proof system Σ′
R′ . The proof system typically proves

validity of the vote v (for example, that at most one candidate
is selected by the ballot), and may use a label (such as the

voter’s identity) inside the statement. The encryption algorithm

7Even for the mixnet variant of Helios, El Gamal is used in conjunction
with a proof of knowledge – of the randomness used in mixing rather than
the plaintext – in order to obtain an IND-1-CCA scheme.

returns a ciphertext produced by E ′ on v, together with a proof
of validity π that links the ciphertext, public key and label to

the underlying vote and randomness used during encryption.

The decryption algorithm checks the validity of the proof

before decrypting the ballot. A more formal description of

the construction is given in Figure 7.

KGen(1λ)

1 : return KGen′(1λ)

Enc(m, �, pk)

1 : r ← Zq

2 : c← Enc′(pk,m; r)

3 : π ← P′((c, pk, �), (m, r))

4 : return (c, π)

Dec(sk, �, (c, π))

1 : if V′((c, pk, �), π) then

2 : return Dec′(sk, c)
3 : return ⊥

Fig. 7. Algorithms of LPKE(E ′,Σ′
R′ ), with Σ′

R′ = (P′,V′).

We define PreHelios as Labelled-MiniVoting instantiated

with an LPKE construction as its labelled public-key encryp-

tion scheme.

Definition 9. Let E ′ be an encryption scheme, and ΣR, Σ′
R′

be two proof systems. Given Γ = LPKE(E ′,Σ′
R′), and some

algorithms ValidInd, Publish, Flabel and ρ, the PreHelios

scheme constructed from these primitives is defined as

PH (E ′,Σ′
R′ ,ΣR,ValidInd,Publish,Flabel, ρ) =

MV (Γ,ΣR,ValidInd,Publish,Flabel, ρ) .

The following corollary of Theorems 1, 2, 3, states that

PreHelios inherits the security of Labelled-MiniVoting.

Corollary 1. Let E ′ be an encryption scheme, and ΣR,
Σ′

R′ be two proof systems. Let Γ = LPKE(E ′,Σ′
R′), and

ValidInd that returns true for valid ciphertexts. The scheme
PH (E ′,Σ′

R′ ,ΣR,ValidInd,Publish,Flabel, ρ) is
• ballot private, provided that R is voting friendly, Γ is

IND-1-CCA, the proof system ΣR is zero-knowledge.
• strongly consistent.
• strongly correct if Γ is IND-1-CCA

This follows directly from Theorems 1, 2, 3. A typical

example of an IND-1-CCA encryption scheme is El Gamal

encryption with Chaum-Pedersen proofs [15].

B. Security by Refinement

However, it should be clear from the definition of Labelled-
MiniVoting that only the most basic voting systems can be

produced purely by instantiating PreHelios further. Indeed,

Labelled-MiniVoting specifies an ideal Tally algorithm that

decrypts the ballot box line-by-line before computing the

election result using ρ, whereas any voting system that means

to provide resilience against corrupted tallying servers cannot

follow this course of action.

To support the application of our Theorem 2 to such

schemes–capturing in particular most published Helios vari-

ants, we show that privacy properties are preserved when
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Labelled-MiniVoting

PreHelios

Helios-mix

Basic v3-mix 323 var.

Helios-hom

v3-hom v4 160 var.

Helios-hom-IDweed

Helios-light-weed 53 var.

Thm 2

�
Thm 3

Fig. 6. Relations between our schemes. Arrows represent direct instantiations, o-arrows represent instantiations (where some equivalence property is used);
� is observational equivalence. The leafs contain either concrete instances (e.g. Basic, (Helios) v3-mix), or the number of variants that have been obtained.
All constructions satisfy ballot privacy, strong consistency, strong correctness (under some assumptions).

substituting a functionally equivalent algorithm for Tally. We
now define the necessary notions of functional equivalence and

algorithm substitution.

Definition 10 (Functional Equivalence). Let f be a (stateful)

algorithm. We write

Pr[f(e),m� (r,mr)]

for the probability that the execution of f(e) leads to the

final memory mr with result r when executed in the initial

memory m. Given a predicate φ over inputs and memories,

two procedures f1 and f2 are functionally equivalent under φ,
written f1 	φ f2, iff

Pr[f1(e),m� (r,mr)] = Pr[f2(e),m� (r,mr)]

for any input value e, output value r and memoriesm,mr such

that φ(e,m). For the constantly true predicate T, 	T expresses

unconditional functional equivalence, which we simply denote
with 	.
We note that this notion of equivalence captures algorithms

that are both probabilistic and stateful, intuitively requiring

that equivalent algorithms produce the same joint distributions

on outputs and final state given the same inputs and initial

state.

