
Verifying and Synthesizing Constant-Resource Implementations with Types

Van Chan Ngo Mario Dehesa-Azuara Matthew Fredrikson Jan Hoffmann

Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
Email: channgo@cmu.edu, mdehazu@gmail.com, mfredrik@cs.cmu.edu, jhoffmann@cmu.edu

Abstract—Side channel attacks have been used to extract
critical data such as encryption keys and confidential user data
in a variety of adversarial settings. In practice, this threat
is addressed by adhering to a constant-time programming
discipline, which imposes strict constraints on the way in which
programs are written. This introduces an additional hurdle for
programmers faced with the already difficult task of writing
secure code, highlighting the need for solutions that give the
same source-level guarantees while supporting more natural
programming models.

We propose a novel type system for verifying that pro-
grams correctly implement constant-resource behavior. Our
type system extends recent work on automatic amortized re-
source analysis (AARA), a set of techniques that automatically
derive provable upper bounds on the resource consumption of
programs. We devise new techniques that build on the potential
method to achieve compositionality, precision, and automation.

A strict global requirement that a program always maintains
constant resource usage is too restrictive for most practical
applications. It is sufficient to require that the program’s
resource behavior remain constant with respect to an attacker
who is only allowed to observe part of the program’s state
and behavior. To account for this, our type system incorporates
information flow tracking into its resource analysis. This allows
our system to certify programs that need to violate the constant-
time requirement in certain cases, as long as doing so does
not leak confidential information to attackers. We formalize
this guarantee by defining a new notion of resource-aware
noninterference, and prove that our system enforces it.

Finally, we show how our type inference algorithm can be
used to synthesize a constant-time implementation from one
that cannot be verified as secure, effectively repairing insecure
programs automatically. We also show how a second novel
AARA system that computes lower bounds on resource usage
can be used to derive quantitative bounds on the amount of
information that a program leaks through its resource use.
We implemented each of these systems in Resource Aware
ML, and show that it can be applied to verify constant-time
behavior in a number of applications including encryption
and decryption routines, database queries, and other resource-
aware functionality.

Keywords-Language-based security; timing channels; infor-
mation flow; resource analysis; static analysis

I. INTRODUCTION

Side-channel attacks extract sensitive information about a

program’s state through its observable use of resources such

as time, network, and memory. These attacks pose a realistic

threat to the security of systems in a range of settings, in

which the attacker has local access to the native host [1],

through multi-tenant virtualized environments [2], [3], or

remotely over the network [4]. Side channels have revealed

highly-sensitive data such as cryptographic keys [1], [4], [5],

[6], [7] and private user data [8], [9], [10], [11], [12].

These attacks are mounted by taking repeated measure-

ments of a program’s resource behavior, and comparing

the resulting observations against a model that relates the

program’s secret state to its resource usage. Unlike direct

information flow channels that operate over the input/output

semantics of a program, the conditions that give rise to

side channels are oftentimes subtle and therefore difficult

for programmers to identify and mitigate. This also poses

a challenge for automated tool support aimed at addressing

such problems—whereas direct information flow can be

described in terms of standard program semantics, a similar

precise treatment of side channels requires incorporating

the corresponding resource into the semantics and applying

quantitative reasoning.

This difficulty has led previous work in the area to treat

resource use indirectly, by reasoning about the flow of secret

information into branching control flow or other operations

that might affect resource use [13], [14], [15], [16]. These

approaches can limit the expressiveness of secure programs

and further complicate the development. For example, by

requiring programmers to write code using a “constant-time

discipline” that forbids the use of variables influenced by

secret state in statements that could affect the program’s

control path [13].

Verifiable constant-resource language: In this paper,

we present a novel type system that gives developers the

ability to certify that their code is secure against resource

side-channel attacks w.r.t. a high-level attack model, in which

the resource consumption of each language construct is

modeled by a constant. Our approach reduces constraints

on the expressiveness of programs that can be verified, and

does not introduce general stylistic guidelines that must

be followed in order to ensure constant-resource behavior.

Programmers write code in typical functional style and

annotate variables with standard types. Thus, it does not

degrade the readability of the code. At compile time, our

verifier performs a quantitative analysis to infer additional

type information that characterizes the resource usage. From

this, constant-resource behavior w.r.t. the high-level model

on all executions of the program is determined automatically.

The granularity with which our resource guarantees hold

against an attacker who can measure the total quantity of

2017 IEEE Symposium on Security and Privacy

© 2017, Van Chan Ngo. Under license to IEEE.

DOI 10.1109/SP.2017.53

710

consumed resources is roughly equivalent to what can be

obtained by adhering to a strict constant-time programming

discipline. The certified constant-resource programs prevent

side-channels that are inherent in implementing algorithms

w.r.t. the provided high-level attack model. For example, if the

resource under consideration is execution time, measured by

the number of language constructs executed by the program

(e.g., the total number of arithmetic operations, function

calls, etc.), then our system provides a defense against

attackers that can observe the same resource measure. To

have a stronger guarantee, e.g., against cache side channels,

our resource model could in principle incorporate memory-

access patterns and instruction caches. Other types of side

channels arising from low-level behaviors, such as branch

prediction or instructions whose resource usage is influenced

by argument values, require corresponding changes to the

resource model. Our technique does not currently model such

timing differences, so is not a defense against such attacks.

In general, requiring that a program always consumes

constant resources is too restrictive. In most settings, it

is sufficient to ensure that the resource behavior of a

program does not depend on selected confidential parts of the

program’s state. To account for this, our type system tracks

information flow using standard techniques, and uses this

information to reason about an adversary who can observe

and manipulate public state as well as resource usage through

public outputs. Intuitively, resource-aware noninterference—

the guarantee enforced by this type system—requires that

the parts of the program that are both affected by secret data

and can influence public outputs, can only make constant

use of resources.

To accomplish this without limiting expressiveness or

imposing stylistic requirements, the type system must be

allowed to freely switch between local and global reasoning.

One extreme would be to ignore the information flow of the

secret values and prove that the whole program has global

constant resource consumption. The other extreme would be

to ensure that every conditional that branches on a secret value

(critical conditionals) uses a constant amount of resources.

However, there are constant-resource programs in which

individual conditionals are not locally constant-resource (see

Section III). As a result, we allow different levels of global

and local reasoning in the type system to ensure that every

critical conditional occurs in a constant-resource block.

Finally, we show that our type-inference algorithm can be

used to automatically repair programs that make inappropriate

non-constant use of resources, by synthesizing constant-

resource ones whose input/output behavior is equivalent. To

this end, we introduce a consume expression that performs

resource padding. The amount of resource padding that is

needed is automatically determined by the type system and

is parametric in the values held by program variables. An

advantage of this technique over prior approaches [17], [18]

is that it does not change the worst-case resource behavior of

many programs. Of course, it would be possible to perform

this transformation by padding resource usage dynamically

at the end of the program execution, but this would require

instrumenting the program to track at runtime the actual

resource usage of the program.
Novel resource type systems: In order to verify constant

resource usage, as well as to produce quantitative upper and

lower-bounds on information leakage via resource behavior,

this work extends the theory behind automatic amortized

resource analysis (AARA) [19], [20], [21] to automatically

derive lower-bound and constant-resource proofs.
Previous AARA techniques are limited to deriving upper

bounds. To this end, the resource potential is used as an

affine quantity: it must be available to cover the cost of

the execution, but excess potential is simply discarded. We

show that if potential is treated as a linear resource, then

corresponding type derivations prove that programs have

constant resource consumption, i.e., the resource consumption

is independent of the execution path. Intuitively, this amounts

to requiring that all potential must be used to cover the cost

and that excess potential is not wasted. Furthermore, we

show that if potential is treated as a relevant resource then

we can derive lower bounds on the resource usage. Following

a similar intuition, this requires that all potential is used, but

the available potential does not need to be sufficient to cover

the remaining cost of the execution.
We implemented these type systems in Resource Aware

ML (RAML) [21], a language that supports user-defined data

types, higher-order functions, and other features common to

functional languages. Our type inference uses efficient LP

solving to characterize resource usage for general-purpose

programs in this language. We formalized soundness proofs

for these type systems, as well as the one of classic linear

AARA [19], in the proof assistant Agda. The soundness is

proved w.r.t. an operational cost semantics and, like the type

systems themselves, is parametric in the resource of interest.
Contributions: We make the following contributions:

• A security type system that incorporates our novel lower-

bound and constant-time type systems to prevent and

quantify leakage of secrets through resource side chan-

nels, as well as an LP-based method that automatically

transforms programs into constant-resource versions.

• An implementation of these systems that extends RAML.

We evaluate the implementation on several examples,

including encryption routines and data processing pro-

grams that were previously studied in the context of

timing leaks in differentially-private systems [8].

• A mechanization of the soundness proofs the two new

type systems and classic AARA for upper bounds in

Agda. To the best our knowledge, this is also the first

formalization of the soundness of linear AARA for

worst-case bounds.

Technical details including the complete proofs and inference

rules can be found on the RAML website [21].

711

II. LANGUAGE-LEVEL CONSTANT-RESOURCE PROGRAMS

In this section, we define our notion of a constant-resource

program. We start with an illustrative example: a login with a

username and password. During the login process, the secret

password with a high security level is compared with the

low-security user input, and the result is sent back to the user.

As a result, the pure noninterference property [22], [23] is

violated because data flows from high to low. Nevertheless,

such a program is often considered secure because it satisfies

the relaxed noninterference property [24], [25], [26].

Fig. 1 shows an implementation of the login process in

a monomorphically-typed purely-functional language. The

arguments h and l are lists of integers that are the bytes of the

password and the user input (characters of the hashes). The

function returns true if the input is valid and false otherwise.

This implementation is vulnerable against an attacker

who measures the execution time of the login function.

Because the function returns false immediately on finding

a mismatched pair of bytes, the resource usage depends

on the size of the longest matching prefix. Based on this

observation, the attacker can mount an efficient attack to

recover the correct password byte-by-byte. For example, if

we assume that there is no noise in the measurements, it

requires at most 256 = 28 calls to the function to reveal one

byte of the secret password. Thus, at most 256 ∗N runs are

needed to recover a secret password of N bytes. If noise is

added to the measurements then the number of necessary

guesses is increased but the attack remains feasible [1], [4].

One method to prevent this sort of attack is to develop a

constant-resource implementation of the compare function

that minimizes the information that an attacker can learn

from the resource-usage information. Ideally, the resource

usage should not be dependent on the content of the secret

password, which means it is constant for fixed sizes of all

public parameters.

Syntax and semantics: We use the purely-functional

first-order language defined in Fig. 2 to formally define

the notion of a language-level constant-time implementation.

The grammar is written using abstract binding trees [27].

However, equivalent expressions in OCaml syntax are used

for examples. The expressions are in let normal form,

meaning that they are formed from variables whenever it is

possible. It makes the typing rules and semantics simpler

without losing expressivity. The syntactic form share has to

be use to introduce multiple occurrences of a variable in an

expression. A value is a boolean constant, an integer value

n, the empty list nil , a list of values [v1, ..., vn], or a pair of

values (v1, v2). To reason about the resource consumption

of programs, we first define the operational cost semantics of

the language. It is standard big-step semantics instrumented

with a non-negative resource counter that is incremented

or decremented by a constant at every step. The semantics

is parametric in the cost that is used at each step and we

let rec compare(h,l) = match h with
| [] →match l with | [] →true

| y::ys →false
| x::xs →match l with
| [] →false
| y::ys →if (x = y) then compare(xs,ys)

else false

Figure 1. The list comparison function compare is not constant resource
w.r.t. h and l. This implementation is insecure against an attacker who
measures its resource usage.

