
CoSMeDis: A Distributed Social Media Platform
with Formally Verified Confidentiality Guarantees

Thomas Bauereiß∗, Armando Pesenti Gritti†, Andrei Popescu‡§, Franco Raimondi‡
∗German Research Center for Artificial Intelligence (DFKI) Bremen, Germany

†Global NoticeBoard, UK
‡Department of Computer Science, Middlesex University London, UK
§Institute of Mathematics Simion Stoilow of the Romanian Academy

Abstract— We present the design, implementation and in-
formation flow verification of CoSMeDis, a distributed social
media platform. The system consists of an arbitrary number
of communicating nodes, deployable at different locations over
the Internet. Its registered users can post content and establish
intra-node and inter-node friendships, used to regulate access
control over the posts. The system’s kernel has been verified
in the proof assistant Isabelle/HOL and automatically extracted
as Scala code. We formalized a framework for composing a
class of information flow security guarantees in a distributed
system, applicable to input/output automata. We instantiated this
framework to confidentiality properties for CoSMeDis’s sources
of information: posts, friendship requests, and friendship status.

I. INTRODUCTION

Recent years have seen an explosion of web-based systems
aimed at sharing information between multiple users in a con-
venient, but controlled fashion. Examples include enterprise
systems, social networks, e-commerce sites and cloud services.
These systems often deal with confidential information, such
as credit card details, medical data, location information and
sensitive documents. Unfortunately, most of these systems
offer no guarantees concerning the prevention of unintended
flow of information. Programming errors or ambiguous policy
specifications leading to information leakage can have different
degrees of severity and can affect many users [2,3].

Such errors are difficult to prevent, or even understand,
because information flow security is a complex, global prop-
erty of a program. The problem is aggravated by the heavy
inter-connectivity of today’s web applications. Sensitive user
information in cloud storage systems, such as Amazon, may
be shared with social media platforms, such as Twitter or
Facebook, and web-based email systems, such as Gmail. While
often the information sharing occurs via intuitively secure
protocols, it is far more difficult to foresee the confidentiality
issues arising synergistically in a network of applications. What
is needed is a solid, mathematically grounded understanding
of how local confidentiality guarantees can be composed to
deliver guarantees for the entire distributed system.

In this paper, we develop such a theory of compositionality
(i.e., the notion of composing local guarantees to form global
guarantees) and apply it to a major case study: a distributed
social media platform. We employ a notion of information
flow security introduced by Kanav et al. [38], called Bounded
Deducibility (BD) Security. The appeal of BD Security for
dealing with web applications rests in its versatile mechanism

for specifying rich security policies, inspired by epistemic
logic. This notion has been formalized in the proof assistant
Isabelle/HOL [53] and then utilized in confidentiality guaran-
tees for two running web applications:

• CoCon [1] (introduced as a case study by the BD Security
authors), a conference management system that has been
deployed for two verification-friendly conferences [14,23];

• CoSMed ([7], Section II), a social media platform that we
developed in previous work [12] as a prototype aimed at
eventually serving the functionality and security needs of a
charity organization [6].

The attacker models in these works (Section III) consider an
arbitrary but fixed set of users, called observers, who interact
with the system and from whom secret information should
be protected. It is verified that the systems do not leak more
information about the secret than specified by given policies.

In this paper, we design and implement a distributed
version of CoSMed, which we call CoSMeDis, and extend its
formal security guarantees. The extension consists of a com-
munication infrastructure (Section IV), which introduces new
security-critical aspects: (1) the ability to share secrets, namely,
restricted-access post contents, between different nodes and
(2) the ability to dynamically assign secret-sharing roles, by
the designation of friends from remote nodes. The attacker
model is lifted to sets of observing users at each node of the
distributed system. Moreover, we assume that network traffic
between the nodes is also observable, with the exception of
the confidential content of communication. This is in line with
assuming a Dolev-Yao-style network attacker [25], who can
inspect communication without breaking encryption.

After a detailed analysis of how to cope compositionally
with the security of CoSMeDis’s features (Section V), we
formulate a solution in abstract terms: as a framework for com-
posing information flow security guarantees of input/output
(I/O) automata (Section VI). At its heart lies a formal theorem
for composing locally verified BD Security instances to a
global BD Security property of the entire distributed system.
The theorem is policy-agnostic, in that it composes policies
without restrictions on their content, but requires a unique
source node for each secret.

We instantiate the theorem for extending to CoSMeDis
all the previously established CoSMed guarantees about the
confidentiality of posts and friendship information and to
prove a new guarantee about remote friendship (Section VII).
CoSMeDis is a large piece of formal engineering, integrating

2017 IEEE Symposium on Security and Privacy

© 2017, Thomas Bauereiß. Under license to IEEE.

DOI 10.1109/SP.2017.24

729

specification, code generation and verification. We discuss the
scope of our verification (Section VIII) and compare our work
with results from the literature (Section IX). The CoSMeDis
homepage [5] has links to the formal proofs, the source code,
documentation, and sample running nodes.

II. THE ORIGINAL COSMED

This section recalls the original CoSMed system. It is a
social media platform loosely inspired by platforms such as
Facebook. It allows users to register and post information
and to restrict access to this information based on friendship
relationships established between users. For example, the user
Alice can log into the web site and browse through posts
made by other users. She can create new posts herself, e.g.,
a comment on a sports event. By default, this post is visible
to her friends only. She can add new friends by looking up
their profile, e.g., the profile of Bob, and requesting friendship
by optionally entering a greeting text and clicking the submit
button. When Bob approves the request, they become friends,
and Bob can now see Alice’s sports comment. Alice can also
edit her posts and set their visibility level—either friends-
only or public—at any time. The system has one user with
special powers, the admin, who is responsible for approving
the creation of users.

A. System Model

State. CoSMed has a mutable state, storing information
on users, posts and friendships. For example: A user ID has
an associated name, email address and info; a post ID has
an associated title, text, image, owner ID and visibility; a
friendship request is identified by two user IDs (the sender
and the recipient) and has an associated greeting text created
by the sender; the friendship status (“friend” or “not friend”)
is stored as a symmetric association between user IDs.

Actions. Users interact with the system via actions for
creating, deleting, updating and reading items in the system,
where an item can be a user, a post, a friendship request or
a friendship status. There are also actions for listing items
according to various filters or criteria—e.g., a user can list all
posts, or all posts of a given friend, or all his friends, or all
the friends of a given friend, etc. Each action a also contains
the user ID of its issuer, denoted by userOf(a).

Outputs. When a user requests an action, the system first
checks if the action is allowed, in which case the action is
applied and the output is returned to the user; otherwise, an
error message is emitted and the state remains unchanged.

B. Formalization and Implementation

The above behavior is formalized in Isabelle/HOL as an I/O
automaton Aut = (State, Act, Out, σ0,→), where σ0 ∈ State
is the (empty) initial state and →⊆ State×Act×Out×State
is the transition relation. The inputs of the automaton are
called actions. For example, an action that updates the con-
tent of a post has the form (updatePost, uid, pid, pst). Here,
updatePost is a label indicating the particular type of action,
uid is the ID of the acting user, pid is the ID of the post, and

pst is the new content. σ
a−→
o
σ′ has the following reading: if

a user takes action a while the system is in state σ, the system
responds producing output o and changing the state to σ′.

A system transition is a tuple trn = (σ, a, o, σ′) such that

σ
a−→
o
σ′ holds. The states σ and σ′ are called the transition’s

source and target. The transition’s action a is also denoted by
actOf(trn). A system trace is a sequence tr = 〈trn1, . . . , trnn〉
of transitions such that the source of the first transition (if
any) is σ0 and the target of each transition is the source of
its successor in the sequence. The end state of a trace tr,
written endState(tr), is the target state of tr’s last transition if
tr is non-empty, and the initial state σ0 otherwise. Note that
a system trace interleaves transitions containing actions from,
and outputs to, different users. We let Trans denote the set of
transitions and Trace the set of traces.

CoSMed’s transition relation is deterministic, and in fact is
represented as an executable function Act×State→ State×
Out. This function is automatically extracted into Scala code
using Isabelle’s code generator [32], forming CoSMed’s ker-
nel. Around the extracted code, we implemented manually, in
the Scalatra web framework [61], a layer of web-specific code
that provides CoSMed’s user interface, invoking kernel actions
in response to user requests [12, §2.2].

III. SECURITY MODEL: BD SECURITY

Previously [12], we proved for CoSMed confidentiality
properties of the form: Only under the circumstances specified
by a given policy may users learn information on the system’s
documents. Our running example in this paper will be:

(P1) A group of users can learn nothing about the updates to
a post content beyond the existence of an update unless one
of them is the admin or the post’s owner, or becomes friends
with the owner, or the post is marked as public.

Let us analyze what (P1) expresses and how this is formal-
ized. It focuses on the confidentiality of the content of a given
post by a CoSMed user. It does not describe a policy for access
control to this data, but rather a policy for information flow
control. Indeed, it does not state that the post content cannot
be accessed, but something stronger: that information about it
cannot flow. Hence we write “learn” instead of “access.”

The (partial) secret that (P1) refers to is the content of a
particular post, say, stored in the system under the ID PID.
Since the content can be updated by the owner several times,
we need to speak of a sequence of secrets: all the updates to
the content, corresponding to all its versions held in the state
during a system run. Formally, one defines a domain Sec of
secrets, a filter isSec : Trans→ Bool and a secret-producing

function getSec : Trans→ Sec. This yields a function SgetSecisSec :
Trace → Sec∗ that extracts a sequence of secrets from a
trace transition-wise, by filtering with isSec and then applying
getSec to each of the trace’s transitions. For example, consider
the trace tr = 〈trn1, trn2, trn3〉 where isSec is only true for

trn1 and trn3, then SgetSecisSec (tr) = 〈getSec(trn1), getSec(trn3)〉.
For (P1), Sec is obviously taken to consist of post contents.
Moreover, isSec (σ, a, o, σ′) holds if a is a post-update action
for PID, i.e., has the form (updatePost, uid, PID, pst) for some
uid, pst, and the transition is successful, as signaled by an
“OK” output. The function getSec for (P1) extracts the post
content from a: getSec (σ, a, o, σ′) = pst.

The observers (possible attackers) are here a group of users,
say, with their IDs in a fixed (but arbitrary) set UIDs. Formally,

730

observations are managed similarly to the secrets. One defines
the observation domain Obs, the filter isObs : Trans→ Bool
and the production function getObs : Trans→ Obs, and then

defines OgetObs
isObs : Trace → Obs∗ by filtering with isObs and

applying getObs transition-wise. For (P1), Obs is taken to be
the set of all action-output pairs. isObs (σ, a, o, σ′) is true just
in case the action is issued by one of the designated observers
(userOf(a)∈UIDs), and getObs retrieves the action and output
from the transition (getObs (σ, a, o, σ′) = (a, o)). Note that
this includes failed actions, i.e., errors must not leak secrets.

So what can the observers learn about the secrets? Accord-
ing to (P1), nothing beyond the (non-)existence of at least one
update. This is formalized as a bound, i.e., a binary relation B
between sequences of secrets. We require sequences of secrets
related by B to be exchangeable, without interfering with
the observations. Intuitively, given the sequence of secrets sl
produced by a system trace, the set {sl′ | B(sl, sl′)} represents
the amount of uncertainty of the observers: for what they
know, sl could be any sl′ in this set. Hence, B describes a
lower bound on the uncertainty, i.e., an upper bound on the
declassification (i.e., controlled release of designated secrets
to designated observers). For (P1), B(sl, sl′) is defined as “sl
empty implies sl′ empty.” Thus, the only piece of information
that can flow to the observers is a harmless one: that no update
has been performed yet (possibly because the post has not been
created yet).

(P1) also prescribes a legitimate way out of the declas-
sification bound: if one of the observers has or acquires a
role (system admin, post owner or owner’s friend) or an
intended declassification happens (the post is made public).
This is formalized as a trigger, a unary predicate T on system
transitions. The bound B is only imposed unless the trigger
T occurs. Here, T (σ, a, o, σ′) is defined as a property of
the transition’s target state σ′: that the system’s admin is in
UIDs (admin(σ′) ∈ UIDs), the registered owner of PID is in
UIDs (owner(σ′, PID) ∈ UIDs) or has a user in UIDs as a
registered friend (UIDs ∩ friendIDs(σ′, owner σ′ PID)
= /0) or
the visibility of PID is public (visPost(σ′, PID) = public). This
formalizes the unless part of (P1).

The above concepts apply generally, to any I/O automaton:

Definition 1. An attacker model consists of

• a secrecy infrastructure (Secret, isSec, getSec) and
• an observation infrastructure (Obs, isObs, getObs).

A security policy is specified by

• a declassification trigger T and
• a declassification bound B.

A BD security property [38] (P) is specified by an attacker
model and a security policy (as above).

An I/O automaton Aut satisfies the BD security property
(P) if, for all traces tr in which T never holds for any transition
and for all sequences of secrets sl′ such that B(SgetSecisSec (tr), sl′)
holds, there exists a system trace tr′ such that SgetSecisSec (tr′) = sl′

and OgetObs
isObs (tr′) = OgetObs

isObs (tr).

Intuitively, BD Security states that OgetObs
isObs cannot learn

anything about SgetSecisSec beyond B unless T occurs. It takes an

epistemic logic perspective: Given any actual trace of events
tr, an alternative trace tr′ must exist that offers an equally
valid explanation of the observations within the specified
uncertainty/declassification bound.

IV. THE DISTRIBUTED SYSTEM

Next, we describe the specification and implementation of
the CoSMeDis extension of CoSMed.