Given a voting scheme V = (S,Vo,Va,P,T,Ve) and

an alternative tallying algorithm Tally′, we define the vari-
ant of scheme V that uses algorithm Tally′ for tallying as

V[T← Tally′] = (S,Vo,Va,P,Tally′,Ve). Similarly, given an
alternative validation algorithm Valid′, we define the variant
of scheme V that uses algorithm Valid′ for ballot validation
as V[Va ← Valid′] = (S,Vo,Valid′,P,T,Ve). When the

nature of the alternative algorithm is clear from context, we

simply write V[Tally′] or V[Valid′] for the relevant algorithm
substitution.

Lemma 2 (Tally-Equivalence preserves Privacy). Given a
voting scheme V with tallying algorithm Tally, and some
alternative tallying algorithm Tally′ such that Tally 	 Tally′. If
V is ballot private (resp. strongly correct; strongly consistent)
then V[Tally′] is ballot private (resp. strongly correct; strongly
consistent).

Proof. The theorem is a simple consequence of the defini-

tions for the three properties. We note in particular, that,

for β ∈ {0, 1}, Expbpriv,βA,V and Expbpriv,βA,V[Tally′] are strictly

equivalent until the adversary queries its Otally oracle, so the
corresponding queries to Tally and Tally′ necessarily occur in
a pair of contexts where inputs and states are equal. A similar

observation applies for strong consistency. Finally, tallying is

not used for strong correctness.

C. Helios-mix

Mixnets were introduced by Chaum [19] as a method to

implement anonymous communications in the absence of a

trusted authority. A mixnet takes as input a set of encrypted

messages and outputs the underlying plaintexts in a way

that hides the relation between the input ciphertexts and

the output plaintexts. Interest in their applications (which go

significantly beyond electronic voting) resulted in a large body

of literature that covers different constructions [30], [32], [36],

[37], [41], and security models and proofs for some of the

constructions [32], [33], [41].

Concrete implementations typically “chain” several mixers

so that the output of one is passed as input to the next.

Each intermediate shuffle comes with a proof that mixing

was implemented correctly. Since we are not concerned here

with dishonest tally authorities, we simply view mixnets as an

abstract algorithm TallyMix which, given a list of ballots and
the secret key, returns their decryptions in some order together

with a proof that the list of decrypted votes corresponds to

the initial list of ballots. Existing mixnet constructions return

the plaintexts either in random order [36] or in lexicographic

order [32].

The following definition fixes the class of protocols obtained

by replacing the tally algorithm with a mixnet, whose opera-

tions are modelled as a probabilistic algorithm TallyMix. In our
definition, we make use of the Count function multiset that
can be instantiated with functions that return the sequence of

votes in lexicographic or random order.

Definition 11. Let E ′ be an encryption scheme, Σ′
R′ and ΣR

be two proof systems, ValidInd, Publish, Flabel, and Policy
be abstract algorithms as specified, and TallyMix be a mixnet
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functionality. Given ρ = multiset ◦ Policy, we define the

Helios-mix scheme constructed from these primitives as

HM (E ′,Σ′
R′ ,ΣR,ValidInd,Publish,Flabel,Policy) =

PH (E ′,Σ′
R′ ,ΣR,ValidInd,Publish,Flabel, ρ) [TallyMix].

Based on this definition, if one can find an instance PH
of PreHelios whose Tally algorithm is such that TallyMix 	
Tally, the following corollary identifies sufficient conditions

for the privacy of the Helios-mix variants constructed from

the same primitives.

Corollary 2. Let E ′ be an encryption scheme, ΣR, Σ′
R′ be two

proof systems, Γ = LPKE(E ′,Σ′
R′), and ValidInd, Publish,

Flabel, and Policy be abstract algorithms as specified. The
scheme

HM (E ′,Σ′
R′ ,ΣR,ValidInd,Publish,Flabel,Policy)

is ballot private, strongly consistent, and strongly correct pro-
vided that i. TallyMix 	 Tally (with the specified primitives);
ii. ValidInd returns true for valid ciphertexts; iii. R is voting-
friendly; iv. Γ is IND-1-CCA; and v. ΣR is zero-knowledge.

Our EasyCrypt formalization of the result supports two

separate instantiations for multiset, using either lexicographic
ordering (as Helios-mix-ord), or random ordering (as Helios-
mix-perm). In particular, we formally prove the required func-
tional equivalences for Tally and TallyMix.

D. Helios-hom
Similarly, PreHelios can be refined in a similar way to prove

privacy properties for homomorphic variants of Helios.
The Helios-hom scheme is defined as an instantiation of

a PreHelios scheme with some homomorphic public key

encryption scheme E ′, and whose Tally algorithm is modified

to be as shown in Figure 8.