T ::= unit | bool | int | L(T) | T ∗ T
G ::= T → T
e ::= () | true | false | n | x | op�(x1, x2) | app(f, x)
| if(x, et, ef) | let(x, e1, x.e2) | pair(x1, x2) | nil

| match(x, (x1, x2).e) | cons(x1, x2)
| match(x, e1, (x1, x2).e2) | share(x, (x1, x2).e)

v ::= () | true | false | n | nil | [v1, ..., vn] | (v1, v2)
� ∈ {+,−, ∗, div , mod ,=, <>,>,<, and , or }

Figure 2. Syntax of the language

call a particular set of such cost parameters a cost model.
The constants can be used to indicate the costs of storing

or loading a value in the memory, evaluating a primitive

operation, binding of a value in the environment, or branching

on a Boolean value. It is possible to further parameterize

some constants to obtain a more precise cost model. For

example, the cost of calling a function may vary according

to the number of the arguments. In the following, we will

show that the soundness of type systems does not rely on

any specific values for these constants. In the examples, we

use a cost model in which the constants are 0 for all steps

except for calls to the tick function where tick(q) means that

we have resource usage q ∈ Q. A negative number specifies

that resources (such as stack space) become available.

The cost semantics is formulated using an environment
E : VID → Val that is a finite mapping from a set of variable

identifiers to values. Evaluation judgements are of the form

E
q

q′ e ⇓ v where q, q′ ∈ Q+
0 . The intuitive meaning is

that under the environment E and q available resources, e
evaluates to the value v without running out of resources and

q′ resources are available after the evaluation. The evaluation

consumes δ = q − q′ resource units. Fig. 3 presents some

selected evaluation rules. In the rule E:FUN for function

applications, eg is an expression defining the function’s body

and xg is the argument.

Constant-resource programs: Let Γ : VID → T be a

context that maps variable identifiers to base types T . We

write |= v : T to denote that v is a well-formed value of type

T . The typing rules for values are standard [19], [20], [28]

and we omit them here. An environment E is well-formed
w.r.t. Γ, denoted |= E : Γ, if ∀x ∈ dom(Γ). |= E(x) : Γ(x).
Below we define the notation of size equivalence, written

712

(E:BIN)

v = E(x1) � E(x2)
E

q +K
op

q op�(x1, x2) ⇓ v

(E:FUN)

E[xg �→ E(x)]
q

q
′ eg ⇓ v

E
q +K

app

q
′ app(g, x) ⇓ v

(E:LET)

E
q −K

let

q
′
1

e1 ⇓ v1 E[x �→ v1]
q
′
1

q
′ e2 ⇓ v

E
q

q
′ let(x, e1, x.e2) ⇓ v

(E:VAR)

x ∈ dom(E)

E
q +K

var

q x ⇓ E(x)

(E:IF-TRUE)

E(x) = true E
q −K

cond

q
′ et ⇓ v

E
q

q
′ if(x, et, ef) ⇓ v

(E:MATCH-L)

E(x) = [v1, ..., vn]

E[xh �→ v1, xt �→ [v2, ..., vn]]
q −K

matchL

q
′ e2 ⇓ v

E
q

q
′ match(x, e1, (xh, xt).e2) ⇓ v

Figure 3. Selected evaluation rules of the operational cost semantics

let rec p_compare(h,l) =
let rec aux(r,h,l) = match h with
| [] →match l with | [] →tick(1.0); r

| y::ys →tick(1.0); false
| x::xs →match l with
| [] →tick(1.0); false
| y::ys →if (x = y) then

tick(5.0); aux(r,xs,ys)
else tick(5.0); aux(false,xs,ys)

in aux(true,h,l)

Figure 4. The manually padded function p compare is constant resource
w.r.t. h and l. However, it is not constant resource w.r.t. only h.

|v| ≈ |u|, which is a binary relation relating two values of

the same type.

|= v : T |= u : T T ∈ {unit, bool, int}
|v| ≈ |u|

|v1| ≈ |u1| |v2| ≈ |u2|
|(v1, v2)| ≈ |(u1, u2)|

m = n |vi| ≈ |ui|
|[v1, ...vn]| ≈ |[u1, ...um]|

Informally, a program is constant resource if it has the

same quantitative resource consumption under all environ-

ments in which values have the same sizes. Let X ⊆ dom(Γ)
be a set of variables and E1, E2 be two well-formed

environments. Then E1 and E2 are size-equivalent w.r.t.

X , denoted E1 ≈X E2, when they agree on the sizes of the

variables in X , that is, ∀x ∈ X.|E1(x)| ≈ |E2(x)|.
Definition 1. An expression e is constant resource w.r.t.
X ⊆ dom(Γ), written constX(e), if for all well-formed
environments E1 and E2 such that E1 ≈X E2, the following
statement holds.

If E1
p1

p′
1

e ⇓ v1 and E2
p2

p′
2

e ⇓ v2 then p1−p′1 = p2−p′2
We say that a function g(x1, . . . , xn) is constant resource

w.r.t. X if constX(eg) where eg is the expression defining

the function body. We have the following lemma.

Lemma 1. For all e, X , and Y ⊆ X , if constY (e) then
constX(e).

Example. The function p compare in Fig. 4 is a manually
padded version of compare, in which the cost model is
defined using tick annotations. It is constant resource
w.r.t. h and l. However, it is not constant resource
w.r.t. h. For instance, p compare([1;2;3],[0;1;2]) has cost
16 but p compare([1;2;1],[0;1]) has cost 12 �= 16. If
the nil case of the second match on l is padded with
tick(5.0); aux(false,xs,[]) then the function is constant re-
source w.r.t. h.

Intuitively, this implementation is constant w.r.t. the given

cost model for fixed sizes of all public parameters, e.g., the

lengths of argument lists. However, it might be not constant

resource at a lower level, e.g., machine code on modern

hardware, because the cost model does not precisely capture

the resource consumption of the instructions executed on the

hardware. Moreover, the compilation process can interfere

with the resource behavior. It may introduce a different type

of leakage that could reveal the secret data on the lower level.

For instance, memory accesses would allow an attacker with

access to the full trace of memory addresses accessed to infer

the content of the password. This leakage can be exploited via

cache-timing attacks [29], [30]. In addition, in some modern

processors, execution time of arithmetic operations may vary

depending on the values of their operands and the execution

time of conditionals is affected by branch prediction.

III. A RESOURCE-AWARE SECURITY TYPE SYSTEM

In this section we introduce a new type system that

enforces resource-aware noninterference to prevent the

leakage of information in high-security variables through

low-security channels. In addition to preventing leakage over

the usual input/output information flow channels, our system

incorporates the constant-resource type system discussed

in Section IV to ensure that leakage does not occur over

resource side channels.

The notion of security addressed by our type system

considers an attacker who wishes to learn information about

secret data by making observations of the program’s public

outputs and resource usage. We assume an attacker who is

able to control the value of any variable she is capable of

observing, and thus to influence the program’s behavior and

713

resource consumption. However, in our model the attacker

can only observe the program’s total resource usage upon

termination, and cannot distinguish between intermediate

states or between terminating and non-terminating executions.

A. Security types

To distinguish parts of the program under the attacker’s

control from those that remain secret, we annotate types with

labels ranging over a lattice (L ,�,,⊥). The elements of

L correspond to security levels partially-ordered by � with

a unique bottom element ⊥. The corresponding basic security

types take the form:

k ∈ L
S ::= (unit, k) | (bool, k) | (int, k) | (L(S), k) | S ∗ S

A security context Γs is a partial mapping from variable

identifiers and the program counter pc to security types. The

context assigns a type (unit, k) to pc to track information that

may propagate through control flow as a result of branching

statements. The security type for lists contains a label L(S)
for the elements, as well as a label k for the list’s length.

As in other information flow type systems, the partial order

k � k′ indicates that the class k′ is at least as restrictive

as k, i.e., k is allowed to flow to k′. We assume a non-

trivial security lattice that contains at least two labels: � (low

security) and h (high security), with � � h. Following the

convention defined in FlowCaml [31], we also make use of

a guard relation k � S, which denotes that all of the labels

appearing in S are at least as restrictive as k. The definition

is given in Figure 5 along with its dual notion S � k, called

the collecting relation, and the standard subtyping relation

S1 ≤ S2.

To refer to sets of variables by security class, we write

[Γs]�k to denote the set of variable identifiers x in the domain

of Γs such that Γs(x) � k, and define k�[Γ
s] similarly. This

gives us the set of variables upper- and lower-bounded by k,

respectively. Conversely, we define [Γs] ��k = {x ∈ dom(Γs) :
Γs(x) �� k}, the set of variables more restrictive than k. To

refer to the set of variables strictly bounded below by k1 and

above by k2, we write k1�[Γ
s]�k2

. Given two well-formed

environments E1 and E2, we say that they are k-equivalent
w.r.t Γs if they agree on all variables with label at most k:

E1 ≡k E2 ⇔ ∀x ∈ [Γs]�k.E1(x) = E2(x)

This relation captures the attacker’s observational equivalence
between the two environments. The first-order security types

take the following form. The annotation pc indicates the

security level of the program counter, i.e., a lower-bound on

the label of any observer who is allowed to learn that a given

function has been invoked. The const annotation denotes that

the function body respects resource-aware noninterference.

pc ∈ L F s ::= S1
pc/const−−−−→ S2 | S1 pc−→ S2

k � k′ T ∈ Atoms

k � (T, k′)
k � k′ k � S

k � (L(S), k′)
k � S1 k � S2

k � S1 ∗ S2

k′ � k T ∈ Atoms

(T, k′) � k

k′ � k S � k

(L(S), k′) � k

S1 � k S2 � k

S1 ∗ S2 � k

k�k′ T∈Atoms

(T, k) ≤ (T, k′)
k�k′ S≤S′

(L(S), k)≤(L(S′), k′)
S1≤S′1 S2≤S′2
S1∗S2≤S′1∗S′2

Figure 5. Guards, collecting security labels, and subtyping (Atoms =
{unit, int, bool})

A security signature Σs : FID → ℘(F s) \ {∅} is a finite

partial mapping from a set of function identifiers to a non-
empty sets of first-order security types.

B. Resource-aware noninterference

We consider an adversary associated with label k1 ∈ L ,

who can observe and control variables in [Γs]�k1
. Intuitively,

we say that a program P satisfies resource-aware nonin-

terference at level (k1, k2) w.r.t Γs, where k1 � k2, if 1)
the behavior of P does not leak any information about the

contents of variables more sensitive than k1, and 2) does not

leak any information about the contents or sizes of variables

more sensitive than k2. The definition follows.

Definition 2. Let E1 and E2 be two well-formed environ-
ments and Γs be a security context sharing their domain.
An expression e satisfies resource-aware noninterference at
level (k1, k2) for k1 � k2, if whenever E1 and E2 are:

1) observationally equivalent at k1: E1 ≡k1 E2,
2) size equivalent w.r.t. k1�[Γ

s]�k2
: E1 ≈k1�[Γs]�k2

E2

then it follows from E1
p1

p′
1

e ⇓ v1 and E2
p2

p′
2

e ⇓ v2 that
v1 = v2 and p1 − p′1 = p2 − p′2.

The final condition in Defintion 2 ensures two properties.

First, requiring that v1 = v2 provides noninterference [22],

given that E1 and E2 are observationally equivalent. Second,

the requirement p1−p′1 = p2−p′2 ensures that the program’s

resource consumption will remain constant w.r.t changes in

variables from the set [Γs] ��k1 . This establishes noninterfer-

ence w.r.t the program’s final resource consumption, and thus

prevents the leakage of secret information.