We extend the original system with mechanisms for com-
municating and sharing data with other nodes located at differ-
ent sites across the Internet. All nodes have identical behavior,
i.e., will be CoSMeDis clones (but their internal states will
of course be different due to their different interactions with
users and among themselves). The resulting system is similar
to existing, federated social networks, such as Diaspora* [8]. A
user signs up at one of the nodes in the network and uses it to
post and read content and maintain friendship links. Employing
the new inter-node communication features, a user can also
establish friendship links to users on other nodes and exchange
content across nodes. Public posts are available to all users of
connected nodes, whereas private posts are only accessible by
local and remote friends of the post owner.

A. Communication Infrastructure

We consider networks with an arbitrary number of
CoSMeDis nodes. A node is designated by a unique ID, its
URL. We implement an asymmetric communication model.
Any two nodes with IDs nid1 and nid2 can agree on a client-
server relationship: The client nid1 makes a request and the
server nid2 approves it (both actions being triggered by the
admin users of the corresponding nodes). After that, nid2 can
share its posts with nid1. In addition, users of nid2 are allowed
to mark as friends selected users of nid1. Hence, the admins are
responsible for setting up inter-node communication as well
as approving local user creation. From a user perspective, the
system is like CoSMed, except that users can see posts from
other nodes if the owner has granted them access, and can add
remote friends by selecting a node and entering a username.

To achieve the above, we extend the system’s state with
communication infrastructure (the IDs of the registered client
and server nodes) and shared data (inter-node friendship and
shared posts). We also add new types of actions to support the
desired communication: sendServerReq and receiveClientReq,
sendPost and receivePost, and sendUpdateRFriend and
receiveUpdateRFriend. They come in pairs: There is an action
on the receiving side to match that on the sending side. For
successful communication, the parameters of these actions
(consisting of user, node and post IDs, post content, etc.) must
also match, in that what is being received must coincide with
what is being sent. Here is the intended workflow and the
matching patterns for these actions:

Request server connection. The admin uid1 of a node
nid1 can issue a server request to another node nid2, with the
intention of establishing a client-server relationship. The corre-
sponding action is (sendServerReq, uid1, nid2, request), where
request is the content of the request message. When the request
reaches nid2, the action (receiveClientReq, nid1, request) is
triggered on nid2, to the effect of recording in nid2’s state
that nid1 wishes to become a client.

731

Connect client with server. At a later time, the admin
uid2 of nid2 can inspect and approve the request. This is done
through the communication action (connectClient, uid2, nid1),
which registers, in nid2’s state, the node nid1 as a client. The
matching action on the nid1’s side is (connectServer, nid2),
which registers, in nid1’s state, the node nid2 as a server.

Share posts. After nid1 and nid2 have recognized each
other as a client-server pair, other communication actions
are possible. The admin uid2 of the server nid2 can send
a local post pid at any time to the client nid1, via
(sendPost, uid2, nid1, pid). This action produces the output
(pid, pst, uid′2, v), consisting of the post ID pid, the content pst
of the post, the ID uid′2 of the post’s owner, and information
on the post’s visibility, v. In this output, pid is copied from
the action’s parameter, whereas all the other components are
retrieved from nid2’s state. The matching action on the nid1

side is (receivePost, nid2, pid, pst, uid′2, v). Sending an updated
version of a previously shared post is possible—it has the effect
of updating the remote version. A flag is stored in the server
node’s state for each shared post with each client, indicating
whether the remote version is up to date.

Assign remote friends. Sharing a local post pid between
the server nid2 and the client nid1 is at the discretion of nid2’s
admin uid2, which would typically send several posts in batch
mode. However, the post owner uid′2 retains control on the
remote access rights for his friend-only posts. Namely, the
remote version of pid will only be accessible to users uid′1 of
nid1 which uid′2 designates as remote friends. Remote friend
designation is done through the action (sendUpdateRFriend,
uid′2, nid1, uid′1, st), which sends an update to the friendship-
like permission from user uid′2 of nid2 to user uid′1 of nid1; the
flag st indicates if friendship is to be granted or revoked. The
matching action on the nid1 side is (receiveUpdateRFriend,
nid2, uid′2, uid′1, st), which updates the indicated permission.

B. Modeling the Distributed System

We will eventually model a network of an arbitrary number
of nodes. But to keep the discussion simple, we initially
assume only two nodes, represented by two I/O automata Aut1
and Aut2. In Section VI-B, we describe the n-ary case.

In our case study, Aut1 and Aut2 are identical—as
CoSMeDis clones. However, this assumption will not be
needed in our discussion. We shall use the indexes 1 and 2
to indicate the components of these automata, e.g., State1,
Act1, State2, Act2, etc. An exception will be their transition
relations, where we write → for both rather than →1 or →2.

As seen in Section IV-A, communication proceeds
by matching certain transitions of the two components:
each sending transition with a corresponding receiving
transition. We model matching as a relation match be-
tween the transitions of Aut1 and those of Aut2, taking
match((σ1, a1, o1, σ

′
1), (σ2, a2, o2, σ

′
2)) to mean that either

(a1, o1) is a sending action-output pair and (a2, o2) is the
corresponding receiving action-output pair or vice versa. Thus,
two transitions are matched if their actions are dual to each
other and the parameters occurring in the sending action or in
its output correspond to the input parameters of the receiving
action. For example, the input parameters of a receivePost
action have to match the output of the sendPost action.

Formally, match((σ1, a1, o1, σ
′
1), (σ2, a2, o2, σ

′
2)) requires

that the actions and outputs have one of the forms in Fig. 1’s
table, where NID1 and NID2 are the IDs of Aut1 and Aut2; or
the symmetric forms, with NID1 and NID2 swapped. (It might
be unclear why match should also depend on the transitions’
states. Indeed, for CoSMeDis’s communication, it does not:
we instantiate it independently of the states, only considering
the actions and outputs. However, state-dependent matching
would make sense if the components had a shared part of the
state, so we don’t forbid it in our emerging framework.)

In our discussion, we distinguished separate (local) compo-
nent actions from communication actions. We write isComi(a)
(for i ∈ {1, 2}) to state that a is in the latter category for
component i. This predicate can be derived from the matching
predicate: isComi(a) holds whenever there exist trn1 and trn2

such that match(trn1, trn2) holds and a is the action of trni.

We define the distributed system as an I/O automaton,
Aut1×matchAut2, representing the communicating product of
the components:

• Its set of states is State1×State2, with the initial state being
the pair of initial states, (σ0

1, σ
0
2).

• Its set of actions is Act1+Act2+Act1×Act2, i.e., a disjoint
union of Act1 (representing separate actions of the first
component), Act2 (for separate actions of the second com-
ponent), and Act1×Act2 (for joint communicating actions).
We shall write (1, a1), (2, a2), and (a1, a2) for actions of
the first, second, and third kind, respectively.

• Similarly, its set of outputs is Out1+Out2+Out1×Out2,
and we use similar notations: (1, o1), or (2, o2), or (o1, o2).

• Its transition system is defined in Fig. 2. As can be seen,
the SEPi rules allow each component to proceed separately,
whereas the COM rule allows matching communication
transitions of any two components.

Note that a transition trn of Aut1×match Aut2 has one of
the following three forms:

(1) ((σ1, σ2), (1, a1), (1, o1), (σ
′
1, σ2))

(2) ((σ1, σ2), (2, a2), (2, o2), (σ1, σ
′
2))

(3) ((σ1, σ2), (a1, a2), (o1, o2), (σ
′
1, σ

′
2))

In the first case, trn is completely determined by the Aut1-
transition trn1 = (σ1, a1, o1, σ

′
1) and by the Aut2-state σ2—

we write trn = sep1(trn1, σ2), marking that trn is given by
the separate transition trn1. Similarly, in the second case we
write trn= sep2(σ1, trn2), where trn2 = (σ2, a2, o2, σ

′
2). In the

third case, we write trn = com(trn1, trn2), marking that trn
proceeds as a communication transition. Thus, any transition
of Aut1 ×match Aut2 has either the form sep1(trn1, σ2), or
sep2(σ1, trn2), or com(trn1, trn2).

Given an Aut1-trace tr1 and an Aut2-trace tr2, we define
tr1 ||match tr2, the communicating shuffle of tr1 and tr2, to be
the set of all (Aut1×matchAut2)-traces obtained from shuffling
(interleaving) tr1 and tr2—the inductive definition is shown in
Fig. 3, where · is concatenation and [] the empty trace.

C. Implementation

CoSMeDis is implemented similarly to its predecessor,
CoSMed. It consists of three layers: the kernel (generated

732

a1 o1 a2 o2

(sendServerReq, uid1,NID2, request) request (receiveClientReq,NID1, request) outOK

(connectClient, uid1,NID2) outOK (connectServer,NID1) outOK

(sendPost, uid1,NID2, pid) (pid, pst, uid′1, v) (receivePost,NID1, pid, pst, uid′1, v) outOK

(sendUpdateRFriend, uid′1,NID2, uid′2, st) (uid′1, uid′2, st) (receiveUpdateRFriend,NID1, uid′1, uid′2, st) outOK

Figure 1: Definition of match for CoSMeDis

SEP1

σ1
a1−→
o1
σ′1 ¬ isCom1(a1)

(σ1, σ2)
(1,a1)−→
(1,o1)

(σ′1, σ2)

SEP2

σ2
a2−→
o2
σ′2 ¬ isCom2(a2)

(σ1, σ2)
(2,a2)−→
(2,o2)

(σ1, σ
′
2)

COM

σ1
a1−→
o1
σ′1 σ2

a2−→
o2
σ′2

match((σ1, a1, o1, σ
′
1), (σ2, a2, o2, σ

′
2))

(σ1, σ2)
(a1 ,a2)−→
(o1 ,o2)

(σ′1, σ
′
2)

Figure 2: Transitions of a two-component distributed system

SEP1
tr ∈ tr1 ||match tr2 ¬ isCom1(actOf1(trn1))

(tr · sep1(trn1, endState(tr2))) ∈ (tr1 · trn1) ||match tr2
SEP2

tr ∈ tr1 ||match tr2 ¬ isCom2(actOf2(trn2))

(tr · sep2(endState(tr1), trn2)) ∈ tr1 ||match (tr2 · trn2)

EMPTY
·

[] ∈ [] ||match []
COM

tr ∈ tr1 ||match tr2 match(trn1, trn2)

(tr ·com(trn1, trn2)) ∈ (tr1 · trn1) ||match (tr2 · trn2)

Figure 3: The communicating shuffle operator for CoSMeDis

automatically), the API layer, and the outer layer (the last two
implemented manually).

The kernel consists of the I/O automaton extracted from
the Isabelle specification to Scala code. In addition to regular
data (on users, posts and friendship), the kernel state also
contains identity checking data: passwords for users and keys
for client and server nodes. Moreover, the kernel actions take
passwords and/or keys as parameters—omitted in this paper to
enhance readability.

The API layer forwards requests back and forth between
the I/O automaton kernel and the outside world. It converts
the payload of http(s) requests into elements of Act, which
are passed to the automaton; the output retrieved from the
automaton is then converted into JSON output, which is
delivered as the API response. Special treatment is given to
data that cannot be reasonably stored in memory, namely, the
optional image files associated to posts. These are stored on the
disk, while the kernel state stores the paths to their locations.
They are all placed in a single directory, and the names of the
files are the (guaranteed to be nonoverlapping) post IDs. When
a user requests the read of a post image, the API layer invokes
the corresponding reading action from the kernel to retrieve the
path to that file—then the file is offered for download.

The outer layer handles the user interface and performs
session management. It directs user requests to the API layer
and displays the results back to the user or, if necessary,
makes remote API requests to other nodes (for communication
actions).

The main behavioral differences between CoSMeDis and
CoSMed are the following:

• A user action could produce not only local effects, but
possibly also a request to a different node. For example,

the single action (sendPost, uid2, nid1, pid) triggers a local
API call and a remote API call to nid1.

• Not only users, but other nodes can issue actions, too. For
example, (receivePost, nid2, pid, pst, uid′2, v) is an action
issued by a remote node nid2.

Making sure that send and receive actions are correctly
matched is achieved by a transactional policy. E.g., when
Aut1’s admin issues a sendPost request indicating the target
node as Aut2, the following happens:

• The sendPost action is run locally, producing the new state
σ′1 and the output o1; but the new state is not yet committed.

• If sendPost was successful, a corresponding receivePost
request is made remotely to Aut2.

• If Aut2 responds with output outOK, the new state σ′1 is
committed at Aut1.

CoSMeDis is delivered as a bundle, installable at any
location on the web to form a new node. The Scala code
for the CoSMeDis I/O automaton is significantly larger than
that of CoSMed: 2700 compared to 1650 LOC. As expected,
the other parts of the application are also larger: 870 vs. 610
for the API layer and 900 vs. 720 for the outer layer.

Limited testing indicates that CoSMeDis performs well for
small numbers of users. For up to 100 users in the system, each
with 10 friends, 10 remote friends and 10 posts, the API could
serve about 2600 requests/second for reading and sending
actions and 1800 requests/second for writing and receiving
actions. However, a major obstacle in the way of an efficient
version of CoSMeDis is the parallelism bottleneck: To allow
multi-threaded calls one currently needs to lock the whole
state object (the full I/O automaton state), whereas in database-
driven real-world applications one could lock single tables or
rows, enabling parallel access. To capture this parallel model,

733

Isabelle’s code generator would require a significant extension.

V. COMPOSING SECURITY FOR COSMEDIS

Each CoSMeDis node is an extension of CoSMed. Conse-
quently, when trying to prove confidentiality for CoSMeDis,
we look into how to extend the CoSMed confidentiality
properties to properties of a single node, and then into how
to compose node confidentiality to obtain guarantees for the
entire system. As we shall see, these two steps are not
independent, but we have to proceed in a feedback loop.

A. Security Models for the Components

Our running example, (P1), limits the amount of infor-
mation flowing from the content of a given secret: a post
PID. In relation to this secret, we can distinguish two types of
components: the node where it originates, say, Aut1, and the
other nodes which are possible receivers of the post.