TallyHom(BB, sk)

1 : sbb← valid ballots based on proof check from BB

2 : fbb← Policy(sbb)

3 : c← Add(fbb)

4 : r ← Dec(c, sk)

5 : pbb← Publish(BB)

6 : Π← P((pk, pbb, r), (sk,BB))

7 : return (r,Π)

Fig. 8. Helios-hom TallyHom algorithm

Definition 12. Let E ′ be a public-key encryption scheme, Add
be a candidate homomorphic operation, ΣR and Σ′

R′ be two

proof systems, and ValidInd, Publish, Flabel, and Policy be

abstract algorithms as specified. Given ρ = addition ◦ Policy,
we define the Helios-hom scheme constructed from these

primitives as:

HH (E ′,Σ′
R′ ,ΣR,ValidInd,Publish,Flabel, ρ) =

PH (E ′,Σ′
R′ ,ΣR,ValidInd,Publish,Flabel, ρ) [TallyHom].

Theorem 4. Let E ′ be a homomorphic encryption
scheme, Σ′

R′ ,Σ′
R′ be two proof systems, and ValidInd,

Publish,Flabel,Policy be abstract algorithms as specified
such that:

∀ b,BB. b ∈ Policy(BB) =⇒ b ∈ BB; and

∀ sk,BB. Dec∗(sk,Policy(BB)) = Policy(Dec∗(sk,BB)).

Let TallyHom be the tallying algorithm of the scheme
HH (E ′,Σ′

R′ ,ΣR,ValidInd,Publish,Flabel,Policy), and
Tally be the tallying algorithm defined by the scheme
PH (E ′,Σ′

R′ ,ΣR,ValidInd,Publish,Flabel, ρ) with
ρ = addition ◦ Policy. We have TallyHom 	 Tally.

Theorem 4 is proved in EasyCrypt. The equivalence fol-
lows from the homomorphic property of the encryption scheme

and the commutativity and membership properties of the

Policy algorithm. We then easily deduce privacy properties

of Helios-hom, via Lemma 2.

Corollary 3. Let E ′ be an encryption scheme, with Add a
candidate homomorphic operation for E ′, let ΣR, Σ′

R′ be two
proof systems, Γ = LPKE(E ′,Σ′

R′), and ValidInd, Publish,
Flabel, and Policy be abstract algorithms as specified. The
scheme

HH (E ′,Σ′
R′ ,ΣR,ValidInd,Publish,Flabel,Policy) ,

is ballot private, strongly consistent, and strongly correct
provided that i. R is voting friendly; ii. Γ is IND-1-CCA;
iii. ΣR is zero-knowledge; iv. E ′ and Add form a homomorphic
public-key encryption scheme; v. ValidInd returns true for valid
ciphertexts; vi. Policy commutes with Dec∗; vii. ∀ b,BB. b ∈
Policy(BB) =⇒ b ∈ BB.

E. Various realizations of Helios

We recall that Labelled-MiniVoting is parameterized by a

labelled public-key encryption scheme, a proof system, and

six abstract algorithms.

ValidInd : ((ID, L,C),PK)→ {0, 1},
Publish : (ID, L,C)∗ → PBB,
Flabel : ID→ L,
Count : (ID,Vo⊥)∗ → R,
Policy : (ID,Vo⊥)∗ → (ID,Vo⊥)∗,
R :

(
(PK,PBB,R), (SK, (ID, L,C)∗)

)→ {0, 1}
To illustrate the versatility of our framework, we list some

interesting instances of these algorithms.

Typical choices for ValidInd include the constantly true

function, which lets the ballot box accept all non-duplicated

ballots, and algorithm V′ itself, which checks that the ballot
is equipped with a valid proof before accepting it.

Many choices for Publish have been considered, from

trivial publication policies that reveal no information about the

ballot box (empty), or publish the ballot box itself (identity)
to more involved publication algorithms that reveal the last

cast ballot for each voter, with (last view) or without the id
(anonymous-view), or reveal a hash of each entry along with
the entry itself (hash-view). Further, entries could be reordered,
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or dummy entries inserted before publication of the bulleting

board.
Algorithm Flabel, which produces the label from the voter

id, is usually instantiated trivially, either as a constant function

(constant), or as the identity function (identity). Other inter-
esting choices would include pseudo-random labels (where, for

example, the label is produced during setup using a PRP whose

key is discarded afterwards) that could serve as pseudonyms.
The revote policy Policy can either enforce a single vote per

id or take multiple votes into account, for example where votes
can be bought or are linked to some form of stake. Single vote

policies can be as simple as choosing the last (last vote) or
first vote cast by each voter, and as complex as those used in

Estonia (where priority is given to ballots cast in person, over

electronic ballots). Multiple vote policies could sum all votes,

or average all votes cast by each voter before computing the

final result.
The relation R proved by the tallying authorities is usu-

ally instantiated either as the trivial true relation, or as the

relation that relates plaintexts and associated datas to all valid

ciphertexts that encrypt them (corr-dec).
Lastly, choices for the counting algorithm Count are as

numerous as there are types of democracy and elections. We

list the most common ones.
• addition. Tells how many votes each candidate received.