Before moving on, we point out an important subtlety in

this definition. We require that all variables in k1�[Γ
s]�k2

begin with equivalent sizes, but not those in k2�[Γ
s]. By

fixing this quantity in the initial environments, we assume

that an attacker is able to control and observe it, so it is

not protected by the definition. This effectively establishes

three classes of variables, i.e., those whose size and content

are observable to the k1-adversary, those whose size (but

not content) is observable, and those whose size and content

remain secret. In the remainder of the text, we will simplify

714

the technical development by assuming that the third and

most-restrictive class is empty, and that all of the secret

variables reside in k1�[Γ
s]�k2 .

C. Proving resource-aware noninterference

There are two extreme ways of proving resource-aware

noninterference. Assume we already have established classic

noninterference, the first way is to additionally prove constant-

resource usage globally by forgetting the security labels and

showing that the program has constant-resource usage. This

is a sound approach but it requires us to reason about parts

of the programs that are not affected by secret data. It would

therefore result in the rejection of programs that have the

resource-aware noninterference property but are not constant

resource. The second way is to prove constant resource usage

locally by ensuring that every conditional that branches on

secret values is constant time. However, this local approach

is problematic because it is not compositional. Consider the

following examples where rev is the reverse function.

let f1(b,x) =
let z = if b then x else [] in rev z

let f2(b,x,y) =
let z = if b then let _ = rev y in x

else let _ = rev x in y in rev z

If we assume a cost model in which we count the number

of function calls then the cost of rev(x) is |x|. So rev is

constant resource w.r.t. its argument. Moreover, the expression

if b then x else [] is constant resource. However, f1 is not

constant resource. In contrast, the conditional in f2 is not

constant resource. But f2 is a constant-resource function. The

function f2 can be automatically analyzed with the constant-

resource type system from Section IV while f1 is correctly

rejected.

The idea of our type system for resource-aware noninter-

ference is to allow both global and local reasoning about

resource consumption as well as arbitrary intermediate levels.

We ensure that every expression that is typed in a high
security context is part of a constant-resource expression.
In this way, we get the benefits of local reasoning without

losing compositionality.

D. Typing rules and soundness

We combine our type system for constant resource usage

with a standard information flow type system which based on

FlowCaml [32]. The interface between the two type systems

is relatively light and the idea is applicable to other cost-

analysis methods as well as other security type systems.

In the type judgement, an expression is typed under a type

context Γs and a label pc. The pc label can be considered an

upper bound on the security labels of all values that affect

the control flow of the expression and a lower bound on the

labels of the function’s effects [32]. As mentioned earlier,

we will simplify the technical development by assuming

that the third and most-restrictive class is empty, that is,

the typing rules here guarantee that well-typed expressions

provably satisfy the resource-aware noninterference property

w.r.t. changes in variables from the set [Γs] ��k1 , say X . We

define two type judgements of the form

pc; Σs; Γs const
e : S and pc; Σs; Γs e : S .

The judgement with the const annotation states that under a

security configuration given by Γs and the label pc, e has type

S and it satisfies resource-ware noninterference w.r.t. changes

in variables from X . The second judgement indicates that

e satisfies the noninterference property but does not make

any guarantees about resource-based side channels. Selected

typing rules are given in Fig. 6. We implicitly assume that the

security types and the resource-annotated counterparts have

the same base types. We write [const] to denote it is optional,

and constX(e) if e is well-typed in the constant-resource

type system w.r.t. X (i.e., Σr; Γr q

q′ e : A, � (A | A,A),
and ∀x ∈ dom(Γr) \X. �(Γr(x) | Γr(x),Γr(x))). We will

discuss the constant-resource type system in Section IV.

Note that the standard information flow typing rules [33],

[32] can be obtained by removing the const annotations

from all judgements. Consider for instance the rule SR:IF

for conditional expressions. By executing the true or false

branches, an adversary could gain information about the

conditional value whose security label is kx. Therefore, the

conditional expression must be type-checked under a security

assumption at least as restrictive as pc and kx. This is a

standard requirement in any information flow type system.

In the following, we will focus on explaining how the rules

restrict the observable resource usage instead of these classic

noninterference aspects.

The most interesting rules are SR:C-GEN and the rules

for let and if expressions, which block leakage over resource

usage when branching on high security data. SR:C-GEN

allows us to globally reason about constant resource usage

for an arbitrary subexpression that has the noninterference

property. For example, we can apply SR:IF, the standard rule

for conditionals, first and then SR:C-GEN to prove that its

super-expression is constant resource. Alternatively, we can

use rules such as SR:L-IF and SR:L-LET to locally reason

about resource use. The rule SR:L-LET reflects the fact that

if both e1 and e2 have the resource-aware noninterference

property and the size of x only depends on low security data

then let(x, e1, x.e2) respects resource-aware noninterference.

The reasoning is similar for SR:L-IF where we require that

the variable x does not depend on high security data.

Leaf expressions such as op�(x1, x2) and cons(xh, xt)
have constant resource usage. Thus their judgements are

always associated with the qualifier const as shown in the

rule SR:B-OP. The rule SR:C-FUN states that if a function’s

body has the resource-aware noninterference property then the

function application has the resource-aware noninterference

property too. If the argument’s label is low security data,

bounded below by k1, then the function application has the

715

(SR:GEN)

pc; Σs; Γs const
e : S

pc; Σs; Γs � e : S

(SR:C-GEN)
pc; Σs; Γs � e : S constX(e)

pc; Σs; Γs const
e : S

(SR:SUBTYPING)

pc; Σs; Γs [const]
e : S S ≤ S′

pc; Σs; Γs [const]
e : S′

(SR:FUN)

Σs(f) = S1
pc′−→ S2

x : S1 ∈ Γs
pc � pc

′

pc; Σs; Γs � app(f, x) : S2

(SR:L-ARG)

x : S1 ∈ Γs Σs(f) = S1
pc′−→ S2

pc � pc
′ S1 � k1

pc; Σs; Γs const
app(f, x) : S2

(SR:C-FUN)

Σs(f) = S1
pc′/const−−−−−→ S2

x : S1 ∈ Γs
pc � pc

′

pc; Σs; Γs const
app(f, x) : S2

(SR:IF)
x : (bool, kx) ∈ Γs

pc � kx; Σ
s; Γs � et : S

pc � kx; Σ
s; Γs � ef : S pc � kx � S

pc; Σs; Γs � if(x, et, ef) : S

(SR:L-IF)

pc � kx; Σ
s; Γs const

et : S pc � kx; Σ
s; Γs const

ef : S
x : (bool, kx) ∈ Γs

pc � kx � S kx � k1

pc; Σs; Γs const
if(x, et, ef) : S

(SR:LET)
pc; Σs; Γs � e1 : S1 pc; Σs; Γs, x : S1 � e2 : S2

pc; Σs; Γs � let(x, e1, x.e2) : S2

(SR:L-LET)

pc; Σs; Γs const
e1 : S1 S1 � k1

pc; Σs; Γs, x : S1

const
e2 : S2

pc; Σs; Γs const
let(x, e1, x.e2) : S2

(SR:C-MATCH-L)

x : (L(S), kx) ∈ Γs
pc � kx; Σ

s; Γs const
e1 : S1

pc � kx; Σ
s; Γs, xh : S, xt : (L(S), kx)

const
e2 : S1 pc � kx � S1

pc; Σs; Γs const
match(x, e1, (xh, xt).e2) : S1

Figure 6. Selected security typing rules

resource-aware noninterference property since the value of

the argument is always the same under any k-equivalent

environments. It is reflected by rule SR:L-ARG.

Example. Recall the functions compare and p compare in
Fig. 1. Suppose the content of the first list is secret and the
length is public. Thus it has type (L(int, h), �). While the
second list controlled by adversaries is public, hence it has
type (L(int, �), �). Assume that the pc label is � and [Γs] ��k1

= [Γs] ���. The return value’s label depends on the content of
the elements of the first list whose label is h. Thus it must
be assigned the label h to make the functions well-typed.

compare : ((L(int, h), �), (L(int, �), �)) �−→ (bool, h)

p compare : ((L(int, h), �), (L(int, �), �))
�/const−−−−→ (bool, h)

Here, both functions satisfy the noninterference property at
security label �. However, only p compare is a resource-
aware noninterference function w.r.t. [Γs] ���, or the secret
list.

Example. Consider the following function cond rev in which
rev is the standard reverse function.

let cond_rev(l1,l2,b1,b2) = if b1 then
let r = if b2 then rev l1; l2
else rev l2; l1 in rev r; () else ()

Assume that l1, l2, b1 and b2 have types (L(int, h), �),
(L(int, h), �), (bool, �), and (bool, h), respectively. Given
the rev function is constant w.r.t. the argument, the inner
conditional does not satisfy resource-aware noninterference.
However, the let expression satisfies resource-aware non-
interference w.r.t. [Γs] ��� = {l1, l2, b2}. We can derive this

by applying the rule SR:C-GEN. By the rule SR:L-IF, the
outer conditional on low security data satisfies resource-
aware noninterference w.r.t. {l1, l2, b2} at level �. We derive
the following type.

cond rev : ((L(int, h), �), (L(int, h), �), (bool, �), (bool, h))
�/const−−−−→ (unit, �)

We now prove the soundness of the type system w.r.t. the

resource-aware noninterference property. It states that if e is

a well-typed expression with the const annotation then e is

a resource-aware noninterference expression at level k1.

The following two lemmas are needed in the soundness

proof. The first lemma states that the type system satisfies

the standard simple security property [34] and the second

shows that the type system prove classic noninterference.

Lemma 2. Let pc; Σs; Γs � e : S or pc; Σs; Γs const
e : S.

For all variables x in e, if S � k1 then Γs(x) � k1.

Lemma 3. Let pc; Σs; Γs � e : S or pc; Σs; Γs const
e : S,

E1 � e ⇓ v1, E2 � e ⇓ v2, and E1 ≡k1
E2. Then v1 = v2 if

S � k1.

Theorem 1. If |= E : Γs, E � e ⇓ v, and
pc; Σs; Γs const

e : S then e is a resource-aware nonin-
terference expression at k1.

Proof: The proof is done by induction on the structure

of the typing derivation and the evaluation derivation. Let X
be the set of variables [Γs] ��k1 . For all environments E1, E2
such that E1 ≈X E2 and E1 ≡k1 E2, if E1

p1

p′
1

e ⇓ v1 and

E2
p2

p′
2

e ⇓ v2. We then show that p1 − p′1 = p2 − p′2 and

716

v1 = v2 if S � k1. We illustrate one case of the conditional

expression. Suppose e is of the form if(x, et, ef), thus the

typing derivation ends with an application of either the rule

SR:L-IF or SR:C-GEN. By Lemma 3, if S � k1 then

v1 = v2.
• Case SR:L-IF. By the hypothesis we have E1(x) =

E2(x). Assume that E1(x) = E2(x) = true , by the

evaluation rule E:IF-TRUE, E1
p1 −K cond

p′
1

et ⇓ v1 and

E2
p2 −K cond

p′
2

et ⇓ v2. By induction for et we have

p1 − p′1 = p2 − p′2. It is similar for E1(x) = E2(x) =
false .

• Case SR:C-GEN. Since E1 ≈X E2 w.r.t. Γs, we

have E1 ≈X E2 w.r.t. Γr. By the hypothesis we have

constX(e). Thus by Theorem 3, it follows p1 − p′1 =
p2 − p′2.

IV. TYPE SYSTEMS FOR LOWER BOUNDS AND CONSTANT

RESOURCE USAGE

We now discuss how to automatically and statically verify

constant resource usage, upper bounds, and lower bounds. For

upper bounds we rely on existing work on automatic amor-

tized resource analysis [19], [21]. This technique is based

on an affine type system. For constant resource usage and

lower bounds we introduce two new sub-structural resource-

annotated type systems: The type system for constant resource

usage is linear and the one for lower bounds is relevant.