For the originator, it is intuitive that we should be able
to prove the same property (P1), regardless of the fact that
now the system is communicating on more channels. Indeed,
as far as Aut1’s users are concerned, the notions of secret and
observation are the same: the secrets are the updates to PID’s
content, while the observations are the actions and outputs of
a given set of Aut1 users, say, UIDs1. The communication
actions do not interfere with this local security model: it is
irrelevant for the observation power of an Aut1 user if the
post is being sent to another node. Therefore, the proofs done
for the original CoSMed work without essential modifications
for the communication-updated version—with the same trigger
and the same bound. In summary, we can easily (re)prove:

(P1) A group of users UIDs1 of Aut1 can learn nothing about
the updates to the content of Aut1’s post PID beyond the
existence of an update unless one of them is the admin or
PID’s owner, or becomes friends with the owner, or PID is
marked as public.

Now, consider a node Aut2 that may potentially receive the
content of the post PID from Aut1. We can also prove a version
of (P1) for the receiving end with a (possibly overlapping) set
of observers UIDs2, mutatis mutandis:

(P2) A group of users UIDs2 of Aut2 can learn nothing about
the updates to the content of Aut1’s post PID beyond the
existence of an update unless PID is being shared between
Aut1 and Aut2 and [one of the users is the admin or becomes
a remote friend of PID’s owner, or PID is marked as public].

Formally, (P1) and (P2) are instances of BD Security,
specified by the attacker models and security policies shown
in Fig. 4, where NID1 and NID2 are the IDs of Aut1 and
Aut2. The formalization of (P1) is essentially the one sketched
in Section III. In particular, the secrets are the updates to
PID’s content as produced by updatePost actions, and the
trigger refers to one of the users in UIDs1 being the admin,
or PID’s owner, or a friend. For (P2), the secrets are also
updates to PID’s content, but they are produced differently:
by receivePost actions having Aut1 as sender. Any update of
PID’s content is received along with the owner’s ID uid and
with any possible update v of the visibility status, which is
recorded as the “remote visibility” stored for (NID1, PID). The
trigger first requires that PID has been shared, which is stored

in Aut2’s state as a remote post ID coming from Aut1; then it
makes requirements similar to (P1)’s trigger, but referring to
remote versions friendship and visibility. We write S1 and O1

instead of SisSec1getSec1
and OisObs1

getObs1
, and similarly for S2 and O2.

B. The Compositionality Challenge

Let us analyze how two properties, such as (P1) and (P2),
can be composed into a property for Aut= Aut1×matchAut2.

The compound attacker model should be a form of
communication-aware “sum,” or “union,” of those for (P1) and
(P2). Since the Aut-traces are obtained by the communicating
shuffle of Aut1- and Aut2-traces, the observations produced by
Aut are themselves shufflings of those of the components. So
it is natural to take Obs, the compound observation domain,
to be Obs1+Obs2+Obs1×Obs2—meaning, as usual, that an
element of Obs will have either the form (1, o1) or (2, o2) or
(o1, o2), where oi ∈Obsi. For an Aut-transition trn, we define
isObs(trn) and getObs(trn) as follows. isObs(trn) is true iff:

• trn has the form sep1(trn1, σ2) and isObs1(trn1) holds, in
which case we define getObs(trn) = (1, getObs1(trn1)),

• or trn has the form sep2(σ1, trn2) and isObs2(trn2) holds,
in which case we define getObs(trn) = (2, getObs2(trn2)),

• or trn has the form com(trn1, trn2) and isObs1(trn1) or
isObs2(trn2) hold, in which case we define getObs(trn) =
(getObs1(trn1), getObs2(trn2)).

Similar constructions are performed for secrets. The com-
pound domain, Sec, is taken to be Sec1+Sec2+Sec1×Sec2,
and isSec and getSec are defined correspondingly. This con-
cludes the attacker model definition—we again write S and O
instead of SgetSecisSec and OgetObs

isObs .

Before moving to the definition of the compound security
policy, let us first contemplate some existing or missing
symmetries in the matching of observations and secrets of the
two components. The notion of matching transitions induces
a notion of matching observations. In fact, the latter can be
regarded as a stand-alone predicate matchO : Obs1×Obs2 →
Bool. For our case study, it is defined in the same way as
match—since match does not actually depend on the states,
but only on the action-output pairs, which also make up
the observations. The corresponding communicating shuffle
for observations, ||matchO :Obs∗1×Obs∗2→ Pow(Obs∗) (where
Pow is the powerset operator), is obtained from matchO
similarly to how ||match is obtained from match.

When trying to define a similar notion of matching for se-
crets, matchS : Sec1×Sec2→Bool, we encounter an anomaly:
There are secrets on the receiving end (where (P2) holds),
produced by receivePost actions, that are not matched at the
sending end (where (P1) holds). Indeed, (P1)’s only secret-
producing actions are updatePost actions, which are non-
communicating. The anomaly is easy to repair by amending
(P1)’s attacker model to factor in sendPost actions as well:

Amendment 1. (P1)’s secrecy infrastructure (from Fig. 4) is
extended as highlighted below:

• Sec1 = upd Post+ snd Post . We use this notation to mean
that secrets are now post contents annotated with the labels
upd or snd, in order to distinguish between posts produced

734

(P1) (P2)

Attacker

Model

Sec1 = Post Sec2 = Post

isSec1(σ1, a1, o1, σ
′
1) iff o1 = outOK ∧

∃uid, pst. a1 = (updatePost, uid, PID, pst)
isSec2(σ2, a2, o2, σ

′
2) iff o2 = outOK ∧

∃pst, uid, v. a2 = (receivePost,NID1, PID, pst, uid, v)
getSec1(σ1, a1, o1, σ

′
1) = pst getSec2(σ2, a2, o2, σ

′
2) = pst

Obs1 = Act×Out Obs2 = Act×Out

isObs1(σ1, a1, o1, σ
′
1) iff userOf(a1) ∈ UIDs1 isObs2(σ2, a2, o2, σ

′
2) iff userOf(a2) ∈ UIDs2

getObs1(σ1, a1, o1, σ
′
1) = (a1, o1) getObs2(σ2, a2, o2, σ

′
2) = (a2, o2)

Security

Policy

B1(sl, sl′) iff sl = []→ sl′ = [] B2(sl, sl′) iff sl = []→ sl′ = []

T1 (σ1, a1, o1, σ
′
1) iff

admin(σ′) ∈ UIDs1 ∨ owner(σ′1, PID) ∈ UIDs1 ∨
UIDs1 ∩ friendIDs(σ′1, owner(σ

′
1, PID))
= /0 ∨

vis(σ′1, PID) = public

T2 (σ2, a2, o2, σ
′
2) iff PID ∈ remotePostIDs(σ′2,NID1) ∧

(admin(σ′) ∈ UIDs2 ∨
UIDs2 ∩ remoteFriendIDs(σ′2,NID1,

remoteOwner(σ′2,NID1, PID))
= /0 ∨
remoteVis(σ′2,NID1, PID) = public)

Figure 4: Attacker model and security policy for (P1) and (P2)

by an update action, (upd, pst), and posts produced by a
sending action, (snd, pst).

• isSec1 (σ, a, o, σ′) iff
o = outOK ∧ (∃uid, pst. a = (updatePost, uid, PID, pst)) ∨
∃uid, nid, pst, uid′, v. o = (PID, pst, uid′, v) ∧

a = (sendPost, uid, nid, PID)

• getSec1 now extracts the content pst from both update
actions and outputs for send actions:

getSec1(_, (updatePost, _, _, pst), _, _) = (upd , pst)

getSec1(_, (sendPost, _, _), (_, pst, _, _), _) = (snd, pst)

While restoring symmetry w.r.t. communication, this
amendment creates disturbance in (P1)’s security policy,
namely, in its bound: It is no longer the case that the observers
can learn nothing about a sequence of produced secrets beyond
possible emptiness. Now, it is also known that the contents of
updatePost and sendPost are correlated: What is being sent
coincides with what was last updated. For example, (unless
the trigger fires) from the sequence 〈(upd, pst1), (upd, pst2),
(snd, pst3), (upd, pst4), (snd, pst5)〉, the observers would not
know the values psti, but would know that pst2 = pst3 and
pst4 = pst5. This public knowledge must be included in the
bound in order for the amended property to hold.

Amendment 2. (P1)’s bound is extended as follows:

B1(sl, sl′) iff (sl = []→ sl′ = []) ∧ corr(sl′)

where corr(sl′) states that sl′ has its upd-labeled and snd-
labeled post contents correlated in the above sense.

With these two amendments, (P1) is still true—the proof is
amended by keeping the correlation property as an invariant,
but otherwise stays the same.

Now we can define a matching predicate for secrets: we
take matchS((upd, pst1), pst2) to be false, and matchS((snd,
pst1), pst2) to be true iff pst1 = pst2 (i.e., what is being
sent coincides with what is being received). This gives a
corresponding notion of communicating shuffle for secrets,
||matchS. We shall simply write || for any of the three shuffling
operations—for transitions, observations or secrets.

In summary, we have identified a communication in-
frastructure, consisting of the predicates match : Trans1 ×

Trans2 → Bool, matchO : Obs1×Obs2 → Bool and matchS :
Sec1 × Sec2 → Bool. As one would expect, this infras-
tructure is compatible with the secrets and the observa-
tions, in that, whenever match(trn1, trn2) holds, we have
that isSec1(trn1) and isSec2(trn2) are equivalent, and if they
hold then matchS(getSec1(trn1), getSec2(trn2)) also holds;
and similarly for observations.

An important consequence of having a compatible com-
munication infrastructure is that || commutes with the secret-
and observation-producing functions:

Corollary 1. tr∈ tr1 || tr2 implies S(tr)∈ S1(tr1) || S2(tr2) and
O(tr) ∈ O1(tr1) || O2(tr2).

The notion of shuffling secrets in a communication-aware
fashion is essential for defining a compound bound B. We
take B(sl, sl′) to mean that, whenever sl ∈ sl1 || sl2 and sl′ ∈
sl′1 || sl′2 for some sl1, sl2, sl′1, sl′2, we have that B1(sl1, sl′1) and
B2(sl2, sl′2) hold. This is the strongest bound we can hope for
the composite. It performs a “shuffling intersection” of B1 and
B2, stating that no matter how we decompose the secrets as a
communicating shuffle of component secrets, both component
bounds hold. It specifies an intersection of the amounts of
uncertainty about the secret enforced by the components, i.e., a
union of the amounts of information that is being declassified:
if each component declassifies one particular aspect of the
overall secret, then the composite declassifies both.

Finally, the natural composed trigger T is “T1 or T2": If
the trigger of either component is fired, then the secrets are
legitimately accessible to observers.

So far, so good: We have defined an attacker model and
a security policy for the compound system—i.e., an instance
of BD Security, which we denote by (P1) || (P2). But can
we prove that it indeed holds for Aut = Aut1 ×match Aut2,
assuming (P1) and (P2) hold for the components?

The challenge of proving (P1) || (P2) is depicted in Fig. 5.
Let tr be a trace of Aut. Suppose it produces the secrets sl
and the observations ol, and let sl′ be an alternative sequence
of secrets such that B(sl, sl′) holds. We know that tr is given
by the communicating shuffle of some traces tr1 of Aut1 and
tr2 of Aut2, i.e., tr ∈ tr1 || tr2. Say tr1 and tr2 produce the
secrets sl1 and sl2 and the observations ol1 and ol2. In order
to make a connection to the bounds of the components, and

735

sl1 �
��

B1 sl′1 �
��

sl2�

��

B2 sl′2�

��sl
B

sl′

tr1

O1

��

S1

��

�

��

tr′1

O1

��

S1

��

�

��

tr2

O2

��

S2

��

�

��

tr′2

O2

��

S2

��

�

��
tr

S

��

O

		

tr′

O

S

��

ol1 �
��

ol2�

��ol

sl1 �
��

sl2�

��sl

tr1

O1

��

S1

��

�
��

tr2

O2

��

S2

��

�

��
tr

O

S

��

ol1 �
��

ol2�

��ol

Figure 5: The problem of finding an alternative composed trace: in context (left) and in isolation (right)

therefore take advantage of (P1) and (P2), we invoke Corollary
1, which gives us sl ∈ sl1 || sl2 and ol ∈ ol1 || ol2. Then, by the
definition of B, we have B1(sl1, sl′1) and B2(sl2, sl′2). By the
security properties of the components, we obtain the alternative
component traces tr′1 and tr′2 such that each tr′i yields the
secrets sl′i and is observationally equivalent to tri.

So the original problem is reduced to the following: Can
we use tr′1 and tr′2 to construct a suitable alternative trace for
Aut, i.e., a trace tr′ that produces sl′ and is observationally
equivalent to tr? The right side of Fig. 5 shows the problem
in isolation, where we rename tr′ to tr, tr′i to tri and sl′i to sli:

Problem. We are given sl, ol, sli, oli and tri such that Si(tri) =
sli, Oi(tri) = oli, sl ∈ sl1 || sl2 and ol ∈ ol1 || ol2, and need to
find tr such that S(tr) = sl and O(tr) = ol.

Thus, we know how to shuffle observations and secrets
and are required to shuffle entire transitions in a compatible
way. To this end, we clearly need the observation and secret
matching to provide enough information for transition match-
ing. For example, assume that each tri consists of a single
transition, trni, with a communicating action. The only way to
shuffle these into a solution tr is if they actually match, i.e.,
match(trn1, trn2) holds. And for proving this, we know that the
observations and secrets of these transitions can be shuffled,
hence they do match. Thus, what we would need is that the
communication infrastructure is strong enough so that the
matching infrastructure in the attacker model contains enough
information for matching transitions: Whenever the actions of
trn1 and trn2 are communicating, for match(trn1, trn2) to hold
it is sufficient that (1) matchO(getObs1(trn1), getObs2(trn2))
holds conditionally on isObs1(trn1) and isObs2(trn2) and (2)
matchS(getSec1(trn1), getSec2(trn2)) holds conditionally on
isSec1(trn1) and isSec2(trn2).