• multiset. Returns the sequence of all votes. Two main

categories are considered:

– order. All votes are given in lexicographic order.
– permutation. Votes are returned in a random order.

• majority. Discloses only the winner.
• weighted. Some voters may have a more important role in

making the decision.

• condorcet. Voters rank candidates in order of preference.

A single winner is selected by conducting a series of

fictitious one-on-one elections between every possible

pairing of two candidates.

• STV (Single Transferable Vote). Voters rank the candidates

in order of preference. Votes for candidates above some

threshold are transfered to other candidates based on the

order of preference indicated on the ballots.
Hundreds of secure variants of Labelled-MiniVoting: These

options can be combined arbitrarily, subject to a few con-

straints, that are imposed in particular by voting-friendliness

and other non-cryptographic premises.
• If Publish : (ID, L,C)∗ → PBB returns an empty bulletin

board then R must be true.

• For Helios-hom, the counting function has to be addition
and the policy cannot be average.

• For Helios-hom-IDweed, Flabel must yield an injective

mapping from identities to labels, the counting function

has to be addition, and the policy cannot be average.
• For Helios-mix, the counting function has to be multiset,
and the policy cannot be average.

This yields 162 variants for Helios-hom, 54 variants for

Helios-hom-IDweed and 324 variants for Helios-mix. All
these variants were automatically generated and equipped

with (checked) EasyCrypt proofs of ballot privacy, strong
consistency, and strong correctness in less than 31 minutes

overall. An overview is provided in Table II. To avoid gener-

ating all the variants anytime a single instance is desired, we

also provide a simple design interface where the user selects

the options of her choice for each parameter. The resulting

voting scheme is then automatically generated along with

a proof of its security, checked with EasyCrypt. We note

in particular that, once all algorithms are fully instantiated,

the non-cryptographic premises of our security theorems and

corollaries are automatically discharged. This includes the

voting-friendliness properties of R w.r.t. the other algorithms

for all instances, the commutativity and regularity properties of

Policy for homomorphic instances, and the injectivity property
of Flabel for instances with reduced-weeding.

Insecure variants of Labelled-MiniVoting: Labelled-
MiniVoting has been designed to ensure that ballot privacy,

together with strong consistency and strong correctness, are

satisfied with only (minimal) assumptions on the cryptographic

primitives. Many features and restrictions have been hard-

coded (in the algorithms or the cryptographic primitives) such

that it should be difficult to find instantiations of Labelled-
MiniVoting that are not ballot private.

One such feature is the weeding process modeled by the

Valid algorithm. It has been well documented [15], [23], [24]
that not weeding ballots carefully leads to insecure schemes. In

particular, this is also why Helios as implemented in versions 3

and 4 do not satisfy ballot privacy. For the Helios variants that

we analyze weeding is encapsulated in the Valid algorithm.

F. Existing Variants

Combining the results obtained in the previous sections

yields the security of several hundred variants of electronic

voting schemes. In this section, we point to some variants that

correspond to existing published schemes.

We consider more specific cryptographic primitives. Let E ′
be the exponential El Gamal encryption scheme [16], [29],

and Σ′
R′ = (P′,V′) the disjunctive Chaum-Pedersen proof

system [18]8 over the relation R′ that ensures that a vote

satisfies the requirements of the election. Additionally, let

Σcorr-dec be the Chaum-Pedersen proof system for correct

decryption. We assume the El Gamal encryption scheme with

Chaum-Pedersen proofs of knowledge (formally defined as

Γ = LPKE(E ′,ΣR′)) to be IND-1-CCA (a pen-and-paper

proof is given in [15]). We further assume that the correct

decryption proof system Σcorr-dec is zero-knowledge. We can

then deduce the following results on the practical schemes

listed in Table I.

HELIOS VERSION 3 WITH HOMOMORPHIC TALLY. Helios
version 3 with homomorphic tally [2] (Helios-v3-hom, for

short) corresponds to Helios-hom instantiated with exponential

El Gamal encryption, last vote policy, no label, and addition as

8We use the strong Fiat-Shamir transformation.
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counting mode. Formally, Helios version 3 with homomorphic

tally is defined as

Helios-v3-hom = HH (E ′,Σ′
R′ ,Σcorr-dec,ValidIndV′ ,

Publishlast view,Flabelempty,Policylast vote) .