A. Background

Amortized analysis: To statically analyze a program

with the potential method [35], a mapping from program

points to potentials must be established. One has to show

that the potential at every program point suffices to cover

the cost of any possible evaluation step and the potential of

the next program point. The initial potential is then an upper

bound on the resource usage of the program.

Linear potential for upper bounds: To automate amor-

tized analysis, we fix a format of the potential functions

and use LP solving to find the optimal coefficients. To infer

linear potential functions, inductive data types are annotated

with a non-negative rational numbers q [19]. For example,

the type Lq(bool) of Boolean lists with potential q defines

potential q·n, where n is the number of list’s elements.

This idea is best explained by example. Consider the

function filter succ below that filters out positive numbers

and increments non-positive numbers. As in RAML, we

use OCaml syntax and tick commands to specify resource

usage. If we filter out a number then we have a high cost (8
resource units) since x is, e.g., sent to an external device. If x
is incremented we have a lower cost of 3 resource units. As a

result, the worst-case resource consumption of filter succ(�)
is 8|�|+1 (where 1 is for the cost that occurs in the nil case

of the match). The function fs twice(�) applies filter succ
twice, to � and to the result of filter succ(�). The worst-case

let rec filter_succ(l) =
match l with
| [] →tick(1.0); []
| x::xs →if x > 0 then

tick(8.0); filter_succ(xs)
else tick(3.0); (x+1)::filter_succ(xs)

let fs_twice(l) =
filter_succ(filter_succ(l))

Figure 7. Two OCaml functions with linear resource usage. The worst-case
number of ticks executed by fitler succ(�) and fs twice(�) is 8|�|+ 1 and
11|�|+ 2 respectively. In the best-case the functions execute 3|�|+ 1 and
6|�|+ 2 ticks, respectively. The resource consumption is not constant.

behavior appears if no list element is filtered out in the first

call and all elements are filtered out in the second call. The

worst-case behavior is thus 11|�|+ 2. These upper bounds

can be expressed with the following annotated function types,

which can be derived using local type rules in Fig. 8.

filter succ : L8(int)
1/0−−→ L0(int)

fs twice : L11(int)
2/0−−→ L0(int)

Intuitively, the first function type states that an initial potential

of 8|�|+1 is sufficient to cover the cost of filter succ(�) and

there is 0|�′|+ 0 potential left where �′ is the result of the

computation. This is just one possible potential annotation of

many. The right choice of the potential annotation depends on

the use of the function result. For example, for the inner call

of filter succ in fs twice we need the following annotation.

filter succ : L11(int)
2/1−−→ L8(int)

It states that the initial potential of 11|�|+ 2 is sufficient to

cover the cost of filter succ(�) and there is 8|�′|+1 potential

left to be assigned to the returned list �′. The potential of the

result can then be used with the previous type of filter succ
to pay for the cost of the outer call.

filter succ : Lp(int)
q/q′−−→ Lr(int) | q ≥ q′+1 ∧ p ≥ 8

∧ p ≥ 3+r

We can summarize all possible types of filter succ with a

linear constraint system. In the type inference, we generate

such a constraint system and solve it with an off-the-shelf LP

solver. To obtain tight bounds, we perform a whole-program

analysis and minimize the coefficients in the input potential.

Surprisingly, this approach—as well as the new con-

cepts we introduce here—can be extended to polynomial

bounds [36], higher-order functions [37], [21], polymor-

phism [38], and user-defined inductive types [38], [21].

B. Resource annotations

The resource-annotated types are base types in which the

inductive data types are annotated with non-negative rational

numbers, called resource annotations.

A ::= unit | bool | int | Lp(A) | A ∗A (for p ∈ Q+
0)

717

A type context, Γr : VID → A , is a partial mapping

from variable identifiers to resource-annotated types. The

underlying base type and context denoted by Â, and Γ̂r

respectively can be obtained by removing the annotations.

We extend all definitions such as |v|, |= E : Γ and ≈ for

base data types to resource-annotated data types by ignoring

the annotations.

We now formally define the notation of potential. The

potential of a value v of type A, written Φ(v : A), is defined

by the function Φ : Val → Q+
0 as follows.

Φ(() : unit) = Φ(b : bool) = Φ(n : int) = 0
Φ((v1, v2) : A1 ∗A2) = Φ(v1 : A1) + Φ(v2 : A2)
Φ([v1, · · · , vn] : Lp(A)) = n·p+Σn

i=1Φ(vi : A)

Example. The potential of a list v = [b1, · · · , bn] of
type Lp(bool) is n·p. Similarly, a list of lists of Booleans
v = [v1, · · · , vn] of type Lp(Lq(bool)), where vi =
[bi1, · · · , bimi

], has the potential n·p+ (m1 + · · ·+mn)·q.

Let Γr be a context and E be a well-formed environment

w.r.t. Γr. The potential of X ⊆ dom(Γr) under E is defined

as ΦE(X : Γr) = Σx∈XΦ(E(x) : Γr(x)). The potential of

Γr is ΦE(Γ
r) = ΦE(dom(Γr) : Γr). Note that if x �∈ X

then ΦE(X : Γr) = ΦE[x �→v](X : Γr). The following lemma

states that the potential is the same under two well-formed

size-equivalent environments.

Lemma 4. If E1 ≈X E2 then ΦE1
(X : Γr) = ΦE2

(X : Γr).

Annotated first-order data types are given as follows, where

q and q′ are rational numbers.

F ::= A1
q/q′−−→ A2

A resource-annotated signature Σr : FID → ℘(F) \ {∅}
is a partial mapping from function identifiers to a non-empty

sets of annotated first-order types. That means a function

can have different resource annotations depending on the

context. The underlying base types are denoted by F̂ . And the

underlying base signature is denoted by Σ̂r where Σ̂r(f) =

Σ̂r(f).

C. Type system for constant resource consumption

The typing rules of the constant-resource type system

define judgements of the form:

Σr; Γr q

q′ e : A

where e is an expression and q, q′ ∈ Q+
0 . The intended

meaning is that in the environment E, q +ΦE(Γ
r) resource

units are sufficient to evaluate e to a value v with type A
and there are exactly q′ +Φ(v : A) resource units left over.

The typing rules form a linear type system. It ensures that

every variable is used exactly once by allowing exchange

but not weakening or contraction [39]. The rules can be

organized into syntax directed and structural rules.

Syntax-directed rules: The syntax-directed rules are

shared among all type systems and selected rules are

listed in Fig. 8. Rules like A:VAR and A:B-OP for leaf

expressions (e.g., variable, binary operations, pairs) have

fixed costs as specified by the constants Kx. Note that we

require all available potential to be spent. The cost of the

function call is represented by the constant K app in the

rule A:FUN and the argument carries the potential to pay

for the function execution. In the rule A:LET, the cost of

binding is represented by the constant K let . The potentials

carried by the contexts Γr
1 and Γr

2 are passed sequentially

through the sub derivations. Note that the contexts are

disjoint since our type system is linear. Multiple uses of

variables must be introduced through the rule A:SHARE.

Thus, the context split is deterministic. The rule A:IF is

the key rule for ensuring constant resource usage. By using

the same context Γr for typing both et and ef , we ensure

that the conditional expression has the same resource usage

in size-equivalent environments independent of the value

of the Boolean variable x. The rules for inductive data

types are crucial for the interaction of the linear potential

annotations with the constant potential, in which A:CONS

shows how constant potential can be associated with a new

data structure. The dual is A:MATCH-L, which shows how

potential associated with data can be released. It is important

that these transitions are made in a linear fashion: potential

is neither lost or gained.
Sharing relation:

A ∈ {unit, bool, int}
�(A | A,A)

�(A | A1, A2) �(B | B1, B2)

�(A ∗B | A1 ∗B1, A2 ∗B2)

�(A | A1, A2) p = p1 + p2

�(Lp(A) | Lp1(A1), L
p2(A2))

The share expression makes multiple uses of a variable

explicit. While multiple uses of a variable seem to be in

conflict with the linear type discipline, the sharing relation
� (A | A1, A2) ensures that potential is treated in a linear

way. It apportions potential to ensure that the total potential

associated with all uses is equal to the potential initially

associated with the variable. This relation is only defined

for structurally-identical types which differ in at most the

resource annotations.

Structural rules: To allow more programs to be typed

we add two structural rules to the type system which can be

applied to every expression. These rules are specific to the

the constant-resource type system.

(C:WEAKENING)

Σr; Γr q

q
′ e : B �(A | A,A)

Σr; Γr, x : A
q

q
′ e : B

(C:RELAX)

Σr; Γr p

p
′ e : A

q ≥ p q − p = q′ − p′

Σr; Γr q

q
′ e : A

The rule C:RELAX reflects the fact that if it is sufficient

to evaluate e with p available resource units and there are p′

resource units left over then e can be evaluated with p+ c

718

(A:VAR)

Σr;x : A
K

var

0 x : A

(A:B-OP)

 ∈ { and , or }

Σr;x1 : bool, x2 : bool
K

op

0 op�(x1, x2) : bool

(A:FUN)

Σr(f) = A1
q/q′−−−→ A2

Σr;x : A1

q+K
app

q
′ app(f, x) : A2

(A:LET)

Σr; Γr
1

q−K
let

q
′
1

e1 : A1 Σr; Γr
2, x : A1

q
′
1

q
′ e2 : A2

Σr; Γr
1,Γ

r
2

q

q
′ let(x, e1, x.e2) : A2

(A:IF)

Σr; Γr q −K
cond

q
′ et : A Σr; Γr q −K

cond

q
′ ef : A

Σr; Γr, x : bool
q

q
′ if(x, et, ef) : A

(A:MATCH-L)

Σr; Γr q −K
matchN

q
′ e1 : A1 Σr; Γr, xh : A, xt : L

p(A)
q + p−K

matchL

q
′ e2 : A1

Σr; Γr, x : Lp(A)
q

q
′ match(x, e1, (xh, xt).e2) : A1

(A:CONS)

Σr;xh : A, xt : L
p(A)

p+K
cons

0 cons(xh, xt) : L
p(A)

(A:SHARE)

Σr; Γr, x1 : A1, x2 : A2

q

q
′ e : B �(A | A1, A2)

Σr; Γr, x : A
q

q
′ share(x, (x1, x2).e) : B

Figure 8. Selected syntax-directed rules of the resource type systems. They are shared among all type systems.

resource units and there are exactly p′ + c resource units

left over, where c ∈ Q+
0 . Rule C:WEAKENING states that

an extra variable can be added into the given context if its

potential is zero. The condition is enforced by �(A | A,A)
since Φ(v : A) = Φ(v : A) + Φ(v : A) or Φ(v : A) = 0.

These rules can be used in branchings such as the conditional

or the pattern match to ensure that subexpressions are typed

using the same contexts and potential annotations.

Example. Consider again the function p compare in Fig. 4
in which the nil case of the second matching on l is padded
with tick(5.0); aux(false,xs,[]) and the resource consumption
is defined using tick annotations. The resource usage of
p compare(h, �) is constant w.r.t. h, that is, it is exactly
5|h|+ 1. This is reflected by the following type.

p compare : (L5(int), L0(int))
1/0−−→ bool

It can be understood as follows. If the input list h carries
5 potential units per element then it is sufficient to cover
the cost of p compare(h, �), no potential is wasted, and 0
potential is left.

Soundness: That soundness theorem states that if e is

well-typed in the resource type system and evaluates to a

value v then the difference between the initial and the final

potential is the net resources usage. Moreover, if the potential

annotations of the return value and all variables not belonging

to a set X ⊆ dom(Γr) are zero then e is constant-resource

w.r.t. X .