Intuitively, this property requires that the observations and
secrets of communication transitions fully capture their match-
ing behavior. Unfortunately, the communication infrastructure
from (P1) and (P2) in our case study is not strong enough.
Consider a sending and a receiving action for different posts
(other than the secret post PID), not involving any of the
designated observer users (UIDs1 or UIDs2). These actions are
neither observable nor secret. Hence, the preconditions of the
above property are trivially satisfied, but still the actions fail to
match, because they refer to different posts. In order to remedy
this, we must strengthen the attackers. For our case study, a

reasonable strategy would be to extend the observation power
to communicating actions and their outputs, provided the secret
is not compromised, as follows:

Amendment 3. (P1)’s observations are extended as follows:

• isObs1(σ1, a1, o1, σ
′
1) iff

userOf(a1) ∈ UIDs1 ∨ isCom1(a1)

• getObs1 (σ1, a1, o1, σ
′
1)= (purgeAPID (a1), purgeOPID (o1))

where purgeAPID : Act → Act and purgeOPID : Out → Out
purge away from communicating actions and their outputs
the content of PID’s post (which constitutes the secret). The
observations of (P2) are extended analogously.

The parameters of actions and outputs that do not pertain
to communication or do not manipulate PID’s content are
not affected by purging—this is the case for sendServerReq
and receiveClientReq. By contrast, PID’s content pst is re-
placed by the non-informative ⊥ from everywhere it ap-
pears, e.g., purgeAPID(receivePost, NID1, PID, pst, uid1, v) =
(receivePost, NID1, PID,⊥, uid1, v) and purgeOPID((PID, pst,
uid1, v)) = (PID,⊥, uid1, v).

Since it was done in a secrecy-sensitive way, this increase
in observation power keeps the properties (P1) and (P2) true.
At the same time, it makes the communication infrastructure
strong, as desired. The reason is that, for each pair of commu-
nication transitions trn1 and trn2:

• If they do not produce secrets, then purging does not
affect their observations, so match(trn1, trn2) is equivalent
to matchO(getObs1(trn1), getObs2(trn2)).

• If they produce secrets, then matchO(getObs1(trn1),
getObs2(trn2)) caters for part of the condition re-
quired for match(trn1, trn2); the other part is ensured by
matchS(getSec1(trn1), getSec2(trn2)). For example, say the
action of trn1 is (sendPost, uid1, NID2, PID) and its output
is (PID, pst1, uid1, v1), and the action of trn2 is (receivePost,
NID2, PID, pst2, uid2, v2). Then matching the observations
yields (⊥, uid1, v1) = (⊥, uid2, v2) and matching the secrets
yields pst1 = pst2; together, they yield (pst1, uid1, v1) =
(pst2, uid2, v2), as required for match(trn1, trn2).

Note that Amendment 3 has made all communication
actions observable (to various degrees): isCom1(actOf1(trn1))
implies isObs1(trn1), and similarly for the second component.

736

This means observable network traffic—the common assump-
tion of a network attacker with Dolev-Yao capabilities.

In general, having strong communication infrastructure and
observable network traffic still does not entirely solve our
problem. Part of it concerns not communication alone, but also
the order of the individual component transitions. Consider
the traces tr1 = 〈trn1, trn′1〉 and tr2 = 〈trn′2, trn2〉 where trn1

and trn2 match and produce local observations o1 and o2,
respectively, and trn′1 and trn′2 are local transitions that produce
local secrets s1 and s2, respectively. Then sl = 〈(1, s1), (2, s2)〉
and ol = 〈(o1, o2)〉 are valid shuffles of these secrets and
observations. However, in tr1, the secret comes after the
(communicating) observation, while in tr2 it comes before.
Hence, it is not possible to shuffle tr1 and tr2 to a trace that
produces sl (since the only possibility is sl′= 〈(2, s2), (1, s1)〉).

This difficulty resides at the heart of our security model:
BD Security prescribes a relation, or rather a lack of
(co)relation, between observations and secrets produced by a
trace, but does not, in general, constrain the time ordering
between the production of these observations and secrets. This
loose coupling is useful for the local verification of individual
systems: not having to worry about the time ordering between
observations and secrets allows for flexibility in the proof
strategy. However, when composing systems, it leads to the
problem that, in general, the bound of the compound system
cannot “foresee” which time orderings that arise from freely
mixing the component secrets and observations are actually
possible, potentially causing compositionality to fail.

Our case study suggests a way out of this conundrum:
The above cannot occur because the second component never
produces secrets by individual transitions, but only via commu-
nication: isSec2(trn2) always implies isCom2(actOf2(trn2)).

Let us analyze this last property. In a system composed of
several nodes, such as CoSMeDis, it is natural to think of a
source of a secret as a node that produces the secret not by
communication with other nodes, but by communication with
the outside world. Note that, for simplicity, (P1) considers the
confidentiality of only one arbitrary but fixed post PID of Aut1.
(Appendix E shows an extension to multiple posts in arbitrary
nodes across the network.) Hence, users can “upload” secrets
in Aut1 via updatePost actions, but the only contact of Aut2
with this secret is via receivePost actions in pair with sendPost
actions by Aut1. In this context, Aut2 is never the source of
the secret, but can only receive it (as well as, possibly, send it
back to the issuer or make it available to its users). Thus, we
have secret polarization, with Aut1 being the issuing pole.

VI. ABSTRACT FRAMEWORK FOR COMPOSING SECURITY

We distill the previous discussion into a framework for
composing security in arbitrary communicating I/O automata.

A. Compositionality Theorem for Two Components

Let Aut1 and Aut2 be two I/O automata and let match :
Trans1×Trans2 → Bool be a predicate for matching transi-
tions. We let Aut be the match-product of Aut1 and Aut2,
written Aut1×matchAut2, defined in Section IV-B. We use the
notations and terminology from that section, e.g., isComi.

Furthermore, we fix the security property (P1) for Aut1,
with its attacker model consisting of the secrecy infrastruc-
ture (Secret1, isSec1, getSec1) and observation infrastructure
(Obs1, isObs1, getObs1) and its security policy consisting of
the trigger T1 and the bound B1. We also fix the security
policy (P2) for Aut2, with similar notations.

Finally, we fix two matching predicates for observations,
matchO : Obs1×Obs2 → Bool, and secrets, match : Sec1 ×
Sec2→Bool. We call the triple (match,matchO,matchS) the
communication infrastructure.

In summary, the parameters of our compositionality the-
orems are two I/O automata, one security property for each,
and a communication infrastructure. We now define the as-
sumptions of the theorem, as discovered in Section V-B.

Definition 2. (1) The communication infrastructure is called
compatible if, for all trn1 and trn2, match(trn1, trn2) implies:

• isSec1(trn1) holds iff isSec2(trn2) holds, and in this case
matchS(getSec1(trn1), getSec2(trn2)) holds

• isObs1(trn1) holds iff isObs2(trn2) holds, and in this case
matchO(getObs1(trn1), getObs2(trn2)) holds

(2) The communication infrastructure is called strong if,
for all trn1 and trn2, assuming

• isCom1(actOf1(trn1)) ∧ isCom2(actOf2(trn2))

• isObs1(trn1) ∧ isObs2(trn2) →
matchO(getObs1(trn1), getObs2(trn2))

• isSec1(trn1) ∧ isSec2(trn2) →
matchS(getSec1(trn1), getSec2(trn2))

then match(trn1, trn2) holds.

(3) The attacker models of (P1) and (P2) are
said to have observable network traffic if, for all trn1

and trn2, isCom1(actOf1(trn1)) implies isObs1(trn1) and
isCom2(actOf2(trn2)) implies isObs2(trn2).

(4) The attacker models of (P1) and (P2) are said
to be secret-polarized if, for all trn2, isSec2(trn2) implies
isCom2(actOf2(trn2)).

The composed security property, (P) = (P1) || (P2), is de-
fined as follows. Its attacker model ((Secret, isSec, getSec),
(Obs, isObs, getObs)) is defined as in Section V-B, e.g.,
Obs = Obs1 + Obs2 + Obs1 × Obs2. Moreover, its security
policy (B, T) is defined as indicated in that section, namely,
in more formal notation (where || is the shuffle operator for
secrets, defined using matchS):

B(sl, sl′) iff ∀sl1, sl2, sl′1, sl′2.
sl ∈ sl1 || sl2 ∧ sl′ ∈ sl′1 || sl′2 → B1(sl1, sl′1) ∧ B2(sl2, sl′2)

T(trn) iff (∃trn1, σ2. trn = sep1(trn1, σ2) ∧ T1(trn1)) ∨
(∃σ1, trn2. trn = sep2(σ1, trn2) ∧ T2(trn2)) ∨
(∃trn1, trn2. trn = com(trn1, trn2) ∧ (T1(trn1) ∨ T2(trn2)))

Theorem 1. Assume

• the communication infrastructure is compatible and strong
• the attacker models of (P1) and (P2) have observable

network traffic and are secret-polarized.

If (P1) holds for Aut1 and (P2) holds for Aut2, then
(P1) || (P2) holds for Aut1×matchAut2.

737

Let us discuss the requirements of this theorem:

Compatible Communication Infrastructure, asking that
not only the component transitions, but also their secrets and
observations are composable. This is essential for being able
to formulate, let alone prove, the composition of security
guarantees—so this is a prerequisite to the very question about
compositionality. As this paper’s examples illustrate, producing
a compatible communication infrastructure comes naturally
from inspecting the interaction between communication on the
one hand and secrets and observations on the other.

Strong Communication Infrastructure and Observable
Network Traffic, asking that communication between the
components be substantially exposed. This requirement is
clearly an artifact for achieving compositionality. It may be
argued that it is counter-intuitive to “allow” the attacker such
power. However, the requirement needs to be regarded from
the opposite angle: It is not about weakening the system by
offering power to the attacker, but about showing that, even
if the attacker could observe most of the communication, he
would still not learn the secrets. In our case study, we achieved
communication strength by letting the attacker observe every-
thing in a communication except for sensitive information.

Secret Polarization, asking that only one of the compo-
nents can issue secrets. For multi-user systems, this means
that, once we agree on what the secrets are, only users of
one component can upload secrets. Note that this does not
prevent us from considering another notion of secret, where
the other component is the issuer. For example, in our case
study the secrets are the post contents for a post ID, which can
belong to either component—the requirement only prevents us
from considering two sources at the same time, e.g., in order
to speak of the concatenation of secrets from two sources.
The requirement seems to be fulfilled by a specific category
of secrets, namely, those produced and stored locally, on
a single node (and possibly communicated to other nodes).
However, it is easy to imagine situations when it breaks—if we
allowed users of different nodes to upload versions of the same
(shared) post or Facebook-like photo album, or to jointly edit
documents asynchronously. Consequently, secret polarization
is the major limitation of our result. One workaround is to
communicate each modification of a secret on a different node
back to the source immediately, which is then responsible for
merging and propagating such modifications. This is similar to
a single-master (or master-slave) model in database replication
[60], with a designated master node for each secret. In contrast,
a multi-master model, where different nodes perform modifica-
tions of a secret concurrently and merge them asynchronously,
is not supported by our framework. In Appendix E, we discuss
another workaround for combining multiple sources of secrets
after composition, provided these sources are independent of
each other in a certain sense—this applies to the secret sources
in CoSMeDis, but does not address the limitation in general.

The main strength of our result is its policy agnosticism:
While the theorem requirements restrict the component at-
tacker models, they say nothing about the security policies, i.e.,
their bounds and triggers. Hence, the theorem composes any
given security policies, no questions asked. This “quantitative”
flavor makes our theorem applicable in a variety of contexts,
to seamlessly combine arbitrarily complex policies—as we
illustrate in Section VII. These include declassification during

the process of inter-component communication. Indeed, as our
examples abundantly illustrate, communication transitions can
influence both the attacker models and the security policies.

However, policy agnosticism has an inconvenience: Its
general-purpose property composition may not be, in concrete
cases, the most natural desired property for the compound
system. For our running example, such a natural property is:

(P’) A coalition consisting of two groups of users, UIDs1 of
Aut1 and UIDs2 of Aut2, can learn nothing about the updates
to the content the Aut1’s post PID beyond the existence of an
update unless one of the following holds:

1) one of UIDs1 is the admin or PID’s owner, or becomes
friends with the owner, or PID is marked as public

2) PID is being shared between Aut1 and Aut2 and [one of
UIDs2 is the admin or becomes a remote friend of PID’s
owner, or PID is marked as public]

This reads almost like (P1) || (P2). In particular, the trigger
T is clearly that formalized by (P1) || (P2): the disjunction
of the component triggers. However, (P’)’s bound, phrased as
“beyond the existence of an update,” is not verbatim captured
by (P1) || (P2)’s bound B.

Fortunately, we can easily derive (P’) from (P1) || (P2)
using a general-purpose theorem for transfer between two
security policies. Let Aut be an I/O automaton and (P) and
(P’) two security properties operating on it. (P) is said to have
a stronger security model than (P’) if there are two partial
functions f : Sec⇀ Sec′ and g : Obs⇀ Obs′ from the secrets
and observations of (P) to those of (P’) that preserve the
secrecy and observation infrastructures, the bounds and the
triggers. (Details are given in Appendix A.)

Theorem 2. Assume (P) has a stronger security model than
(P’). If (P) holds for Aut, then so does (P’).