By setting the identity of the voters to be either true names

or aliases, we can cover here two sub-variants of Helios

version 3:

Helios-v3-hom with true identities. This version has been

used since the introduction of Helios in version 1 [2].

Helios-v3-hom with aliases. Version that was initially intro-

duced for the 2009 election at Louvain in Helios version

2 [3], and was later made more broadly available in

Helios version 3.

HELIOS VERSION 3 WITH MIXNETS. Helios version 3 with
mixnets [2] (called Helios-v3-mix, for short) corresponds to

Helios-mix instantiated with last vote policy, no labels, and

the multiset counting mode. Formally, Helios version 3 with

mixnets is defined as

Helios-v3-mix = HM (E ′,Σ′
R′ ,Σcorr-dec,ValidIndV′ ,

Publishlast view,Flabelempty,Policylast vote) .

Like homomorphic Helios-v3, this variant supports both elec-

tions where the name of voters is in the clear, or election with

aliases.

HELIOS VERSION 4. This version of Helios is closely related

to Helios version 3 with homomorphic tally. We point out

some small but important differences.

First, Helios version 4 uses more robust proofs of knowl-

edge, that contain additional information such as election

hash, or question number (that must therefore appear in the

label). Furthermore, to ease the readability of the ballot by

voters, Helios version 4 applies a hash over the ballot and

publishes it along with the ballot. Lastly, Helios v4 does not

support any mixnet-based variants, and is solely based on

homomorphic encryption. Therefore, algorithms ValidInd, ρ
and R are identical to Helios version 3 with homomorphic

tally, Publish produces a hash for each bulletin board entry that
is published alongside it, and Flabel is the constant function
returning election hash, question numbers and choice numbers.

The Helios version 4 [2] can formally be defined as

Helios-v4 = HH (E ′,Σ′
R′ ,Σcorr-dec),ValidIndV′ ,

Publishhash-view,Flabelconstant,Policylast vote) .

Note that our proofs do not cover Helios version 1 or version

2, since their underlying encryption scheme, based on the weak

Fiat-Shamir transformation, is not IND-1-CCA. Replacing the
weak Fiat-Shamir transformation with the strong Fiat-Shamir

transformation in their protocol descriptions would yield

Helios-v3-mix and Helios-v3, respectively, although particulars
of the primitives differ.

BASIC ELECTION SCHEME. One of the most basic election

schemes consists in sending votes encrypted with a public

key to a (trusted) voting server. No revote is allowed. During

tally, the server simply shuffles the ballots and decrypts them

line by line. Of course, this does not offer any verifiability.

Such a basic election scheme is at the core of several simple

commercial voting systems currently in use.

Let E be a labelled public-key encryption scheme with an
empty label, and Σtrue = (P,Vtrue) a proof system where both

the verifier Vtrue and relation are constantly true.

This basic voting scheme is formally defined as

MV (E ,Σtrue,ValidIndtrue,Publishno-revote,Flabelempty,

ρaddition◦no-revote) .

G. Weeding

Cortier et al [23], [24] and Bernhard et al. [15] have shown

the need for weeding in the context of ballot privacy. For

example, if an adversary may copy the ballot of an honest

voter (typically available on the bulletin board) and re-cast

it on his own behalf, he obtains some information on the

vote once the result is published, hence breaking privacy. In

particular, the ballot privacy of Labelled-MiniVoting is based

on a strong weeding policy, preventing pairs of ciphertexts

and labels being replayed even with different voter identifiers,

being enforced by the Valid algorithm.
We show that it is possible to weaken the weeding policy by

weeding only exact ballot duplicates. More precisely, we show

that instead of rejecting a ballot (id, �, c) as soon as (id′, �, c)
occurs in BB for some id′, we only reject it if exactly (id, �, c)
occurs in BB. This may speed up the weeding algorithm

since this latter check remains local to a particular voter’s

ballots, perhaps avoiding an expensive scan over the entire

bulletin board. Formally, we consider a variant ValidLight
of the Valid algorithm, displayed in Figure 9. If Flabel is
injective, then ValidLight is functionally equivalent to Valid.
This includes some interesting choices for Flabel, such as

the identity function (or the function x �→ (x, f(x)) for any
function f ), or a PRP whose key is discarded immediately

after setup.

Theorem 5. Let φ be the predicate defined by

φ(m) = uL is injective
∧ ∀ i ∈ dom(BB).

∃ idi, ci. BB[i] = (idi, uL[idi], ci),

where uL, BB are the values of these variables in memory m.
The following holds:

Valid 	φ ValidLight.

Theorem 5 is proved in EasyCrypt and relies on the fact
that each voter is assigned a unique label, and that all ballots

from the ballot box have a matching label for a voter w.r.t

to some pre-existing map that contains all voters and their

assigned label.