Theorem 2. If |= E : Γr, E � e ⇓ v, and Σr; Γr q

q′ e : A,
then for all p, r ∈ Q+

0 such that p = q +ΦE(Γ
r) + r, there

exists p′ ∈ Q+
0 satisfying E

p

p′ e ⇓ v and p′ = q′ + Φ(v :
A) + r.

Proof: The proof proceeds by a nested induction on the

derivation of the evaluation judgement and the typing judge-

ment, in which the derivation of the evaluation judgement

takes priority over the typing derivation. We need to induct

on both, evaluation and typing derivation. An induction on

only the typing derivation would fail for the case of function

application, which increases the size of the typing derivation,

while the size of the evaluation derivation does not increase.

An induction on only the evaluation judgement would fail

because of structural rules such as C:WEAKENING. If such a

rule is the final step in the derivation then the size of typing

derivation decreases while the length of evaluation derivation

is unchanged. The additional constant r is needed to make

the induction case for the let rule work.

Theorem 3. If |= E : Γr, E � e ⇓ v, Σr; Γr q

q′ e : A, �

(A | A,A), and ∀x ∈ dom(Γr)\X. �(Γr(x) | Γr(x),Γr(x))
then e is constant resource w.r.t. X ⊆ dom(Γr).

D. Type system for upper bounds

If we treat potential as an affine resource then we arrive

at the original amortized analysis for upper bounds [19]. To

this end, we allow unrestricted weakening and a relax rule

in which we can waste potential.

(U:RELAX)

Σr; Γr p

p
′ e : A q ≥ p

q − p ≥ q′ − p′

Σr; Γr q

q
′ e : A

(U:WEAKENING)

Σr; Γr q

q
′ e : B

Σr; Γr, x : A
q

q
′ e : B

Additionally, we can use subtyping to waste linear poten-

tial [19]. (See the dual definition for subtyping for lower

bounds below.) Similarly to Theorem 2, we can prove the

following theorem.

719

Theorem 4. If |= E : Γr, E � e ⇓ v, and Σr; Γr q

q′ e : A,
then for all p, r ∈ Q+

0 such that p ≥ q +ΦE(Γ
r) + r, there

exists p′ ∈ Q+
0 satisfying E

p

p′ e ⇓ v and p′ ≥ q′ + Φ(v :
A) + r.

E. Type system for lower bounds

The type judgements for lower bounds have the same form

and data types as the type judgements for constant resource

usage and upper bounds. However, the intended meaning

of the judgement Σr; Γr q

q′ e : A is the following. Under

given environment E, less than q + ΦE(Γ) resource units

are not sufficient to evaluate e to a value v so that more than

q′ +Φ(v : A) resource units are left over.

The syntax-directed typing rules are the same as the rules

in the constant-resource type system as given in Fig. 8. In

addition, we have the structural rules in Fig. 9. The rule

L:RELAX is dual to U:RELAX. In L:RELAX, potential is

treated as a relevant resource: We are not allowed to waste

potential but we can create potential out of the blue if we

ensure that we either use it or pass it to the result. The
same idea is formalized for the linear potential with the sub-

typing rules L:SUBTYPE and L:SUPERTYPE. The sub-typing

relation is defined as follows.

A∈{unit, bool, int}
A <: A

A1<:A2 p1≤p2
Lp1(A1) <: L

p2(A2)

A1<:A2 B1<:B2

A1∗A2 <: B1∗B2

It holds that if A <: B then Â = B̂ and Φ(v : A) ≤ Φ(v :
B). Suppose that it is not sufficient to evaluate e with p
available resource units to get p′ resource units left over.

L:SUBTYPE reflects the fact that we also cannot evaluate e
with p resources get more than p′ resource units after the

evaluation. L:SUPERTYPE says that we also cannot evaluate

e with less than p and get p′ resource units afterwards.

Example. Consider again the functions filter succ and
fs twice given in Fig. 7 in which the resource consumption is
defined using tick annotations. The best-case resource usage
of filter succ(�) is 3|�| + 1 and best-case resource usage
of fs twice(�) is 6|�|+ 2. This is reflected by the following
function types for lower bounds.

filter succ : L3(int)
1/0−−→ L0(int)

fs twice : L6(int)
2/0−−→ L0(int)

To derive the lower bound for fs twice, we need the same
compositional reasoning as for the derivation of the upper
bound. For the inner call of filter succ we use the type

filter succ : L6(int)
2/1−−→ L3(int) .

It can be understood as follows. If the input list carries 6
potential units per element then, for each element, we can
either use all 6 (if case) or we can use 3 and assign 3 to
the output (else case).

The type system for lower bounds is a relevant type

system [39]. That means every variable is used at least once

(L:RELAX)

Σr; Γr p

p
′ e : A

q ≥ p q−p ≤ q′−p′

Σr; Γr q

q
′ e : A

(L:WEAKENING)

Σr; Γr q

q
′ e : B �(A | A,A)

Σr; Γr, x : A
q

q
′ e : B

(L:SUBTYPE)

Σr; Γr q

q
′ e:A A<:B

Σr; Γr q

q
′ e : B

(L:SUPERTYPE)

Σr; Γr, x:B
q

q
′ e : C A<:B

Σr; Γr, x : A
q

q
′ e : C

Figure 9. Structural rules for lower bounds.

(L:CONTR)
Σr; Γr, x1 : A, x2 : A

q

q
′ e : B A2 <: A

Σr; Γr, x1 : A, x2 : A2

q

q
′ e : B A1 <: A

Σr; Γr, x1 : A1, x2 : A2

q

q
′ e : B �(A | A1, A2)

Σr; Γr, x : A
q

q
′ share(x, (x1, x2).e) : B

Figure 10. Derivation of the contraction rule for lower-bounds.

by allowing exchange and contraction properties, but not

weakening. However, as in the constant-time type system

we allow a restricted form of weakening if the potential

annotations are zero using the rule L:WEAKENING. The

following lemma states formally the contraction property

which is derived in Fig. 10.

Lemma 5. If Σr; Γr, x1 : A, x2 : A
q

q′ e : B then
Σr; Γr, x : A

q

q′ share(x, (x1, x2).e) : B

The following theorems establish the soundness of the

analysis. The proofs can be found in the TR [28]. Theo-

rem 6 is proved by induction and Theorem 5 follows by

contradiction.

Theorem 5. Let |= E : Γr, E � e ⇓ v, and Σr; Γr q

q′ e : A.
Then for all p, r ∈ Q+

0 such that p < q+ΦE(Γ
r) + r, there

exists no p′ ∈ Q+
0 satisfying E

p

p′ e ⇓ v and p′ ≥ q′+Φ(v :
A) + r.

Theorem 6. Let |= E : Γr, E � e ⇓ v, and Σr; Γr q

q′ e : A.
Then for all p, p′ ∈ Q+

0 such that E
p

p′ e ⇓ v we have
q +ΦE(Γ

r)− (q′ +Φ(v : A)) ≤ p− p′.

F. Mechanization

We mechanized the soundness proofs for both the two

new type systems as well as the classic AARA type system

using the proof assistant Agda. The development is roughly

4000 lines of code, which includes the inference rules, the

operational cost semantics, a proof of type preservation, and

the soundness theorems for each type system.

One notable difference is our implementation of the typing

contexts. In Agda our contexts are implemented as lists of

pairs of variables and their types. Moreover, in our typing

rules whenever a variable is added to the context we require

720

the variable is fresh with respect to the existing context.

This requirement is important as it allows us to preserve

the invariant that the context is well formed with respect

to the environment as we induct over typing and evaluation

judgements in our soundness proofs. Furthermore, as our

typing contexts are ordered lists we added an exchange rule

to our typing rules.

Another important detail is in the implementation of

potential. Potential Φ(v : A) for a value only is defined

for well formed inputs. Inputs such as Φ(nil : bool) are not

defined. Agda is total language and as such prohibits users

from implementing partial functions. Thus we require in our

Agda implementation that when calculating the potential of

a value of a given type the user provide a derivation that

the value is well formed with respect to that type. Similarly

when calculating the potential of a context, ΦE(Γ
r), with

respect to an environment we require that the user provide

a derivation that the context is well formed with respect to

that environment.

Lastly, whereas the type systems and proofs presented here

used positive rational numbers, in the Agda implementation

we use natural numbers. This deviation was simply due to

the lacking support for rationals in the Agda standard library.

By replacing a number of trivial lemmas, mostly related to

associativity and commutativity, the proofs and embeddings

could be transformed to use rational numbers instead.

V. QUANTIFYING AND TRANSFORMING OUT LEAKAGES

We present techniques to quantify the amount of infor-

mation leakage through resource usage and transform leaky

programs into constant resource programs. The quantification

relies on the lower and upper bounds inferred by our resource

type systems. The transformation pads the programs with

dummy computations so that the evaluations consume the

same amount of resource usage and the outputs are identical

with the original programs. In the current implementation,

these dummy computations are added into programs by

users and the padding parameters are automatically added

by our analyzer to obtain the optimal values. It would be

straightforward to make the process fully automatic but

the interactive flavor of our approach helps to get a better

understanding of the system.

A. Quantification

Recall from Section III that we assume an adversary at

level k1 who is always able to observe 1) the values of

variables in [Γs]�k1
, and 2) the final resource consumption

of the program. For many programs, it may be the case

that changes to the secret variables [Γs] ��k1
effect observable

differences in the program’s final resource consumption, but

only allow the attacker to learn partial information about

the corresponding secrets. In this section, we show that the

upper and lower-bound information provided by our type

systems allow us to derive bounds on the amount of partial

information that is leaked.

To quantify the amount of leaked information, we measure

the number of distinct environments that the attacker could

deduce as having produced a given resource consumption

observation. However, because there may be an unbounded

number of such environments, we parameterize this quantity

on the size of the values contained in each environment. Let

EN denote the space of environments with values of size

characterized by N . Given an environment E and expression

e, define U(E, e) = pδ such that E
p

p′ e ⇓ v and pδ =
p−p′. Then for an expression e and resource observation pδ ,

we define the set RN (e, pδ) which captures the attacker’s

uncertainty about the environment which produced pδ:

RN (e, pδ) = {E′ ∈ EN : U(E, e) = pδ}
Notice that when |RN (e, p)| = 1, the attacker can deduce

exactly which environment was used, whereas when this

quantity is large little additional information is learned from

pδ. This gives us a natural definition of leakage, which is

obtained by aggregating the inverse of the cardinality of RN

over the possible initial environments of e:

CN (e) =

(∑
E∈EN

1

|RN (e, U(E, e))|

)
− 1

CN (e) corresponds to our intuition about leakage. When e
leaks no information through resource consumption, then each

term in the summation will be 1/|Esizes| giving CN (e) = 0,

whereas if e leaks perfect information about its starting

environment then each term will be 1, leading to CN (e) =
|EN | − 1.

Theorem 7. Let P e
N be the complete set of resource

observations producible by expression e under environments
of size N , i.e.,

P e
N = {p : ∃E ∈ EN .U(E, e) = p}

Then |P e
N | = CN (e) + 1.

Lemma 6. Let le(N) and ue(N) be lower and upper-bounds
on the resource consumption of e for inputs of size N . If
U(E, e) ∈ Z for all environments E, then CN (e) ≤ ue(N)−
le(N).

Lemma 7. Assume that environments are sampled uniform-
randomly from EN . Then the Shannon entropy of P e

N is
given by CN (e): H(P e

N) ≤ log2(CN (e) + 1)

Lemma 6 leverages Theorem 7 to derive an upper-bound

on leakage from upper and lower resource bounds. This

result only holds when the resource observations of e are

integral, which ensures the interval [le(N), ue(N)] ⊇ P e
N is

finite. Lemma 7 relates CN (e) to Shannon entropy, which

is commonly used to characterize information leakage [40],

[41], [42].