B. The N-ary Case

We aim to establish confidentiality for the entire distributed
system, not just for two components. For our case study, we
want to prove the following for every post PID belonging to a
component Auti in a network of n components Aut1, . . . , Autn:

(P”) A coalition of n groups of users, UIDsk for each Autk,
can learn nothing about the updates to PID’s content beyond
the existence of an update unless one of the following holds:

1) one of UIDsi is the admin, or is PID’s owner, or becomes
friends with the owner, or PID is marked as public

2) the post is being shared by Auti with some Autk for k
= i
and [one of UIDsk is the admin or becomes a remote
friend of PID’s owner, or PID is marked as public]

To this end, we generalize the communicating product
automaton construction from 2 to n mutually communicating
components Autk. We fix, for each k, k′ with k
= k′, a matching
predicate matchk,k′ : Transk × Transk′ → Bool (between the
transitions of Autk and Autk′). We write match for the family
(matchk,k′)k,k′ and isComk,k′ :Actk →Bool for the correspond-
ing notion of communication action (belonging to Autk, and
pertaining to communication with Autk′). We assume that
communication is pairwise dedicated, in that the predicates
isComk,k′ and isComk,k′′ are disjoint for k′
= k′′.

738

SEPi

σi
ai−→
oi
σ′i ∀ j. ¬ isComi, j(ai)

(σk)k
(i,ai)−→
(i,oi)

(σk)k[i := σ′i]
COM

σi
ai−→
oi
σ′i σ j

a j−→
o j
σ′j i
= j matchi, j((σi, ai, oi, σ

′
i), (σ j, a j, o j, σ

′
j))

(σk)k
((i,ai),(j,a j))−→
((i,oi),(j,o j))

(σk)k[i := σ′i, j := σ′j]

Figure 6: Transitions of an n-component distributed system

The product is denoted by ∏match
k∈{1,. . .,n}Autk. Its states are

families (σk)k ∈ ∏k∈{1,. . .,n} Statek. The transition relation is
shown in Fig. 6, where, to avoid ambiguity, we use labeling
to indicate the components not only for separate actions or
outputs, but also for communicating actions or outputs, e.g.,
((i, ai), (j, a j)). We write (σk)k[i :=σ′i] for the family of states
that is the same as (σk)k, except for the index i where it is
updated from σi to σ

′
i; and similarly for (σk)k[i :=σ′i, j :=σ′j].

Given BD Security properties (Pk) for Autk, their composi-
tion ||k∈{1,. . .,n}(Pk) is defined as an immediate generalization
of the binary case. E.g., the observation domain is

Obs = ∑
k∈{1,. . .,n}

Obsk + ∑
k,k′∈{1,. . .,n}

Obsk×Obsk′

so that it contains either separate observations (k, ok) or joint
observations (k, ok, k′, ok′). Assuming that each pair of attacker
models have compatible communication infrastructure consist-
ing of matchk,k′ , matchSk,k′ , and matchOk,k′ , n-ary shuffle
operators are defined:

• for traces, || : ∏k∈{1,. . .,n} Tracek → Pow(Trace)

• for secrets, || : ∏k∈{1,. . .,n} Sec∗k → Pow(Sec∗)
• for observations, || : ∏k∈{1,. . .,n} Obs∗k → Pow(Obs∗)

Similarly to the binary case, the composite trigger is defined
as the disjunction of the component triggers and composite
bound B(sl, sl′) is defined from the component bounds:

∀(slk)k, (sl′k)k. sl ∈ ||(slk)k ∧ sl′ ∈ ||(sl′k)k → ∀k. Bk(slk, sl′k)

Now a generalization of Theorem 1 can be formulated.
Most of the assumptions are those of Theorem 1 applied to
all pairs Autk and Autk′ . An exception is secret polarization,
which needs strengthening. We call the n component attacker
models uniquely secret-polarized if there is a unique secret
issuer, say, Auti, in the network. Formally: for all k
= i and
Autk-transitions trn, isSeck(trn) implies isComk,i(actOfk(trn)).

Theorem 3. Assume that the following properties hold for
the I/O automata Aut1, . . . , Autn with BD-security properties
(P1), . . ., (Pn) and communication infrastructure match:

• communication is pairwise dedicated
• the communication infrastructure between any two compo-

nents is compatible and strong
• any two attacker models have observable network traffic
• the attacker models are uniquely secret-polarized

If each (Pk) holds for Autk, then || k∈{1,. . .,n} (Pk) holds for
∏match

k∈{1,. . .,n}Autk.

Thus, the generalization to the n-ary case proceeds fairly
smoothly, with the nuance that a single source of secrets is
allowed in the whole network.

Back to CoSMeDis, to capture our concrete (P”), matchk,k′
is defined just like in the binary case (shown in Fig. 1), but
using the identifiers NIDk and NIDk′ for Autk and Autk′ instead
of NID1 and NID2. Now (P”) follows from this theorem along
with the transfer theorem—the latter being used to customize
the bound, similarly to the binary case.

VII. VERIFYING COSMEDIS’S CONFIDENTIALITY

We employ the last section’s results to prove fine-grained
declassification bounds for CoSMeDis’s information sources.

A. Verified Properties

Our running example of a confidentiality property had the
form: Nothing is inferable about a given secret (a post content)
unless a trigger is being fired. The properties we had proved for
the original CoSMed actually made stronger claims: Nothing
is inferable about a given secret beyond the trace portions
during which a trigger is active, i.e., when the observers’
access to the secret is legitimate. This makes it possible to
consider dynamic triggers, which can be repeatedly fired and
canceled. For example, a user can become a friend of the post’s
owner, but later the friendship can be canceled by either user
“unfriending” the other—only post updates performed outside
the times of friendship should be protected from that user.

Technically, in the stronger properties the trigger is “swal-
lowed” by the bound. So the price for the gained strength
in confidentiality is a more complex bound, which operates on
an enriched domain of secrets that include trigger information.
For post confidentiality, the domain of secrets now consists not
only of post contents, (psec, pst), but also of openness indica-
tors, (osec, b), where b is a Boolean flag indicating whether
the legitimate access window is open. The secret-producing
function returns osec b only if the openness status changes,
with b indicating the new status—e.g., b becomes True when
an observer is marked as friend, and becomes False if the last
observer is unfriended (and the other legitimate access condi-
tions fail as well, e.g., the admin is not an observer). These
indicators are used to formulate the bound in an access-window
sensitive way. For example, if a trace produces the secrets
〈(osec, True), (psec, pst1), (osec, False), (psec, pst2)〉, then the
bound protects pst2, but not pst1. This is because the update
pst1 occurred in a phase of the system execution where the
observers had legitimate access to the post content, whereas
the access window was closed before pst2 occurred [12, §3.3].

Fortunately, our policy-agnostic theorems smoothly accom-
modate such complex bounds as well. In fact, the instantiation
of the compositionality result works almost exactly the same.
The only difference is that we work with a notion of secret that
was already enriched with openness indicators. The amend-
ment with communicating secrets is orthogonal—we partition
the secrets of the form (psec, pst) in two categories, for update

739

Observers Secrets Bound

Group of users, UIDs

Content of a given post,

say, PID

Updates performed while or last before one of the following holds:

Some user in UIDs is the admin, is the post owner or is friend with the post owner

PID is marked as public

Friendship status between

two given users,

say, UID1 and UID2

Status changes performed while or last before the following holds:

Some user in UIDs is the admin or is friend with UID1 or UID2

Friendship requests between

two given users,

say, UID1 and UID2

Existence of accepted requests while or last before the following holds:

Some user in UIDs is the admin or is friend with UID1 or UID2

Figure 7: Confidentiality properties for the original CoSMed

Observers Secrets Bound

n group of users,

UIDs1, . . . , UIDsn,

one for each node

Content of a given post,

say, PID of node NIDi

Updates performed while or last before one of the following holds:

Some user in UIDsi is NIDi’s admin, is PID’s owner or is friend with PID’s owner

PID is marked as public

Some user in UIDs j for j
= i is admin or remote friend with PID’s owner

Friendship status between

two given users, say,

UID1 and UID2 of NIDi

Status changes performed while or last before the following holds:

Some user in UIDsi is NIDi’s admin or is friend with UID1 or UID2

Friendship requests between

two given users, say,

UID1 and UID2 of NIDi

Existence of accepted requests while or last before the following holds:

Some user in UIDsi is NIDi’s admin or is friend with UID1 or UID2

Figure 8: Confidentiality properties for CoSMeDis, lifted from CoSMed

and send: (psec, (upd, pst)) and (psec, (snd, pst)). Our bound
extension (adding the correlation predicate) is also orthogonal.

The discussion leading to the compositionality theorems
yields a heuristic for concretely achieving compositionality:
Starting with a proved CoSMed instance of BD Security,
split it in two CoSMeDis properties by identifying a secret
issuer and a secret receiver; then strengthen the properties
so that communication is acknowledged by both sides and
has its non-confidential part observable; finally, adjust the
bound to account for the new correlations introduced during
strengthening. (Appendix B gives more details.)

We have used this heuristic to extend to CoSMeDis all
the properties proved for the original CoSMed, summarized in
Fig. 7—where the triggers are always vacuously false (since
they are “swallowed” by the bounds) and the observers are
always a given set of users. In Fig. 8, we summarize the end
product after lifting these to CoSMeDis via our theorems.

Besides the already discussed post confidentiality, there are
confidentiality properties regarding friendship status, i.e., the
information on whether two users are friends, and friendship
requests, i.e., the information on whether a user has issued a
friendship request to another user. In both cases, the legitimate
access windows are defined to mean that an observer is the
admin or is currently friends with either of the involved users.

The application of our compositionality theorem to the
confidentiality of friendship status and requests is easier than
for post confidentiality. Unlike the latter, the former does not
involve sharing secrets between nodes. Consequently, as seen
in the corresponding entries in Figs. 7 and 8, the bound of
the distributed system is the same as that of a single node. In
addition to local friendship, we also verify confidentiality of
remote friendship, as detailed in Appendix C.

B. Verification Technology Aspects

As discussed in Section IV-C, the functionality of
CoSMeDis nodes has been specified in Isabelle as a particular
I/O automaton, extending the previously formalized CoSMed
I/O automaton—and this formed the basis of the nodes’
implementation, via code extraction.

Our verification focused on the network formed of copies
of this I/O automaton. First, we formalized Section VI’s
abstract theorems. The heart of Theorem 1, depicted in Fig. 5,
is the construction of the alternative composed trace from
two component traces tr1 and tr2 (whose observations and
secrets have already been composed). The construction takes
advantage of the assumed strength of communication and ob-
servations to define suitable compound-system transitions one
at a time. It is guided by a tedious series of case distinctions: on
whether the current compound-system observations and secrets
were produced individually or by matching, on whether each
of them is secret or observable, etc. Theorem 3 is proved
inductively by iterating Theorem 1, the secret-issuer being
composed with the other nodes, one at a time. The main
difficulty with the transport Theorem 2 was its formulation
as sufficiently expressive to capture our cases of interest.
Once properly formulated, it followed by a straightforward
manipulation of the quantifiers in the definition of BD security.

For the above theorems, we employed Isabelle’s structured
Isar proof language [63], which allowed us to document the
nontrivial parts of the proofs (e.g., crucial case distinctions) in
a mathematician’s “pen-and-paper” style, while dismissing the
trivial parts in an engineer’s style, using automatic methods (cf.
Appendix D). For example, the impossible cases in the proof
of Theorem 1 (those that would contradict our assumptions)
were discharged immediately without even spelling them out.

To facilitate the instantiation of these theorems, we proved

740

them within Isabelle modules called locales [37], which allow
for the development of theorems parameterized by abstract data
and assumptions. The locales automate the process of instan-
tiating the theorems: The user provides concrete instances for
the data and discharges the assumptions; in exchange, they
obtain an unconditional version of the theorems for the given
instance. For example, for Theorem 1 the data parameters were
two I/O automata, two security properties, and a communi-
cation infrastructure. To anticipate our specific instantiations,
we combined Theorems 3 (for n-ary composition) and 2 (for
massaging the bound) into a single theorem, which is informed
by a particular CoSMeDis aspect: The bound of the secret
source is stronger than that of the other components, meaning
it can be used (via Theorem 2) as the bound of the composite.

The compositionality framework took 5700 LOC and was
built on top of a previously formalized framework for BD
security (consisting of 1800 LOC). The system specification
comprises 1500 LOC. As expected, the verification of the
concrete instances (listed in Section VII-A) constituted the
bulk of the development, 14400 LOC. The verification of each
instance had two components: (1) proofs for the security of
individual nodes and (2) verifications of the conditions for
compositionality (leading to the corresponding instantiation of
the locale).

For all but one case (remote friendship), we started with
properties of CoSMed and split them into secret issuer and
receiver properties for CoSMeDis, as prescribed by our heuris-
tic. The original proofs for CoSMed were elaborate interactive
proofs by unwinding [12, §4]. Their adaptation to CoSMeDis,
with strengthening the attacker power, also went according to
our heuristic. Nevertheless, this was laborious: The original
proof scripts broke in places located deep inside nested case
distinctions, hence to adapt them we needed to analyze large
proof contexts. Due to the more complex bounds, the proofs
for secret issuers were larger (and more time consuming) than
those for the receivers. The average size of a proof for the
former was 1500 LOC, about twice as large as for the latter.

In contrast to the unwinding proofs, the verification of the
compositionality conditions was almost entirely automatic—
thanks to the conditions being local (involving only actions
and states, no traces or sequences of secrets). Indeed, a case
distinction on all the CoSMeDis actions followed by “auto”
(Isabelle’s main automatic proof method) usually did the job,
after instrumenting “auto” with the necessary simplification
rules. The average size of an instantiation file, 150 LOC,
mainly reflects the boilerplate for locale instantiation.

Overall, the verification of CoSMeDis consists of 21600
LOC, which required 4 person-months (including the for-
malization of the abstract framework, which involved trial
and error). These followed as an extension of CoSMed’s
verification, consisting of 10000 LOC and having required 3
person-months. A large part of the CoSMeDis proofs were
not developed from scratch, but as adaptations of previous
CoSMed proofs. Together, these adapted proofs form 10000
LOC, of which roughly 8000 LOC are reused from CoSMed.