Definition 13. Given a homomorphic encryption scheme E ′,
two proof systems Σ′

R′ , ΣR, and abstract algorithms ValidInd,
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TABLE I
SOME PRACTICAL VARIANTS THAT CAN BE OBTAINED FROM THE Labelled-MiniVoting SCHEME.

Voting Base ValidInd Publish Flabel ρ R
Helios-v3-hom Helios-hom verify ballot proof last view empty addition ◦ last vote corr-dec
Helios-v3-mix Helios-mix verify ballot proof last view empty multiset ◦ last vote corr-dec
Helios-v4 Helios-hom verify ballot proof last view constant addition ◦ last vote corr-dec
Helios-light-weeding Helios-hom-IDweed verify ballot proof last view identity addition ◦ last vote corr-dec
Basic Scheme Labelled-MiniVoting return true empty empty addition ◦ no-revote return true

Valid(BB, uL, b, pk)

1 : (id, �, c)← b

2 : e1 ← ∀id′. (id′, �, c) /∈ BB

3 : e2 ←
(
� = uL[id]

)

4 : e3 ← ValidInd(b, pk)

5 : return (e1 ∧ e2 ∧ e3)

ValidLight(BB, uL, b, pk)

1 : (id, �, c)← b

2 : e1 ←
(
b /∈ BB

)

3 : e2 ←
(
� = uL[id]

)

4 : e3 ← ValidInd(b, pk)

5 : return (e1 ∧ e2 ∧ e3)

Fig. 9. Valid algorithm of Labelled-MiniVoting (left) and ValidLight, variant
with light weeding (right).

Publish, Flabel and Policy as specified, we define the Helios-
hom-IDweed scheme constructed from these primitives as the

scheme

HW (E ′,Σ′
R′ ,ΣR,ValidInd,Publish,Flabel,Policy) =

HH (E ′,Σ′
R′ ,ΣR,ValidInd,Publish,Flabel,Policy)

[ValidLight].

The following result follows from Theorem 5 and Corol-

lary 3. The proof, verified in EasyCrypt, involves carefully
checking that φ holds at all points where the validation

algorithm is (or may be) called.

Corollary 4. Let E ′ be an encryption scheme and ΣR,
Σ′

R′ be two proof systems, let Γ = LPKE(E ′,Σ′
R′), and

ValidInd, Publish, Flabel, and Policy be abstract algorithms
as specifed. The Helios-hom-IDweed scheme constructed from
these is ballot private, strongly consistent, and strongly correct
whenever all of the following hold: i. R is voting friendly;
ii. Γ is IND-1-CCA; iii. ΣR is zero-knowledge; iv. E ′ is
homomorphic; v. ValidInd that returns true for valid cipher-
texts; vi. Policy commutes with Dec∗; vii. Policy is such that
b ∈ Policy(BB) =⇒ b ∈ BB; and viii. Flabel is injective.

HELIOS WITH LIGHT WEEDING. We define Helios with light
weeding as

Helios-light-weed = HW (E ′,Σ′
R′ ,Σcorr-dec,

ValidIndV′ ,Publishlast view,Flabelidentity,Policylast vote) .

Helios-light-weed is a variant for Helios v3 that uses labels

that uniquely identify voters and performs lighter weeding

checks. Following Theorem 5, this is done without loss of

privacy. Additionally, this method for weeding yields another

defense mechanism against ballot privacy attacks [23] that has

not yet been implemented in Helios. We give an overview of

the practical variants of Helios our EasyCrypt proofs cover
in Table I.

V. FORMALIZATION

We now discuss the formalization, and highlight some of

the key points it unveiled.

A. EasyCrypt
EasyCrypt [8], [9] is an interactive proof assistant for

reasoning about concrete security of cryptographic construc-

tions; to date, EasyCrypt has been used primarily for proving
security of cryptographic primitives rather than more complex

systems, with the notable exceptions of [4], [7].
EasyCrypt features a module system which combines

facilities from module systems in programming languages,

with a capability mechanism for restricting adversarial access

to oracles or memories. The module system allows proving

general principles once and for all, and later instantiating

these principles in a particular setting. In addition, EasyCrypt
features a theory mechanism that supports instantiation of

types and operators used in a formalization. Our formalization

heavily relies on these mechanisms to achieve modularity and

make verification of several hundreds of variants tractable.
The EasyCrypt formalization of ballot privacy closely

follows the development outlined in the previous section, but

with two important differences. First, security statements in

EasyCrypt are concrete, i.e. the advantage of a (constructed)
adversary is given as an arithemetic expression of its capac-