721

B. Transformation

To transform programs into constant resource programs

we extend the type system for constant resource use from

Section IV. Recall that the type system treats potential in

a linear fashion to ensure that potential is not wasted. We

will now add sinks for potential which will be able to absorb

excess potential. At runtime the sinks will consume the exact

amount of resources that have been statically-absorbed to

ensure that potential is still treated in a linear way. The

advantage of this approach is that the worst-case resource

consumption is often not affected by the transformation.

Additionally, we do not need to keep track of resource usage

at runtime to pad the resource usage at the sinks, because

the amount of resource that must be discarded is statically-

determined by the type system. Finally, we automatically

obtain a type derivation that serves as a proof that the

transformation is constant resource.

More precisely, the sinks are represented by the syntactic

form: consume(A,p)(x). Here, A is a resource-annotated type

and p ∈ Q≥0 is a non-negative rational number. The idea

is that A and p define the resource consumption of the

expression. In the implementation, the user only has to write

consume(x), and the annotations are added via automatic

syntax elaboration during the resource type inference.

Let E be a well-formed environment w.r.t. Γr. For

every x ∈ dom(Γ) with Γr(x) = A, the expression

consume(A,p)(x) consumes Φ(E(x) : A) + p resource units

and evaluates to () . The evaluation and typing rules for

sinks are:

(E:CONSUME)

q = q′ +Φ(E(x) : A) + p

E
q

q
′ consume(A,p)(x) ⇓ ()

(A:CONSUME)

Σr;x:A
p

0 consume(A,p)(x) : unit

The extension of the proof of Theorem 2 to consume

expressions is straightforward.
Adding consume expressions: Let ei be a

subexpression of e and let e′i be the expression

let(z, consume(x1, · · · , xn), z.ei) for some variables

xi. Let e′ be the expression obtained from e by replacing ei
with e′i. We write e ↪→ e′ for such a transformation. Note

that additional share and let expressions have to be added to

convert e′i into share-let normal form.

Lemma 8. If Σ;Γ � e : T , E � e ⇓ v, and e ↪→ e′ then
Σ;Γ � e′ : T and E � e′ ⇓ v.

To transform an expression e into a constant resource

expressions we perform multiple transformations e ↪→ e′

which do not affect the type and semantics of e. This can be

done automatically but in our implementation it works in an

interactive fashion, meaning that users are responsible for the

locations where consume expressions are put. The analyzer

will infer the annotations A and constants p of the given

consume expressions during type inference. If the inference

is successful then we have constX(e
′) for the transformed

program e′.

Example. Recall the function compare form Fig. 1. To turn
compare into a constant resource function. We insert consume
expressions as shown below. Users can insert many consume
expressions and the analyzer will determine which consumes
are actually needed.

let rec c_compare(h,l) = match h with
| [] →match l with
| [] →tick(1.0); true
| y::ys →tick(1.0); false

| x::xs →match l with
| [] →tick(1.0); consume(xs); false
| y::ys →if (x = y) then

tick(5.0); c_compare(xs,ys)
else tick(5.0); consume(xs); false

We automatically obtain the following typing of the trans-
formed function and the consume expressions:

c compare : (L5(int), L0(int))
1/0−−→ bool

consume : L5(int)
5/0−−→ unit (at line 6)

consume : L5(int)
1/0−−→ unit (at line 9)

The worst-case resource consumption of the unmodified
function c compare is 1 + 5|h|. Thus the consumption of
the first consume must be 5 + 5(|h| − 1 − |�|) when h is
longer than l. Otherwise, the consumption is zero. The second
one consumes 1 + 5(|h1| − 1), where h1 is the sub-list of h
from the first node which is different from the corresponding
node in l.

VI. IMPLEMENTATION AND EVALUATION

Type Inference: Type inference for the constant resource

and lower bound systems are implemented in RAML [21].

RAML is integrated into Inria’s OCaml compiler and supports

polynomial bounds, user-defined inductive types, higher-order

functions, polymorphism, arrays, and references. All features

are implemented for the new type systems, as they are

straightforward extensions of the simplified rules presented

in this paper. The implementation is publicly available in an

easy-to-use web interface [43].

The type inference is technically similar to the inference

of upper bounds [19]. We first integrate the structural

rules of the respective type system in the syntax directed

rules. For example, weakening and relaxation is applied at

branching points such as conditional. We then compute a

type derivation in which all resource annotations are replace

by (yet unknown) variables. For each type rule we produce

a set of linear constraints that specify the properties of valid

annotations. These linear constraints are then solved by the

LP solver CLP to obtain a type derivation in which the

annotations are rational numbers.

722

Constant Function LOC Metric Resource Usage Time

cond rev : (L(int), L(int), bool) → unit 20 steps 13n+13x+35 0.03s
trunc rev : (L(int), int) → L(int) 28 function calls 1n 0.06s
ipquery : L(logline) → (L(int), L(int)) 86 steps 86n+99 0.86s
kmeans : L(float, float) → L(float, float) 170 steps 1246n+3784 8.18s
tea enc : (L(int), L(int), nat) → L(int) 306 ticks 128n2z+32nxz+1184nz+96n+128z+96 13.73s
tea dec : (L(int), L(int), nat) → L(int) 306 ticks 128n2z+32nxz+1184nz+96n+96z+96 14.34s

Function LOC Metric Lower Bound Time Upper Bound Time

compare : (L(int), L(int)) → bool 60 steps 7 0.05s 16n+7 0.09s
find : (L(int), int) → bool 40 steps 5 0.04s 14n+5 0.02s
rsa : (L(bool), int, int) → int 42 multiplications 1n 0.07s 2n 0.05s
filter : L(int) → L(int) 30 steps 13n+5 0.05s 20n+5 0.04s
isortlist : L(L(int)) → L(L(int)) 60 steps 21n+5 0.13s 12n2+9n+10n2m−10nm+5 0.43s
bfs tree : (btree, int) → btree option 116 steps 15 0.30s 92n+24 0.32s

Table I
AUTOMATICALLY-DERIVED BOUNDS WITH RESOURCE AWARE ML

An interesting challenge lies in finding a solution for

the linear constraints that leads to the best bound for a

given function. For upper bounds, we simply disregard the

potential of the result type and provide an objective function

that minimizes the annotations of the arguments. The same

strategy works the constant-time type systems. An interesting

property is that the solution to the linear program is unique

if we require that the potential of the result type is zero. To

obtain the optimal lower bound we want to maximize the

potential of the arguments and minimize the potential of the

result. We currently simply maximize the potential of the

arguments while requiring the potential of the result to be

zero. Another approach would be to first minimize the output

potential and then maximize the input potential.

Resource-aware noninterference: We are currently inte-

grating our constant-time type system with FlowCaml [31].

The combined inference is based on the typing rules in Fig. 6.

It is possible to derive a set of type inference rules in the

same way as for FlowCaml [44], [32]. One of the challenges

in the integration is interfacing FlowCaml’s type inference

with our constant-time type system in rule SR:C-GEN. In the

implementation, we intend for each application of SR:C-GEN

to generate an intermediate representation of the expression

in RAML for the expression under consideration, in which

all types are annotated with fresh resource annotations along

with the set of variables X . The expression is marked with

the qualifier const if RAML can prove that it is constant

time. The type inference algorithm always tries to apply the

syntax-directed rules first before using SR:C-GEN.

Evaluation: Table I shows the verification and compu-

tation of constant resource usage, lower, and upper bounds

for different functions, together with the lines of code (LOC)

of the analyzed function and the run time of the analysis

in seconds. Note that lower and upper bounds are identical

when a function is constant. In the computed bounds, n is the

size of the first argument, m = max1≤i≤nmi where mi are

the sizes of the first argument’s elements, x is the size of the

second argument, and z is the value of the third argument.

The cost models are specified by different cost metrics that

are appropriate for the respective application, e.g., number of

evaluation steps or number of multiplication operations. Note

that the computed upper bounds are also the resource usages

of functions which are padded using consume expressions.

The experiments were run on a machine with Intel Core i5

2.4 GHz processor and 8GB RAM under OS X 10.11.5.

The run time of the analysis varies from 0.02 to 14.34

seconds depending on the function’s code complexity. The

example programs that we analyzed consist of commonly-

used primitives (cond rev , trunc rev , compare , find ,

filter), functions related to cryptography (tea enc , tea dec ,

rsa), and examples taken from Haeberlan et al. [8] (ipquery ,

kmeans). The full source code of the examples can be found

in the technical report [28].

The encryption functions tea enc and tea dec corre-

spond to the encryption and decryption routines of the

Corrected Block Tiny Encryption Algorithm [45], a block

cipher presented by Needham and Wheeler in an unpublished

technical report in 1998. Our implementation correctly

identifies these operations as constant-time in the number

of primitive operations performed. We applied this cost

model for the tea examples due to the presence of bitwise

operations in the original algorithm, which are not currently

supported in RAML. In order to derive a more meaningful

bound, we implemented bitwise operations in the example

source and counted them as single operations.

The two examples taken from Haeberlen et al. [8] were

originally created in a study of timing attacks in differentially-

private data processing systems. ipquery applies pattern

matching to a database derived from Apache server logs,

counting the number of matches and non-matches. kmeans
implements the k-means clustering algorithm [46], which

partitions a set of geometric points into k clusters that

minimize the total inter-cluster distance between points.

Haeberlen et al. demonstrated that when a query applied

723

to a dataset introduces attacker-observable timing variations,

then the privacy guarantees provided by differential privacy

are negated. To address this, they proposed a mitigation

approach that enforces constant-time behavior by aborting or

padding the query’s runtime. Our implementation is able to

determine that the queries, as we implemented them, were

constant-time to begin with, and thus did not need black-box

mitigation.

VII. RELATED WORK

Resource bounds: Our work builds on past research on

automatic amortized resource analysis (AARA). AARA has

been introduced by Hofmann and Jost for a strict first-order

functional language with built-in data types to derive linear

heap-memory bounds [19]. It has then been extended to

polynomial bounds [47], [36], [48], [59], [60] for strict and

higher-order [37], [21] functions. AARA has also been used

to derive linear bounds for lazy functional programs [49],

[50] and object-oriented programs [51], [52]. In another line

of work, the technique has been integrated into separation

logic [53] to derive bounds that depend on mutable data-

structures, and into Hoare logic to derive linear bounds that

depend on integers [54], [55]. Amortized analysis has also

been used to manually verify the complexity of algorithms

and data-structures using proof assistants [56], [57]. In

contrast to our work, these techniques can only derive upper

bounds and cannot prove constant resource consumption.

The focus on upper bounds is shared with automatic re-

source analysis techniques that are based on sized types [61],

[62], linear dependent types [63], [64], and other type sys-

tems [65], [66], [67]. Similarly, semiautomatic analyses [68],

[69], [70], [71] focus on upper bounds too.

Automatic resource bound analysis is also actively studied

for imperative languages using recurrence relations [72],

[73], [74] and abstract interpretation [75], [76], [77], [78],

[79]. While these techniques focus on worst-case bounds,

it is possible to use similar techniques for deriving lower

bounds [80]. The advantage of our method is that it is

compositional, deals well with amortization effects, and

works for language features such as user-defined data types

and higher-order functions. Another approach to (worst-

case) bound analysis is based on techniques from term

rewriting [81], [82], [83], which mainly focus on upper

bounds. One line of work [84] derives lower bounds on

the worst-case behavior of programs which is different from

our lower bounds on the best-case behavior.