VIII. DISCUSSION

Our formalized results are comprehensive with respect to
CoSMeDis’s high-level information flow, in that they cover all

the secret sources of interest and establish fine-grained bounds
for their flows. However, the formulation of confidentiality
as BD security incurs the inherent limitations of possibilistic
notions [38, §4.3]. For example, assume that the attacker
can learn of the existence of close-in-time updates to posts
belonging to two users. Then, also depending on other traffic
information, he could infer a high probability of friendship
between those users. This kind of attack cannot be captured by
BD security, which would still proclaim that nothing is learned
about the friendship status, since, as far as the attacker knows,
both friendship and lack of friendship are possible.

Other attacks that are beyond the scope of BD security
are those that occur outside the system. For example, we do
not consider identity theft, and implicitly make the assumption
that users only act on behalf of themselves. Another example
is a user copying the content of his friend’s post into his own
public post, thus revealing it to an attacker who knows where
this was copied from. In order for BD security to account for
such a flow, it has to happen “officially,” through the system—
by a dedicated re-posting action that copies content from one
post into another. To make an analogy with language-based
security: If the content of a high variable influences that of
a low variable via the programming language constructs, then
the leak is typically caught; but if the user manually creates
a correlation between the low and high console inputs to the
program, the leak cannot be caught.

In addition to these theoretically inherent limitations, our
verification work has practical limitations concerning code
coverage, resilience under improvements or extensions, and
the ability to cope with alternative social media architectures.

Coverage. First, our confidentiality guarantees refer to the
logic of the application layer. They do not address network-
level attacks, and implicitly count on communication being
perfectly encrypted (even though, for achieving composition-
ality, we empower the attacker beyond the Dolev-Yao model).

Second, we only verified CoSMeDis’s I/O automaton
kernel, formalized in Isabelle and extracted into Scala (as
discussed in Section IV-C). In particular, we trust the API
layer to be a correct translator of http(s) requests to automaton
actions and of automaton output to JSON output. Crucially,
we trust that session management and the small piece of code
for file management are implemented correctly. For example,
mixing the identities of two users can entirely compromise
confidentiality. Similarly, overwriting the image files between
two users compromises post confidentiality. In summary, our
security guarantees are valid for the overall system only if the
code of the external layers does not introduce leaks. Extending
the scope of verification to these layers would require us to
step outside the reach of Isabelle. However, compared to the
kernel, these layers require the establishment of much simpler,
noninterference-like properties: that they transport the data
back and forth between the end user and the verified kernel,
without doing anything “interesting,” like mixing identities.
Such properties seem to be in the scope of static information-
flow analyzers such as Joana [33]—so a hybrid verification
scheme (as in, e.g., [39]) might be suitable here.

Future improvements. Our current implementation of
CoSMeDis is only a prototype, still lacking some important
features for production applications. In particular, (except for

741

the post image files) the system currently runs in memory,
i.e., there is no database or other data persistence facility.
To achieve data persistence on top of the current verification
architecture, there are two possible approaches. We could use
an in-memory database such as Redis [4], regularly storing
snapshots for persistence. This worked excellently for CoCon,
a system intended to be used for a single conference for a
limited period of time, but will not scale to a full-fledged social
media platform. A more realistic (but invasive) approach is
to adapt the code generator to directly produce Scalatra code
interacting with an SQL or NoSQL database (with NoSQL
having the advantage that it maps naturally to the ML-style
datatypes of Isabelle/HOL). Both solutions would introduce
new information flow (from and to the persistent storage).

Future extensions. CoSMeDis currently offers a fairly re-
stricted functionality. To become a practically usable platform,
additional features must be added. Examples include searching
for posts whose titles match a string, re-posting/re-tweeting a
friend’s post, offering lists of potential friends based on one’s
profile, and tagging a post by users who read it. Some of these
features, e.g., searching, do not open new channels, hence can
be added without affecting the security guarantees.

Other features would lead to a weakening of the guarantees.
For example, if we want to allow re-posting of private posts,
this would require amending the trigger to acknowledge a new
legitimate flow. Yet other features, such as reader tagging,
would not affect the existing guarantees, but would make
nontrivial some previously trivial confidentiality questions:
Under which conditions, and to which extent, can a group of
users learn of a post’s readers? In all these cases, BD security
is flexible enough to express the new confidentiality situation,
and it seems that our heuristic for establishing confidentiality
would still work. However, the formal statements and proofs
might need substantial revision. In order to still be able
to instantiate our compositionality framework, we need to
preserve its assumptions, notably secret polarization. The new
features would need to be implemented in a way that respects
the master-slave paradigm discussed in Section VI-A. For
example, the re-posting of a remote post should proceed by
notifying the original node.

Alternative architectures. CoSMeDis is a network of web
applications following a client-server paradigm. This has the
advantage that users can access the system from any device
with a web browser. Moreover, the extension of CoSMed
to CoSMeDis required only moderate changes to the code,
leading to specification and proof reuse.

The disadvantage of this architecture is that users have
to trust the operators of their node (unless they run one
themselves) and of their friends’ nodes, who have access to
confidential information in the system. This can be alleviated
to some degree by adding a layer of end-to-end encryption
[9,10,30] on top. Moreover, there are distributed architectures
for online social networks based on peer-to-peer (P2P) net-
works, avoiding the client-server paradigm [16,20,35]. They
place the application logic on the clients instead of servers,
and rely on data encryption to ensure privacy.

However, despite encryption and decentralization, we be-
lieve that security goals and challenges similar to those of
our case study also arise when using such architectures—after

all, confidential information is processed in plain text by the
client software running on the end-points of the network. For
example, a high-level security guarantee about the confiden-
tiality of private posts would require each client in such a
P2P network to preserve the confidentiality of posts received
from the clients of friends. In principle, such a requirement
could again be formulated as a BD Security property of an
I/O automaton modeling the behavior of the client. However,
instantiating our compositionality result to a P2P architecture
appears to be problematic. This is due to the more complex
communication topology, which goes beyond the single-master
paradigm that we followed for CoSMeDis: In a P2P network,
data is typically forwarded and stored along dynamic paths
through the network, which collides with our assumption of
unique secret polarization.

IX. RELATED WORK

CoSMeDis belongs to a small, but expanding club of run-
ning systems proved to be secure using proof assistants, which
includes an aircraft microprocessor [34] (in ACL2), a hardware
architecture with information flow primitives [22] (in Coq), a
separation kernel [21] (in HOL4), a noninterferent operating
system kernel [51] (in Isabelle/HOL), a secure browser [36]
(in Coq), and an e-voting system [39] (using the KeY theorem
prover jointly with the Joana information flow analyzer).

In practice, security requirements in web applications are
typically implemented using access control. In particular,
for online social networks, relationship-based access control
[27,54] supports policies depending on connections in the
social graph, e.g., friendship links. Here, we aimed for more
than access control: We wanted to protect secrets not only from
direct illegitimate access, but also from leaking to unintended
recipients who draw inferences based on observations of the
system. Such inferences can easily evade access control.

Research in information flow security has a rich history,
mostly unfolded from the pioneering notions of noninterfer-
ence [28] and nondeducibility [62] (of which BD Security
is a generalization). For the work we discuss below, we
employ a well-known taxonomy of controlled information
release (declassification) due to Sabelfeld and Sands [59],
which is particularly relevant for the rich information exchange
in web applications: Ideally, security policies should be able
to describe precisely what information can be released (e.g.,
the content of a document), by whom (e.g., the owners or their
designated “friends”), as well as where and/or when (e.g., only
after the document is marked by the owner as public). We focus
on the compositionality of the various approaches.

Language-based approaches [58] concentrate on specific
programming languages. Since they operate on the level of
language syntax, they often achieve an impressive degree of
automation. For example, Jif [52] extends Java with security
labels for data values and enforces security via a combination
of static and run-time checking. It supports control over who
may declassify information, but not what is declassified. Joana
[33] checks noninterference of Java programs via static pro-
gram analysis. Control of declassification is limited to where
in the program declassification may occur. Jeeves [64] extends
a core language for functionality with a language for flexible
security policies. RF� [11] uses a relational Hoare logic to

742

reason about 2-safety properties of probabilistic programs,
including language-based notions of information flow security.
The What&Where security property [41] allows control over
what is declassified by concurrent programs, but only in a non-
interactive setting, not suitable for web applications. Secure
multi-execution [24,57] is a run-time enforcement technique
where multiple copies of a program are executed, one for
each security level, controlling the information flows between
the levels. Secure program partitioning [17,66] produces a
distribution of the code and data in a program onto different
hosts according to their different trust levels (e.g., trusted web
server and untrusted client-side browser).

While each of the aforementioned approaches supports
certain forms of declassification, they do not consider the
setting and the kind of compositional reasoning that we have
aimed for: given a network of communicating, multi-user
systems, derive a global, complex information flow security
property from the local security properties of the components.
Instead, the preservation of security under composition (or,
similarly challenging, refinement [50]) is often considered w.r.t.
language constructs, such as sequential composition, if-then-
else branches, or while loops, for example in [46].

DStar [67] and Fabric [40] do consider distributed systems,
but they offer only coarse-grained control over what informa-
tion may be declassified: an assignment of security labels to
both data items and principals specifies which principals may
declassify which data item. In contrast, the declassification
bounds of BD Security specify what aspects of confidential in-
formation may be declassified on a semantic level, formulated
in terms of arbitrary logical formulas. For example, the bound
for remote friendship information (cf. Appendix C) specifies
that an attacker who can observe network traffic may learn
about the existence of a remote friend of a user UID on a given
node, but not about the identity of that friend. The BD Security
policy captures this in a declarative way, independently of the
internal data structures used on the implementation level for
storing and processing confidential information.

Our framework falls into the category of system-based
approaches. They work with security properties expressed
directly on the semantics, on variants of event systems or I/O
automata. Early work in this category [47] has observed that
even seemingly strong security properties are not preserved
under composition in general. Subsequently, comprehensive
frameworks have been developed for the composition of se-
curity properties in various settings, e.g., event systems [44],
reactive systems [56] and process calculi [15,26]. Some of
these focus on formulating classes of security properties that
are always guaranteed to be preserved under a given notion
of composition, such as McCullough’s Restrictiveness [48].
Others, such as Mantel’s MAKS framework [42,44], formulate
side conditions on the local security properties that guarantee
compositionality. Our compositionality result follows the lat-
ter tradition: Our assumptions of observable network traffic
and strong and compatible communication infrastructures fall
into the first case of Mantel’s Generalized Zipping Lemma
[44, Lemma 1]. The other cases of that lemma deal with
scenarios where some communication transitions are neither
observable nor confidential, which leads to additional require-
ments on the local security properties. The MAKS framework
does not require secret polarization: Its security properties are

fine-tuned so that matching problems due to the scheduling of
secrets cannot occur. Hence, its compositionality result is less
restrictive on the communication infrastructure than ours. The
earlier security notions of McLean [49] and Zakinthinos and
Lee [65] are captured as MAKS properties [45].

The above frameworks could not be used for our case
study, because they focus on very strict, noninterference-like
notions of security without support for controlled declassifi-
cation (except for very specific notions, such as intransitive
noninterference [43]). Chong and van der Meyden [18] discuss
information flow policies (called architectures), where filter
functions are used to restrict what information may flow be-
tween domains, together with an interpretation of the resulting
security properties in terms of an epistemic logic. However,
they do not consider compositional reasoning in our sense, i.e.,
composing the security properties of multiple components to
a security property of the overall system. The same applies to
the work on temporal logics and model checking approaches
for hyperproperties [19], of which information flow security
properties are an instance. Greiner and Grahl [29] present
a compositionality result that supports what-declassification
control, specified in terms of equivalence relations on com-
munication events, but it cannot express dynamically changing
confidentiality requirements—as needed for web applications
in general and for CoSMeDis in particular. For example,
whether a given post p by user u is confidential for an observer
depends on the (dynamically changing) visibility setting of p
and/or the friendship status between u and the observer.

The security notion from the literature that most closely
resembles ours is a recent one by Guttman and Rowe [31],
formulated on top of blur operators, which are similar to the
declassification bounds used for BD Security. A composition-
ality result is presented that focuses on a different question
than ours: Instead of composing the security guarantees of
the individual nodes in a network, it considers a partitioning
of the network into a core of nodes that may handle secret
information and an outer part that is purely observing. It is
proved that the security guarantees of the core are preserved
under modification of the outer part. This is not what we
needed in our case study: In CoSMeDis, all nodes of the
network potentially handle secret information, so the “core” is
the complete network. Our framework deals with the question
of how the security properties of the nodes inside the core
compose to an overall confidentiality guarantee.

ACKNOWLEDGMENTS

We are indebted to Jasmin Blanchette, Simon Greiner,
Dieter Hutter, Nikhil Swamy, Dmitriy Traytel, and the anony-
mous reviewers for very useful comments and suggestions. We
gratefully acknowledge support from:

• Innovate UK through the Knowledge Transfer Partnership
010041 between Caritas Anchor House and Middlesex Uni-
versity: “The Global Noticeboard (GNB): a verified social
media platform with a charitable, humanitarian purpose”,

• EPSRC through grants “VOWS” (EP/N019547/1) and
“VRBMAS” (EP/K033921/1),

• DFG through grants “MORES” (Hu 737/5-2) and “SecDed”
(Ni 491/13-3) in the priority program “RS3 – Reliably
Secure Software Systems” (SPP 1496).

743

REFERENCES

[1] “CoCon website,” http://www21.in.tum.de/~popescua/rs3/CoCon.html.

[2] “Facebook may have leaked your personal information: Symantec,”
Reuters, May 2011,
http://www.reuters.com/article/us-facebook-idUSTRE74A07R20110511.

[3] “The Heartbleed bug,” http://heartbleed.com/.

[4] “The Redis website,” https://redis.io/.

[5] “The CoSMeDis Homepage,” http://andreipopescu.uk/CoSMeDis.html.