ities and of the advantage of sub-adversaries—whereas for

readability, our presentation in the previous sections follows

the usual style of asymptotic security. More importantly,

EasyCrypt uses a relational program logic to formalize code-

based game-based reductionist arguments. The latter uses a

series of probabilistic programs with adversarial code, called

games, and of probabilistic claims relating the probability of
one or more events in one or more games, to establish its

main claim. In EasyCrypt, probabilistic claims are derived
using probabilistic Relational Hoare Logic (PRHL), which

generalizes Relational Hoare Logic [11] to a probabilistic

setting. PRHL is a program logic whose judgments are of

the form {Φ} c1 ∼ c2 {Ψ}, where c1 and c2 are games, and
Φ and Ψ are relations on program states. The rules of PRHL

allow the user to derive valid judgments. When Ψ is of an

appropriate form (concretely, E1〈1〉 ⇒ E2〈2〉, where 〈i〉 is
used to denote the memory in which the event is interpreted),

validity of the above judgment implies the probabilistic claim:

Pr[c1,m1 : E1] ≤ Pr[c2,m2 : E2]
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stating that the probability of event E1 after executing c1 in
initial memory m1 is upper-bounded by the probability of

event E2 after executing c2 in m2.

Interestingly, our formalization highlighted one limitation of

EasyCrypt. In order to achieve maximal generality, our proof
of ballot privacy is modular and assumes IND-1-CCA security

of the underlying encryption scheme. An important goal for

future work is to prove in EasyCrypt that encryption schemes
commonly used in Helios, including El Gamal with zero-

knowledge proofs, achieve IND-1-CCA security. This com-

ponent does not require changes for the Labelled-MiniVoting
scheme, and can be viewed as a stand-alone component.

However, it involves extending EasyCrypt to reason about

rewinding arguments since existing IND-1-CCA proofs use

Bellare and Neven’s General Forking Lemma [10].

B. Issues with Pen-and-Paper Proofs

The formalization effort presented here highlighted two

shortcomings in existing pen-and-paper proofs for Labelled-
MiniVoting and its applications.

SIMULATION PROOFS WITH RANDOM ORACLES. Starting

from existing pen-and-paper proofs of BPRIV for Labelled-
MiniVoting, and attempting to formalize them led us to deeper

considerations on the interactions of simulation-based security

notions and proofs with random (or stateful) oracles, in a way

similar to Fiore and Nitulescu [28]. Indeed, in the proof of

Labelled-MiniVoting, it is highly important to split random

oracles between those that are taken over by the simulator and

those that need to remain independent (in particular, so they

can be taken over in lower-level simulations for the primitives).

Formally, this highlighted the need to strike a careful balance

between abstraction–which supports proof reuse and enforces

that the realization of a component be irrelevant to the current

security proof, and the need to have a full specification of

the system on which the proof operates. In particular, the

need for formality in the treatment of random oracles caused

some false starts in the development, as core definitions and

theorem statements had to be adapted, first to make room

for random oracles, then to clearly distinguish those random

oracles that are protocol-relevant (those used in the proof of

correct decryption) and need to be simulated from those that

are only relevant to lower-level primitives and can thus be

kept abstract (those used in the labelled public-key encryption

scheme), and finally to support zero-knowledge relations with

access to the abstract random oracles.9 However, we note

that this formal issue does not imply the existence of attacks

if the same hash function is used for computing the proof

of decryption and for other purposes. Still, in the spirit of

recent standardisation efforts, we do recommend that domain

separation be used in this case.

A MISSING ASSUMPTION. Existing proofs of ballot privacy

for abstract systems similar to Labelled-MiniVoting [14] do

not make use of the strong correctness, whereas it is in fact a

9A theorem that does not consider the latter two issues, although much
easier to state and prove, would not be instantiatable as broadly as ours.

necessary assumption. In practice, the game transition where

strong correctness is used implies an additional term (corre-

sponding exactly to the upper-bound on the strong correctness

advantage) in the final security bound for ballot-privacy, which

does not appear in asymptotic security treatments, but may

be critical when evaluating security margins to determine

concrete security parameters.

C. Discussion

The final qed took about one person-year to complete.

The statement and proof of Theorem 2 took about 75% of

the effort, while the specialization component made up the

rest (including some changes to the statement of Theorem 2

and related definitions to support zero-knowledge relations

with random oracles). Table II shows the development size

and verification times; the figures were obtained running

EasyCrypt on an HP ZBook with i7-4800MQ CPU and 32GB

RAM, running Ubuntu 14.01.