Side channels: Analyzing and mitigating potential

sources of side channel leakage is an increasingly well-

studied area. Several groups have proposed using type

systems or other program analyses to transform programs

into constant-time versions by padding with “dummy” com-

mands [85], [86], [87], [40], [88], [16]. Because these

systems do not account for timing explicitly, as is the case

for our work, this approach will in nearly all cases introduce

an unnecessary performance penalty. The most recent system

by Zhang et al. [40] describes an approach for mitigating side

channels using a combination of security types, hardware

assistance, and predictive mitigation [89]. Unlike the type

system in Section III, they do not guarantee that information

is not leaked through timing. Rather, they show that the

amount of this leakage is bounded by the variation of the

mitigation commands.

Köpf and Basin [42] presented an information-theoretic

model for adaptive side-channel attacks that occur over

multiple runs of a program, and an automated analysis for

measuring the corresponding leakage. Because their analysis

is doubly-exponential in the number of steps taken by the

attacker, they describe an approximate version based on

a greedy heuristic. Mardziel et al. [90] later generalized

this model to probabilistic systems, secrets that change over

time, and wait-adaptive adversaries. Pasareanu et al. [91]

proposed a symbolic approach for the multi-run setting based

on MaxSAT and model counting. Doychev et al. [92] and

Köpf et al. [41] consider cache side channels, and present

analyses that over-approximate leakage using model-counting

techniques. While these analyses are sometimes able to

derive useful bounds on the leakage produced by binaries

on real hardware, they do not incorporate security labels to

distinguish between different sources, and were not applied

to verifying constant-time behavior.

FlowTracker [14] and ct-verif [13] are both constant-time

analyses built on top of LLVM which reason about timing

and other side-channel behavior indirectly through control

and address-dependence on secret inputs. VirtualCert [15]

instruments CompCert with a constant-time analysis based

on similar reasoning about control and address-dependence.

These approaches are intended for code that has been written

in “constant-time style”, and thus impose effective restrictions

on the expressiveness of the programs that they will work on.

Because our approach reasons about resources explicitly, it

imposes no a priori restrictions on program expressiveness.

Information flow: A long line of prior work looks at

preventing undesired information flows using type systems.

Sabelfeld and Myers [93] present an excellent overview

of much of the early work in this area. The work most

closely related to our security type system is FlowCaml [32],

which provides a type system that enforces noninterference

for a core of ML with references, exceptions, and let-

polymorphism. The portion of our type system that applies

to traditional noninterference coincides with the rules used

in FlowCaml. However, the rules in our type system are not

only designed to track flows of information, but they are

also used to incorporate the information flow and resource

usage behavior such as the rules SR:L-IF and SR:L-LET.

Moreover, our type system constructs a flexible interface

between FlowCaml and the resource type system, which

means the rules can be easily adapted to integrate into any

information-flow type system.

724

The primary difference between our work and the prior

work on information-flow type systems is best summarized in

terms of our attacker model. Whereas prior work assumes an

attacker that can manipulate low-security inputs and observe

low-security outputs, our type system enhances this attacker

by granting the ability to observe the program’s final resource

consumption. This broadens the relevant class of attacks

to include resource side channels, which we prevent by

extending a traditional information flow type system with

explicit reasoning about the resource behavior of the program.

VIII. DISCUSSION

The definition of resource-aware noninterference given in

Definition 2 assumes an adversary whose observations of

resource consumption match the cost semantics with respect

to the cost model given in Section IV. Depending on how

the costs are parameterized, this may not match the actual

resource use in a physical environment on modern hardware.

Architectural features such as caching and variable-duration

instructions need to be accounted for in the cost semantics,

or the guarantees might not hold in practice [94], [7], [95].

Moreover, additional artifacts of the compilation process

can affect the constant-resource guarantees established by

the type system. Certain optimization passes and garbage

collectors might affect timing properties in ways that lead to

vulnerabilities if not accounted for by the cost semantics.

The cost semantics used in this work is conceptually

straightforward, and corresponds to the resource model encap-

sulated by the high-level programming language. Accordingly,

our verifier is oblivious to the machine instructions and

operand values that are eventually executed after the high-

level code is compiled. In particular, the fact that our cost

model effectively counts the total number of language primi-

tives that are executed, and not the corresponding processor

instructions with caching and other micro-architectural effects

accounted for, means that compiled programs may not satisfy

resource-aware noninterference in practice despite being

provable within our type system.

Although architectural timing channels are nominally

invisible at the source-language level, it may be possible to

incorporate these aspects into the cost semantics with specific

assumptions about the target platform and compiler toolchain.

Doing so with a high degree of precision is challenging,

as the semantics may need to track extensive state to

accurately reflect the timing behavior of the underlying

platform. Another approach is to incorporate dependence

on these features indirectly, as in Zhang et al. [40] where

security labels are associated with hardware states to track

information flow dependencies throughout the hardware

environment. This approach is compatible with our resource-

aware noninterference type system, but is less flexible for the

programmer as it is subject to the same types of imprecision

present in information-flow type systems. We leave as future

work developing more precise models that remain faithful to

the resource-consumption subtleties of hardware platforms.

Another limitation of this work follows from the impreci-

sion of the information-flow type system that is integrated

with our constant-resource type system to verify resource-

aware noninterference. It is well-known that such type

systems are more conservative than the semantics of allowed

noninterference [24], [25], [26], and this applies to our work

as well. In particular, a variable conservatively identified

as high-security could influence resource usage, leading our

verifier to conclude that a program which is constant-resource

in practice is not. Our approach mitigates this issue since

imprecise information-flow tracking does not directly lead to

rejections of secure programs but only increases the burden

on constant-resource analysis. Another potential mitigation

that applies in some cases is to simply prove that the program

is constant-resource with respect to all variables. Another

approach that we leave to future work is to incorporate

declassification mechanisms into our system.

IX. CONCLUSION

We have introduced new sub-structural type systems for

automatically deriving lower bounds and proving constant

resource usage. The evaluation with the implementation in

RAML shows that the technique extends beyond the core

language that we study in this paper and works for realistic

example programs. We have shown how the new type systems

can interact with information-flow type systems to prove

resource-aware noninterference. Moreover, the type system

for constant resource can be used to automatically remove

side-channel vulnerabilities from programs.

There are many interesting connections between security

and (automatic) quantitative resource analysis that we plan

to study in the future. Two concrete projects that we already

started are the integration of the type systems for upper

and lower bounds with information-flow type systems to

precisely quantify the resource-based information leakage

at certain security levels. Another direction is to more

precisely characterize the amount of information that can be

obtained about secrets by making one particular resource-

usage observation.

ACKNOWLEDGMENTS

This article is based on research that has been supported,

in part, by AFRL under DARPA STAC award FA8750-15-C-

0082 and DARPA Brandeis award FA8750-15-2-028, by NSF

under grant 1319671 (VeriQ), and by a Google Research

Award. Any opinions, findings, and conclusions contained in

this document are those of the authors and do not necessarily

reflect the views of the sponsoring organizations.

REFERENCES

[1] P. C. Kocher, “Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems,” in 16th Annual
International Cryptology Conference (CRYPTO’96), 1996.

725

[2] M. K. Reiter, “Side channels in multi-tenant environments,” in
Proceedings of the 2015 ACM Workshop on Cloud Computing
Security Workshop, 2015.

[3] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey,
you, get off of my cloud: Exploring information leakage in
third-party compute clouds,” in Proceedings of the 16th ACM
Conference on Computer and Communications Security, 2009.

[4] D. Brumley and D. Boneh, “Remote timing attacks are practical,”
in Proceedings of the 12th Annual USENIX Security Symposium,
(Berkeley, CA, USA), USENIX Association, 2003.

[5] B. Canvel, A. Hiltgen, S. Vaudenay, and M. Vuagnoux,
Password Interception in a SSL/TLS Channel. 2003.

[6] N. J. AlFardan and K. G. Paterson, “Lucky thirteen: Breaking
the TLS and DTLS record protocols,” in 2013 IEEE Symposium
on Security and Privacy, 2013.

[7] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games –
bringing access-based cache attacks on aes to practice,” in
Proceedings of the 2011 IEEE Symposium on Security and
Privacy, 2011.

[8] A. Haeberlen, B. C. Pierce, and A. Narayan, “Differential
privacy under fire,” in Proceedings of the 20th Annual USENIX
Security Symposium, 2011.

[9] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner,
and H. Shacham, “On subnormal floating point and abnormal
timing,” in 2015 IEEE Symposium on Security and Privacy,
2015.

[10] E. W. Felten and M. A. Schneider, “Timing attacks on
web privacy,” in Proceedings of the 7th ACM Conference on
Computer and Communications Security, 2000.

[11] A. Bortz and D. Boneh, “Exposing private information
by timing web applications,” in Proceedings of the 16th
International Conference on World Wide Web, 2007.

[12] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-
tenant side-channel attacks in paas clouds,” in Proceedings of
the 2014 ACM Conference on Computer and Communications
Security, 2014.

[13] J. C. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and
M. Emmi, “Verifying constant-time implementations,” in 25th
USENIX Security Symposium, (Austin, TX), Aug. 2016.

[14] B. Rodrigues, F. M. Quintão Pereira, and D. F. Aranha, “Sparse
representation of implicit flows with applications to side-channel
detection,” in Proceedings of the 25th International Conference
on Compiler Construction, 2016.

[15] G. Barthe, G. Betarte, J. Campo, C. Luna, and D. Pichardie,
“System-level non-interference for constant-time cryptography,”
in Proceedings of the 2014 ACM Conference on Computer and
Communications Security, 2014.

[16] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner, “The
program counter security model: Automatic detection and
removal of control-flow side channel attacks,” in Proceedings
of the 8th International Conference on Information Security
and Cryptology, 2006.

[17] A. Askarov, D. Zhang, and A. C. Myers, “Predictive black-box
mitigation of timing channels,” in Proceedings of the 17th ACM
Conference on Computer and Communications Security, 2010.

[18] B. Köpf and M. Dürmuth, “A provably secure and efficient
countermeasure against timing attacks,” in Proceedings of the
22nd Annual IEEE Computer Security Foundations Symposium,
July 2009.

[19] M. Hofmann and S. Jost, “Static Prediction of Heap Space
Usage for First-Order Functional Programs,” in 30th ACM Symp.
on Principles of Prog. Langs. (POPL’03), 2003.

[20] J. Hoffmann, K. Aehlig, and M. Hofmann, “Multivariate Amor-
tized Resource Analysis,” in 38th ACM Symp. on Principles of
Prog. Langs. (POPL’11), 2011.

[21] J. Hoffmann, A. Das, and S.-C. Weng, “Towards Automatic
Resource Bound Analysis for OCaml,” in 44th Symposium on
Principles of Programming Languages (POPL’17), 2017.

[22] J. Goguen and J. Meseguer, “Security Policies and Security
Models,” in In Proceedings of the 1982 IEEE Symposium on
Security and Privacy, 1982.

[23] J. McLean, “Security models and information flow,” in
Research in Security and Privacy, 1990. Proceedings., 1990
IEEE Computer Society Symposium on, May 1990.

[24] A. C. Myers and B. Liskov, “Complete, safe information
flow with decentralized labels,” in Security and Privacy, 1998.
Proceedings. 1998 IEEE Symposium on, May 1998.

[25] A. C. Myers and B. Liskov, “Protecting privacy using the
decentralized label model,” ACM Trans. Softw. Eng. Methodol.,
vol. 9, pp. 410–442, Oct. 2000.

[26] P. Li and S. Zdancewic, “Downgrading policies and relaxed
noninterference,” in Proceedings of the 32Nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
POPL ’05, (New York, NY, USA), pp. 158–170, ACM, 2005.