[6] “Caritas Anchor House,” http://caritasanchorhouse.org.uk/, 2016.

[7] “CoSMed website,” https://cosmed.globalnoticeboard.com, 2016.

[8] “The diaspora∗ project,” https://diasporafoundation.org/, 2016.

[9] M. Backes, M. Maffei, and K. Pecina, “A security API for distributed
social networks,” in NDSS. The Internet Society, 2011.

[10] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Starin,
“Persona: an online social network with user-defined privacy,” in
SIGCOMM. ACM, 2009, pp. 135–146.

[11] G. Barthe, C. Fournet, B. Grégoire, P. Strub, N. Swamy, and S. Z.
Béguelin, “Probabilistic relational verification for cryptographic imple-
mentations,” in POPL, 2014, pp. 193–206.

[12] T. Bauereiß, A. P. Gritti, A. Popescu, and F. Raimondi, “CoSMed: A
confidentiality-verified conference management system,” in ITP, 2016.

[13] J. C. Blanchette, S. Böhme, A. Popescu, and N. Smallbone, “Encoding
monomorphic and polymorphic types,” Logical Methods in Computer
Science, vol. 12, no. 4, 2016.

[14] J. C. Blanchette and S. Merz, Eds., Interactive Theorem Proving -
7th International Conference, ITP 2016, Nancy, France, August 22-25,
2016, Proceedings, vol. 9807, 2016.

[15] A. Bossi, D. Macedonio, C. Piazza, and S. Rossi, “Information flow
in secure contexts,” Journal of Computer Security, vol. 13, no. 3, pp.
391–422, 2005.

[16] S. Buchegger, D. Schiöberg, L.-H. Vu, and A. Datta, “PeerSoN: P2p
Social Networking: Early Experiences and Insights,” in Second ACM
EuroSys Workshop on Social Network Systems. ACM, 2009, pp. 46–52.

[17] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, and
X. Zheng, “Building secure web applications with automatic partition-
ing,” Commun. ACM, vol. 52, no. 2, pp. 79–87, 2009.

[18] S. Chong and R. V. D. Meyden, “Using Architecture to Reason About
Information Security,” ACM Trans. Inf. Syst. Secur., vol. 18, no. 2, pp.
8:1–8:30, Dec. 2015.

[19] M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe,
and C. Sánchez, “Temporal logics for hyperproperties,” in POST, 2014,
pp. 265–284.

[20] L. A. Cutillo, R. Molva, and T. Strufe, “Safebook: A privacy-preserving
online social network leveraging on real-life trust,” IEEE Communica-
tions Magazine, p. 95, 2009.

[21] M. Dam, R. Guanciale, N. Khakpour, H. Nemati, and O. Schwarz,
“Formal verification of information flow security for a simple ARM-
based separation kernel,” in CCS, 2013, pp. 223–234.

[22] A. A. de Amorim, N. Collins, A. DeHon, D. Demange, C. Hritcu,
D. Pichardie, B. C. Pierce, R. Pollack, and A. Tolmach, “A verified
information-flow architecture,” in POPL, 2014, pp. 165–178.

[23] H. de Nivelle, Ed., Automated Reasoning with Analytic Tableaux and
Related Methods - 24th International Conference, TABLEAUX 2015,
Wrocław, Poland, September 21-24, 2015. Proceedings, vol. 9323, 2015.

[24] D. Devriese and F. Piessens, “Noninterference through secure multi-
execution,” in IEEE Symposium on Security and Privacy, 2010, pp.
109–124.

[25] D. Dolev and A. C. Yao, “On the security of public key protocols,”
IEEE Trans. Information Theory, vol. 29, no. 2, pp. 198–207, 1983.

[26] R. Focardi and R. Gorrieri, “Classification of security properties (part
i: Information flow),” in FOSAD, 2000, pp. 331–396.

[27] P. W. L. Fong, M. M. Anwar, and Z. Zhao, “A privacy preservation
model for Facebook-style social network systems,” in ESORICS, 2009,
pp. 303–320.

[28] J. A. Goguen and J. Meseguer, “Unwinding and inference control,” in
IEEE Symposium on Security and Privacy, 1984, pp. 75–87.

[29] S. Greiner and D. Grahl, “Non-interference with what-declassification
in component-based systems,” in CSF, 2016, pp. 253–267.

[30] S. Guha, K. Tang, and P. Francis, “NOYB: Privacy in Online Social
Networks,” in Workshop on Online Social Networks. ACM, 2008, pp.
49–54.

[31] J. D. Guttman and P. D. Rowe, “A cut principle for information flow,”
in CSF, 2015, pp. 107–121.

[32] F. Haftmann and T. Nipkow, “Code generation via higher-order rewrite
systems,” in FLOPS 2010, 2010, pp. 103–117.

[33] C. Hammer and G. Snelting, “Flow-sensitive, context-sensitive, and
object-sensitive information flow control based on program dependence
graphs,” Int. J. Inf. Sec., vol. 8, no. 6, pp. 399–422, 2009.

[34] D. S. Hardin, E. W. Smith, and W. D. Young, “A robust machine code
proof framework for highly secure applications,” in ACL2, 2006, pp.
11–20.

[35] S. Jahid, S. Nilizadeh, P. Mittal, N. Borisov, and A. Kapadia, “DECENT:
A decentralized architecture for enforcing privacy in online social
networks,” in PerCom. IEEE, 2012, pp. 326–332.

[36] D. Jang, Z. Tatlock, and S. Lerner, “Establishing browser security
guarantees through formal shim verification,” in USENIX Security,
2012, pp. 113–128.

[37] F. Kammüller, M. Wenzel, and L. C. Paulson, “Locales—a sectioning
concept for Isabelle,” in TPHOLs, 1999, pp. 149–166.

[38] S. Kanav, P. Lammich, and A. Popescu, “A conference management
system with verified document confidentiality,” in CAV, 2014, pp. 167–
183.

[39] R. Küsters, T. Truderung, B. Beckert, D. Bruns, M. Kirsten, and
M. Mohr, “A hybrid approach for proving noninterference of java
programs,” in CSF, 2015, pp. 305–319.

[40] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C. Myers,
“Fabric: a platform for secure distributed computation and storage,” in
SOSP, 2009, pp. 321–334.

[41] A. Lux, H. Mantel, and M. Perner, “Scheduler-independent declassifi-
cation,” in MPC, 2012, pp. 25–47.

[42] H. Mantel, “Possibilistic definitions of security - an assembly kit,” in
CSFW, 2000, pp. 185–199.

[43] ——, “Information flow control and applications - bridging a gap,” in
FME, 2001, pp. 153–172.

[44] ——, “On the composition of secure systems,” in IEEE Symposium on
Security and Privacy, 2002, pp. 88–101.

[45] ——, “The framework of selective interleaving functions and the
modular assembly kit,” in FMSE, 2005, pp. 53–62.

[46] H. Mantel and A. Reinhard, “Controlling the what and where of
declassification in language-based security,” in Programming Languages
and Systems, ser. LNCS, 2007, vol. 4421, pp. 141–156.

[47] D. McCullough, “Specifications for multi-level security and a hook-up
property,” in IEEE Symposium on Security and Privacy, 1987.

[48] ——, “A hookup theorem for multilevel security,” IEEE Trans. Software
Eng., vol. 16, no. 6, pp. 563–568, 1990.

[49] J. McLean, “A general theory of composition for trace sets closed under
selective interleaving functions,” in IEEE Symposium on Security and
Privacy, 1994, pp. 79–93.

[50] C. Morgan, “The shadow knows: Refinement and security in sequential
programs,” Sci. Comput. Program., vol. 74, no. 8, pp. 629–653, 2009.

[51] T. C. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke,
S. Seefried, C. Lewis, X. Gao, and G. Klein, “seL4: From general pur-
pose to a proof of information flow enforcement,” in IEEE Symposium
on Security and Privacy, 2013, pp. 415–429.

[52] A. C. Myers, “Jflow: Practical mostly-static information flow control,”
in POPL, 1999, pp. 228–241.

[53] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: A Proof
Assistant for Higher-Order Logic. Springer, 2002.

[54] R. Pardo and G. Schneider, “A formal privacy policy framework for
social networks,” in SEFM, 2014, pp. 378–392.

[55] L. C. Paulson and J. C. Blanchette, “Three years of experience with
Sledgehammer, a practical link between automatic and interactive
theorem provers,” in IWIL, 2010.

744

[56] W. Rafnsson and A. Sabelfeld, “Compositional information-flow secu-
rity for interactive systems,” in CSF, 2014, pp. 277–292.

[57] ——, “Secure multi-execution: Fine-grained, declassification-aware,
and transparent,” Journal of Computer Security, vol. 24, no. 1, pp. 39–
90, 2016.

[58] A. Sabelfeld and A. C. Myers, “Language-based information-flow
security,” IEEE Journal on Selected Areas in Communications, vol. 21,
no. 1, pp. 5–19, 2003.

[59] A. Sabelfeld and D. Sands, “Declassification: Dimensions and princi-
ples,” Journal of Computer Security, vol. 17, no. 5, pp. 517–548, 2009.

[60] Y. Saito and M. Shapiro, “Optimistic replication,” ACM Comput. Surv.,
vol. 37, no. 1, pp. 42–81, 2005.

[61] “The Scalatra Web Framework,” 2016, http://scalatra.org/.

[62] D. Sutherland, “A model of information,” in 9th National Security Conf.,
1986, pp. 175–183.

[63] M. Wenzel, “Isar—a generic interpretative approach to readable formal
proof documents,” in TPHOLs, 1999, pp. 167–184.

[64] J. Yang, K. Yessenov, and A. Solar-Lezama, “A language for automat-
ically enforcing privacy policies,” in POPL, 2012, pp. 85–96.

[65] A. Zakinthinos and E. S. Lee, “A general theory of security properties,”
in IEEE Symposium on Security and Privacy, 1997, pp. 94–102.

[66] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers, “Secure
program partitioning,” ACM Trans. Comput. Syst., vol. 20, no. 3, pp.
283–328, 2002.

[67] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières, “Securing distributed
systems with information flow control,” in NSDI, 2008, pp. 293–308.

APPENDIX

A. More Details on the Security Transport Theorem

Here is the formal definition of the notion of “stronger
security model,” used in Theorem 2.

Definition 3. Let Aut be an I/O automaton and (P) and (P’)
two security properties operating on it. (P) is said to have
a stronger security model than (P’) if there are two partial
functions f : Sec⇀ Sec′ and g : Obs⇀ Obs′ from the secrets
and observations of (P) to those of (P’) that preserve the
secrecy and observation infrastructures, the bounds and the
triggers, i.e., such that the following are true:

• isSec′(trn) holds iff isSec(trn) and getSec(trn) ∈ dom(f),
and in this case f (getSec(trn)) = getSec′(trn)

• isObs′(trn) holds iff isObs(trn) and getObs(trn) ∈ dom(g),
and in this case g(getObs(trn)) = getObs′(trn)

• T(trn) implies T′(trn)

• B′(sl′, tl′) and map f (sl) = sl′ imply that there is a tl such
that map f (tl) = tl′ and B(sl, tl)

Above, map f : Sec
∗ → Sec′∗ denotes the secret-wise extension

of the partial function f : Sec⇀ Sec′ to sequences, omitting
any secrets s /∈ dom(f).

In case f is defined and injective on all secrets oc-
curring in Aut, then it can be inverted and the last con-
dition above simplifies to checking that B′(sl′, tl′) implies
B(map f−1(sl′),map f−1(tl′)).

Choosing partial functions f and g allows us to weaken the
power of the observer and the notion of secrets by making the
sets of observable and secret transitions smaller. In particular,
observable transitions whose observations are not translated by
g become unobservable in the new security model.

To prove that (P1) || (P2) implies (P’) for the main paper’s
running example, we use the theorem where Obs′ =Obs, g is
the identity, Sec′ = Sec1, and f extracts the secret s1 out of
(1, s1) or (s1, s2).

Note that Aut2 does not produce local secrets, hence (2, s2)
never occurs. Moreover, f is injective on valid secrets, because
the sets of secrets occurring locally in Aut1 and in commu-
nication with Aut2 are disjoint, and, in a communication, the
secret received by Aut2 is uniquely determined by the secret
sent by Aut1. The inverse of f is

f−1(s1) =
{
(1, (upd, pst)) if s1 = (upd, pst)
((snd, pst), pst) if s1 = (snd, pst)

The above assumptions are then immediate to check.

We also rely on Theorem 2 to prove that the various amend-
ments of the component properties required to achieve com-
positionality (illustrated in Section V-B) are indeed strength-
enings of the previous versions—which is important for guar-
anteeing that our quest for compositionality did not weaken
any bit of the component properties we started with. Thus,
to prove that the version of property (P1) after amendments
1–3 implies the original, we define g as the identity on local
observations and f as f ((upd, pst)) = pst.

B. Heuristic for Achieving Compositionality

Context. We have a monolithic system modeled as an I/O
automaton Aut, delivered with a confidentiality guarantee (P)
modeled as BD Security. We extend the system to a distributed
system, consisting of several nodes able to communicate. Each
node is an extension Aut′ of Aut, with new actions for inter-
node communication. The question is what confidentiality
property can we prove for the distributed system.

Step 1. By its nature, (P) states something about a notion
of secret and the way it is protected during interaction with the
outside world, which takes place through actions and outputs
of the original automaton Aut. We analyze what happens with
the secret during inter-node communication in Aut′, identifying
the roles of secret issuer and secret receiver for the nodes. This
leads to a split of (P) in two variants, (P1) and (P2).

Step 2. If necessary, we modify the secrecy infrastructure
of (P1) and/or (P2) so that the communication of secret-
correlated items is acknowledged by both as a secret-producing
action. This may require a modification of the bound as well,
to account for the correlation.

Step 3. We strengthen the observation power for (P1) and
(P2) by allowing the observer to access any communication
information that does not compromise the secrets.