EXTENSIONS, REFINEMENTS AND GENERALISATIONS. It is

clear that much of the effort could have been spared if we had

chosen to forgo generality and consider a specific instance

of Helios. However, the benefits of a general proof is that

it should now be easy to adapt our framework (and the

corresponding proofs) to: formalizing privacy of other voting

systems, formalizing other security properties, and carrying

our formal guarantees down to implementations, also consid-

ering security under weaker trust assumptions. For example,

a refinement of our framework would explicitly distinguish

between the public and the secret part of a user’s credential.

Schemes where such distinction is crucial e.g. Belenios [21] or

Civitas [31], could then be instantiated in the resulting frame-

work. Of course, any extensions would require re-working the

formal results to deal with the changes. However in this case

the new proofs would mirror closely the development that we

present in this paper and may need to only locally account

for the changes. Other security properties of interest include

in particular verifiability [22], accountability [34], receipt-

freeness, and coercion-resistance [31]. Extending our work to

these properties would first require to fully formalize them but

then we believe we could again rely on the genericity of our

approach to consider classes of protocols.

TOWARDS VERIFIED IMPLEMENTATIONS. We conclude this

discussion section by observing that the family of machine-

checked specifications we produce gets us one step closer

to the production of machine-checked implementations for

voting protocols. Indeed, EasyCrypt itself provides several
ways of producing machine-checked implementations from

machine-checked specifications. The first is to extract, from

the EasyCrypt specification, a specification in the WhyML
language, a specification language suitable for use with many

program verifiers. This technique, which then carries the

final result over to implementations by manual and verified

refinement, was used in the past to obtain proofs of security,

even in the presence of side-channel adversaries, for RSA-

OAEP [5] and MEE-CBC [6]. Although the use of random
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TABLE II
STATISTICS ON THE EASYCRYPT PROOF DEVELOPMENT FOR E-VOTING.

Voting Stages Definition
(no. lines)

Proof
(no. lines)

Verif. Time
(seconds)

General
Framework

General Concepts 961 2891 158
Labelled-MiniVoting 231 4466 447.8

Specialization
PreHelios 145 918 10.8
Helios-hom 164 662 51.3
Helios-hom-IDweed 22 842 67.3
Helios-mix 95 788 5.7

Examples Helios v.* + Basic 658 2493 28.7
540 variants 540 * 132 540 * 492 540 * 3.4

oracles are an obstacle to the verification of the whole system,

hash functions are in fact a very small part of the system–

and not much can usually be established about their security.

For example, Almeida et al. [6] simply exclude symmetric

primitives from the refinement proof, but include them in

the side-channel-freeness check. At present, these techniques

would not scale to the needs of systems of the size and com-

plexity of Helios. The second is to directly extract, from the

EasyCrypt specification, a working OCaml implementation of
the protocol. This mechanism was previously used to produce

relatively efficient implementations of secure and verifiable

computation protocols [4]. In the present case, because we

leave a number of components unspecified or abstract (in

particular, we only consider functional abstractions of the

tally process and bulletin board), our specification is not

sufficient to produce a full working implementation of the

voting scheme. However, it would be sufficient to produce a

working implementation of a voting client, be it device-based

or direct-recording electronic (DRE) based. We do not here

make any claims on the practical security of this extracted

code.

VI. CONCLUSION AND FUTURE WORK

We have developed a machine-checked framework for prov-

ing ballot privacy of electronic voting systems. Our framework

is sufficiently general to cover hundreds of variants of Helios,

including most existing implemented ones.

We reduced ballot privacy to security of the underlying

primitives, relying for example on an IND-1-CCA-secure en-
cryption scheme and on secure mixnets. ElGamal together with

proofs of knowledge has been proved secure in [15]. However,

formalizing this proof in EasyCrypt would be challenging

since it requires support for rewinding adversaries. Simi-

larly, proving security of mixnets is hard and developing an

EasyCrypt framework for mixnets would form an interesting

research project.

As future work, we plan to extend our framework to

other voting systems as discussed in the previous section.

We also plan to consider other properties such as verifia-

bility, accountability, receipt-freeness, or coercion-resistance.

Verifiability seems of easy reach: it requires to formalise this

property, for example along the lines of [21] and identify under

which conditions Labelled-MiniVoting preserves verifiability

(e.g. depending on what is published). This should allow

us to prove verifiability of many of the variants of Helios.

Accountability would require more work. Indeed, while Helios

is close to being accountable, it is necessary to first specify

exactly who is responsible e.g. for the data displayed on the

ballot box and the distribution of the credentials and how this

is cryptographically enforced. We would first need to enrich

Labelled-MiniVoting to account for these extra procedures.

Then receipt-freeness and coercion-resistance would require

even more extensions to Labelled-MiniVoting since Helios

and its variants, and therefore the current Labelled-MiniVoting
scheme, are not coercion-resistant. Considering these various
properties under varying trust assumptions on each of the

parties would also be interesting.
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