Step 4. If we can identify a unique source for the secrets,
we apply Theorem 3 for a distributed system consisting of one
component satisfying (P1) and n− 1 components satisfying
(P2). Then we apply Theorem 2 to customize the compound
bound into a property that uses the notion of secret from the
secret-issuer component only.

C. More Details on the Verified Properties

Post Confidentiality. The post confidentiality property of
the original CoSMed has a “dynamic” bound, incorporating

745

changes in the confidentiality of the post due to visibil-
ity updates and friending or unfriending of observers. We
summarize the formal attacker models (AM) and security
properties (SP) in Table I. For a detailed explanation, see [12].
The corresponding property of the issuer node of CoSMeDis
extends that of the original CoSMed with the sending of posts:
the additions are highlighted. On the receiver side, nothing
is leaked to local observers beyond the number of updates
(because communication traffic is observable). Only when an
observer is added as a remote friend of the post owner, or
the post is marked as public, the trigger fires and the post is
declassified. The property for the entire distributed system has
the observations built from all the component observations (as
described in the main paper’s n-ary compositionality theorem).
However, the secrets, as well as the bound, are those of the
secret issuer component—this is because we show the end
product property, obtained after applying both the composi-
tionality and the transfer theorems.

Friendship Confidentiality. For CoSMed, we had proved
confidentiality properties for local friendship status of any (ar-
bitrary but fixed) users UID1 and UID2, and friendship requests
between them. Observers learn nothing about their friendship
status beyond the status (and updates to it) during phases in
which one of the observers is friends with either UID1 or UID2.
In particular, if none of the observers ever become friends
with UID1 or UID2, then they never learn anything about their
friendship status. Moreover, observers learn nothing about the
content of friendship requests. However, observers always have
the (static) knowledge that some friendship request precedes
the establishment of a friendship between UID1 and UID2. This
is made explicit in the bound for friendship requests. We refer
to [12] for details.

We have proved that these confidentiality properties of local
friendship information still hold in CoSMeDis as they are. This
is to be expected (and desired), since local friendship does
not involve communication between nodes. However, remote
friendship does. Hence, we prove an additional property for
CoSMeDis, summarized in Table II. We consider the remote
friends of an arbitrary, but fixed user UID of node Auti, who
is not an observer. Since we assume communication traffic to
be observable, we can’t keep secret that a remote friendship
action occurred and which node it targeted, but we assume
that the secret content is unobservable, namely the type of
remote friendship action (addition or deletion, formalized as
a Boolean flag), as well as who was added or deleted as
a remote friend. Indeed, we verify that this information is
kept secret in CoSMeDis from observers who are not friends
of UID. However, from observing the occurrence of remote
friendship actions and combining it with the static knowledge
that addition and deletion of any given remote friend can only
occur alternatingly (first addition, then deletion, then addition
again, and so on), an observer can deduce the existence of
remote friends of UID on any given node Aut j. The overall
property we verify is

(P) A coalition of n groups of users, UIDsk for each Autk,
can learn nothing about the remote friends of the user UID
of Auti beyond the existence of remote friends on any given
node Aut j unless one of UIDsi is friends with UID.

Formally, the bound given in Table II states that it must be
possible to replace the parameters of remote friendship actions

arbitrarily (modulo alternation of addition and deletion). The
bounds for issuer and receiver nodes are symmetric, because
secrets are only generated during communication. Finally, the
trigger makes explicit that the friend list of UID is legitimately
declassified to local friends of UID (we have only implemented
the listing of friends locally, not remotely, in CoSMeDis).

D. More Details on the Verification Technology

Besides the internal automation (“auto” and friends), in
Isabelle there is the possibility to invoke external fully auto-
matic provers via the Sledgehammer tool [55], It differs from
internal automation in that it requires no instrumentation (of
what facts to invoke in the proof, to add to the simplifier,
etc.). Instead, the tool applies a relevance filter to identify facts
that are likely to be useful for the stated goal; these facts are
translated to first-order logic and handed over to the automatic
provers; a possible positive answer from any of the provers
(which also contains the much smaller set of actually used
facts) is translated back into Isabelle/HOL’s logic, where the
original goal is discharged [13, §7].

Sledgehammer’s hassle-free automation scheme was very
handy when porting and strengthening unwinding proofs from
CoSMed to CoSMeDis. We ended up with an average of 4
successful invocations of Sledgehammer per 100 LOC, which
is quite large given the Isar language verbosity. By contrast,
internal automation was sufficient for the more regular pattern
needed for verifying the compositionality conditions.

E. Combining Independent Secret Sources

For simplicity, in this paper we have always considered
the confidentiality of one secret source at a time, e.g., one
given (arbitrary but fixed) post, or the friendship information
between two given users. A legitimate question is therefore
how to deal with multiple sources simultaneously.

E.g., consider the confidentiality of two different posts,
PIDi in Auti and PID j in Aut j. We can instantiate the results
of the paper for each post separately and obtain two security
properties of the distributed system. We can easily combine
these two properties, relying on two key assumptions:

1) The secrets are independent of each other. Indeed, updates
to different posts are completely orthogonal in the system;
there is no interference between different posts.

2) The scheduling of the different secrets is not confiden-
tial; e.g., the contents of PIDi and PID j are considered
confidential, but the relative timing of uploads is not.

The first assumption guarantees the soundness of our
approach to first consider the secrets in isolation, not having to
worry about possible inter-dependencies. The second assump-
tion is important, because it allows us to ignore the scheduling
of secrets—after composition. Before composing the system,
this would not be possible, because scheduling information is
still needed for the composition of traces.

We formalize these assumptions as follows. Let (Pi) and
(P j) be two security properties of the same system, where (Pi)
comprises the observation producing function Oi, the secret
producing function Si, the trigger Ti, and the bound Bi, and
analogously for (P j).

746

Table I: Post confidentiality

For the original

CoSMed

AM

Sec= psec Post+osec Bool

isSec (σ, a, o, σ′) iff (1) (o = outOK ∧ ∃uid, pst. a = (updatePost, uid, PID, pst)) ∨
(2) open(σ′)
= open(σ)

where open(σ) iff PID ∈ postIDs(σ) ∧ admin(σ) ∈ UIDsi ∨ owner(σ, PID) ∈ UIDsi ∨
UIDsi ∩ friendIDs(σ, owner(σ, PID))
= /0 ∨ vis(σ′, PID) = public

getSec (σ, a, o, σ′) = (psec, pst) in case (1) and (osec, open σ) in case (2)

Obs= Act×Out isObs (σ, a, o, σ′) iff userOf(a) ∈ UIDs getObs (σ, a, o, σ′) = (a, o)

SP

B is defined as follows, mutually inductively with another predicate BO:

pstl
= []→ pstl′
= []

B (map psec(pstl), map psec(pstl′))
B(sl, sl′)

BO (map psec(pstl) · (osec, False) · sl, map psec(pstl) · (osec, False) · sl′)

BO (map psec(pstl),map psec(pstl))
BO(sl, sl′) pstl
= [] ←→ pstl′
= [] pstl
= []→ last pstl = last pstl′

B (map psec(pstl) · (osec, True) · sl, map psec(pstl′) · (osec, True) · sl′)

T is vacuously False

For CoSMeDis

–secret issuer i–
AMi

Seci = upd (psec Post+osec Bool)+ snd Post

isSeci(σ, a, o, σ′) iff (1) (o = outOK ∧ ∃uid, pst. a = (updatePost, uid, PID, pst)) ∨
(2) open(σ′)
= open(σ) ∨
(3) (∃uid, pst, uid′, v. o = (pst, uid′, v) ∧ a = (sendPost, uid, nid, PID))

getSeci(σ, a, o, σ′) = upd (psec, pst) in case (1) and (osec, open σ) in case (2) and snd pst in case (3)

Obsi = Act×Out

isObsi (σ, a, o, σ′) iff userOf(a) ∈ UIDsi ∨ ∃k. isComi,k(a)

getObsi (σ, a, o, σ′) = (purgeAPID (a), purgeOPID (o))

SPi Bi(sl, sl′) iff B(filterupd(sl), filterupd(sl′)) ∧ corr(sl′) Ti is vacuously False

For CoSMeDis

–other components j–

AM j

Sec j = Post

isSec j (σ, a, o, σ′) iff o j = outOK ∧ ∃pst, uid, v. a = (receivePost,NIDi, PID, pst, uid, v)
getSec j (σ, a, o, σ′) = pst
Obs j = Act×Out

isObs j (σ, a, o, σ′) iff userOf(a) ∈ UIDs j ∨ ∃k. isCom j,k(a)
getObs j (σ, a, o, σ′) = (purgeAPID(a), purgeOPID(o))

SP j
B j(sl, sl′) iff length sl = length sl′

T j (σ, a, o, σ′) iff

⎧⎪⎨
⎪⎩
admin(σ′) ∈ UIDs j ∨
UIDs j ∩ remoteFriendIDs(σ′,NIDi, remoteOwner(σ′,NIDi, PID))
= /0 ∨
remoteVis(σ′,NIDi, PID) = public

For CoSMeDis

–entire system–

AM

Sec= Seci isSec= isSeci getSec= getSeci

Obs=Obs= ∑k∈{1,. . .,n} Obsk +∑k,k′∈{1,. . .,n} Obsk×Obsk′

isObs(trn) =

{
isObsk(trnk)∧ isObsk′ (trnk′) if trn = (k, trnk , k′, trnk′)
isObsk(trnk) if trn = (k, trnk)

getObs(trn) =

{
(k, getObsk(trnk), k′, getObsk′ (trnk′)) if trn = (k, trnk , k′, trnk′)
(k, getObsk(trnk)) if trn = (k, trnk)

SP B= Bi T(trn) =

{
Tk(trnk)∨Tk′ (trnk′) if trn = (k, trnk , k′, trnk′)
Tk(trnk) if trn = (k, trnk)

Table II: Remote friendship confidentiality

For CoSMeDis

–secret issuer i–

AMi

Seci =NodeID×UserID×Bool

isSeci(σ, a, o, σ′) = (o = outOK ∧ ∃uid, nid, st. a = (sendUpdateRFriend, UID, nid, uid, st)∧uid /∈ UIDsnid)

getSeci(σ, (sendUpdateRFriend, UID, nid, uid, st), o, σ′) = (nid, uid, st)
Obsi = Act×Out

isObsi (σ, a, o, σ′) iff userOf(a) ∈ UIDsi ∨ ∃k. isComi,k(a) getObsi (σ, a, o, σ′) = (purgeAUID(a), purgeOUID(o))

SPi

Bi(sl, sl′) iff BC(sl, sl′)∧alter(sl′), where

• alter(sl′) states that friendship creation and deletion occurs alternatingly in sl for each remote user, and

• BC is defined inductively by (1) BC([], []) and (2) BC((nid, uid, st) · sl, (nid, uid′, st′) · sl′) iff uid′ /∈ UIDsnid ∧BC(sl, sl′)
Ti(σ, a, o, σ′) = (∃uid ∈ UIDsi. uid ∈ friendIDs(σ′, UID))

For CoSMeDis

–other components j–
AM j same as for the issuer, only replacing sendUpdateRFriend actions by receiveUpdateRFriend actions coming from the issuer i
SP j B j = Bi T j is vacuously False

For CoSMeDis

–entire system–

AM analogously to the attacker model for the network case of post confidentiality in Table I

SP B= Bi T= Ti

747

We capture the first assumption by assuming that the secret
of one security property is observable in the other attacker
model. Formally, the observation function of one property
is assumed to fully determine the secret and the trigger
information of the other, i.e., Oi(tr) = Oi(tr′) implies that (1)
S j(tr) = S j(tr′) and (2) the trigger T j holds in tr iff it holds in
tr′; and the same has to hold symmetrically for O j, Si, and Ti.
This means that the variation of the secret Si as required by
(Pi) is possible without interfering with the secret information
of (P j): the latter stays fixed.

The second assumption is formalized by a combined secret
producing function S that does not have the familiar shape
of producing an interleaving of secrets, but it produces a
pair of secret sequences. Namely, S(t) = (Si(t), S j(t)). This
combination captures the content of both secrets, but not their
scheduling. Consequently, the combined bound is defined as
B((sli, sl j), (sl′i, sl′j)) = Bi(sli, sl′i)∧B j(sl j, sl′j).

The combined observation function O is assumed to corre-
spond to an intersection of the observations of (Pi) and (P j),
i.e., either Oi(t) =Oi(t′) or O j(t) =O j(t′) implies O(t) =O(t).
The proof of the combined security property follows easily
from the assumptions: Given a trace tr with S(tr) = (sli, sl j)
and an alternative secret pair (sl′i, sl′j) within B, we first

invoke (Pi) to obtain tr′ with Si(tr′) = sl′i, keeping sl j and T j
constant, and then invoke (P j) to obtain tr′′ with S j(tr′′) = sl′j,
keeping sli constant such that S(tr′′) = (sl′i, sl′j). The combined
observation O(tr) remains unchanged in every step.

This proof technique is applicable to arbitrary security
properties, as long as the above assumptions are satisfied (and
it is straightforward to lift it from pairs to tuples of multiple
security properties). We have instantiated it in our Isabelle
formalization for the above example in CoSMeDis: two posts
PIDi and PID j in arbitrary network nodes Auti and Aut j. In
order to satisfy the assumptions, we first had to strengthen
the observation power of the security property discussed in
the paper. In addition to the actions of observing users, we
declare all actions that potentially contribute to other secret
posts to be observable. This includes updating actions of other
posts, but also trigger-relevant actions, such as the creation
of friends of observers. The proof in Isabelle was automatic:
after extending the observation function, there were hardly any
changes necessary to the existing proof scripts. The original
proof strategy still worked. In order to instantiate the above
combination technique, it was necessary to add the (generic)
infrastructure for the technique itself and a few helper lemmas
for the concrete system, but the proofs were straightforward.

748