[27] R. Harper, Practical Foundations for Programming Languages.
Cambridge University Press, 2012.

[28] Anonymous, “Verifying and Synthesizing Constant-Resource
Implementations with Types,” Tech. Rep. TR-??-???, Removed
for double blind reviewing. Available uppon request., 2016.

[29] D. J. Bernstein, “Cache-timing Attacks on AES.” http://cr.yp.
to/antiforgery/cachetiming-20050414.pdf, 2005.

[30] C. Percival, “Cache missing for fun and profit,” in Proceedings
of BSDCan, 2005.

[31] V. Simonet, “Flow Caml.” http://cristal.inria.fr/∼simonet/soft/
flowcaml/, 2003.

[32] F. Pottier and V. Simonet, “Information Flow Inference for ML,”
in In Proceedings of the 29th ACM Symposium on Principles
Of Programming Languages, 2002.

[33] N. Heintze and J. G. Riecke, “The SLam calculus: Program-
ming with secrecy and integrity,” in In Conference Record
of the 25th ACM Symposium on Principles of Programming
Languages, 1998.

726

[34] D. Volpano, G. Smith, and C. Irvine, “A sound type system
for secure flow analysis,” in Journal of Computer Security,
pp. 167–187, 1996.

[35] R. E. Tarjan, “Amortized Computational Complexity,” SIAM J.
Algebraic Discrete Methods, vol. 6, no. 2, pp. 306–318, 1985.

[36] J. Hoffmann, K. Aehlig, and M. Hofmann, “Multivariate
Amortized Resource Analysis,” ACM Trans. Program. Lang.
Syst., 2012.

[37] S. Jost, K. Hammond, H.-W. Loidl, and M. Hofmann, “Static
Determination of Quantitative Resource Usage for Higher-Order
Programs,” in 37th ACM Symp. on Principles of Prog. Langs.
(POPL’10), 2010.

[38] S. Jost, H.-W. Loidl, K. Hammond, N. Scaife, and M. Hof-
mann, “Carbon Credits for Resource-Bounded Computations
using Amortised Analysis,” in 16th Symp. on Form. Meth.
(FM’09), 2009.

[39] D. Walker, “Substructural Type Systems,” Advanced Topics
in Types and Programming Languages. MIT Press, pp. 3–43,
2002.

[40] D. Zhang, A. Askarov, and A. C. Myers, “Language-Based
Control and Mitigation of Timing Channels,” in In Proceedings
of the SIGPLAN Conference on Programming Language Design
and Implementation, 2012.

[41] B. Köpf, L. Mauborgne, and M. Ochoa, “Automatic quan-
tification of cache side-channels,” in Proceedings of the 24th
International Conference on Computer Aided Verification, 2012.

[42] B. Köpf and D. Basin, “An information-theoretic model for
adaptive side-channel attacks,” in Proceedings of the 14th ACM
Conference on Computer and Communications Security, 2007.

[43] J. Hoffmann, “RAML Web Site,” 2016. http://raml.co/

[44] M. Sulzmann, M. Müller, and C. Zenger, “Hindley/Milner
Style Type Systems in Constraint Form,” in Research Report
ACRC–99–009, University of South Australia, School of Com-
puter and Information Science, 1999.

[45] E. Yarrkov, “Cryptanalysis of XXTEA,” 2010.

[46] J. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability, Volume
1: Statistics, (Berkeley, Calif.), pp. 281–297, University of
California Press, 1967.

[47] J. Hoffmann and M. Hofmann, “Amortized Resource Analysis
with Polynomial Potential,” in 19th Euro. Symp. on Prog.
(ESOP’10), 2010.

[48] J. Hoffmann and Z. Shao, “Type-Based Amortized Resource
Analysis with Integers and Arrays,” in 12th International
Symposium on Functional and Logic Programming (FLOPS’14),
2014.

[49] H. R. Simões, P. B. Vasconcelos, M. Florido, S. Jost, and
K. Hammond, “Automatic Amortised Analysis of Dynamic
Memory Allocation for Lazy Functional Programs,” in 17th Int.
Conf. on Funct. Prog. (ICFP’12), 2012.

[50] P. B. Vasconcelos, S. Jost, M. Florido, and K. Hammond,
“Type-Based Allocation Analysis for Co-recursion in Lazy
Functional Languages,” in 24th European Symposium on
Programming (ESOP’15), 2015.

[51] M. Hofmann and S. Jost, “Type-Based Amortised Heap-Space
Analysis,” in 15th Euro. Symp. on Prog. (ESOP’06), 2006.

[52] M. Hofmann and D. Rodriguez, “Automatic Type Inference
for Amortised Heap-Space Analysis,” in 22nd Euro. Symp. on
Prog. (ESOP’13), 2013.

[53] R. Atkey, “Amortised Resource Analysis with Separation
Logic,” in 19th Euro. Symp. on Prog. (ESOP’10), 2010.

[54] Q. Carbonneaux, J. Hoffmann, T. Ramananandro, and Z. Shao,
“End-to-End Verification of Stack-Space Bounds for C Pro-
grams,” in Conf. on Prog. Lang. Design and Impl. (PLDI’14),
p. 30, 2014.

[55] Q. Carbonneaux, J. Hoffmann, and Z. Shao, “Compositional
Certified Resource Bounds,” in 36th Conf. on Prog. Lang.
Design and Impl. (PLDI’15), 2015.

[56] T. Nipkow, “Amortized Complexity Verified,” in Interactive
Theorem Proving - 6th International Conference (ITP’15), 2015.

[57] A. Charguéraud and F. Pottier, “Machine-Checked Verification
of the Correctness and Amortized Complexity of an Efficient
Union-Find Implementation,” in Interactive Theorem Proving -
6th International Conference (ITP’15), 2015.

[58] B. Campbell, “Amortised Memory Analysis using the Depth
of Data Structures,” in 18th Euro. Symp. on Prog. (ESOP’09),
2009.

[59] M. Hofmann and G. Moser, “Amortised Resource Analysis
and Typed Polynomial Interpretations,” in Rewriting and Typed
Lambda Calculi (RTA-TLCA;14), 2014.

[60] M. Hofmann and G. Moser, “Multivariate Amortised Resource
Analysis for Term Rewrite Systems,” in 13th International Con-
ference on Typed Lambda Calculi and Applications (TLCA’15),
2015.

[61] P. B. Vasconcelos and K. Hammond, “Inferring Costs for
Recursive, Polymorphic and Higher-Order Functional Programs,”
in Int. Workshop on Impl. of Funct. Langs. (IFL’03), 2003.

[62] P. Vasconcelos, Space Cost Analysis Using Sized Types. PhD
thesis, School of Computer Science, University of St Andrews,
2008.

[63] U. D. Lago and M. Gaboardi, “Linear Dependent Types
and Relative Completeness,” in 26th IEEE Symp. on Logic
in Computer Science (LICS’11), 2011.

[64] U. D. Lago and B. Petit, “The Geometry of Types,” in 40th
ACM Symp. on Principles Prog. Langs. (POPL’13), 2013.

[65] K. Crary and S. Weirich, “Resource Bound Certification,” in
27th ACM Symp. on Principles of Prog. Langs. (POPL’00),
pp. 184–198, 2000.

727

[66] N. A. Danielsson, “Lightweight Semiformal Time Complexity
Analysis for Purely Functional Data Structures,” in 35th ACM
Symp. on Principles Prog. Langs. (POPL’08), 2008.

[67] E. Çiçek, D. Garg, and U. A. Acar, “Refinement Types for
Incremental Computational Complexity,” in 24th European
Symposium on Programming (ESOP’15), 2015.

[68] B. Grobauer, “Cost Recurrences for DML Programs,” in 6th
Int. Conf. on Funct. Prog. (ICFP’01), pp. 253–264, 2001.

[69] R. Benzinger, “Automated Higher-Order Complexity Analysis,”
Theor. Comput. Sci., vol. 318, no. 1-2, pp. 79–103, 2004.

[70] N. Danner, D. R. Licata, and R. Ramyaa, “Denotational Cost
Semantics for Functional Languages with Inductive Types,” in
29th Int. Conf. on Functional Programming (ICFP’15), 2012.

[71] M. Avanzini, U. D. Lago, and G. Moser, “Analysing the
Complexity of Functional Programs: Higher-Order Meets
First-Order,” in 29th Int. Conf. on Functional Programming
(ICFP’15), 2012.

[72] D. E. Alonso-Blas and S. Genaim, “On the limits of the
classical approach to cost analysis,” in 19th Int. Static Analysis
Symp. (SAS’12), 2012.

[73] A. Flores-Montoya and R. Hähnle, “Resource Analysis of
Complex Programs with Cost Equations,” in Programming
Languages and Systems - 12th Asian Symposiu (APLAS’14),
2014.

[74] E. Albert, J. C. Fernández, and G. Román-Dı́ez, “Non-
cumulative Resource Analysis,” in Tools and Algorithms for
the Construction and Analysis of Systems - 21st International
Conference, (TACAS’15), 2015.

[75] S. Gulwani, K. K. Mehra, and T. M. Chilimbi, “SPEED: Pre-
cise and Efficient Static Estimation of Program Computational
Complexity,” in 36th ACM Symp. on Principles of Prog. Langs.
(POPL’09), 2009.

[76] R. Blanc, T. A. Henzinger, T. Hottelier, and L. Kovács, “ABC:
Algebraic Bound Computation for Loops,” in Logic for Prog.,
AI., and Reasoning - 16th Int. Conf. (LPAR’10), 2010.

[77] F. Zuleger, M. Sinn, S. Gulwani, and H. Veith, “Bound Anal-
ysis of Imperative Programs with the Size-change Abstraction,”
in 18th Int. Static Analysis Symp. (SAS’11), 2011.

[78] M. Sinn, F. Zuleger, and H. Veith, “A Simple and Scalable
Approach to Bound Analysis and Amortized Complexity
Analysis,” in Computer Aided Verification - 26th Int. Conf.
(CAV’14), 2014.

[79] P. Cerný, T. A. Henzinger, L. Kovács, A. Radhakrishna, and
J. Zwirchmayr, “Segment Abstraction for Worst-Case Execution
Time Analysis,” in 24th European Symposium on Programming
(ESOP’15), 2015.

[80] E. Albert, S. Genaim, and A. N. Masud, “On the Inference of
Resource Usage Upper and Lower Bounds,” ACM Transactions
on Computational Logic, vol. 14, no. 3, 2013.

[81] M. Avanzini and G. Moser, “A Combination Framework for
Complexity,” in 24th International Conference on Rewriting
Techniques and Applications (RTA’13), 2013.

[82] L. Noschinski, F. Emmes, and J. Giesl, “Analyzing Innermost
Runtime Complexity of Term Rewriting by Dependency Pairs,”
J. Autom. Reasoning, vol. 51, no. 1, pp. 27–56, 2013.

[83] M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl,
“Alternating Runtime and Size Complexity Analysis of Integer
Programs,” in 20th Int. Conf. on Tools and Alg. for the Constr.
and Anal. of Systems (TACAS’14), 2014.

[84] F. Frohn, M. Naaf, J. Hensel, M. Brockschmidt, and J. Giesl,
“Lower Runtime Bounds for Integer Programs,” in Automated
Reasoning - 8th International Joint Conference (IJCAR’16),
2016.

[85] J. Agat, “Transforming out timing leaks,” in Proceedings
of the 27th ACM Symposium on Principles of Programming
Languages, 2000.

[86] D. Hedin and D. Sands, “Timing aware information flow
security for a javacard-like bytecode,” Electron. Notes Theor.
Comput. Sci., vol. 141, Dec. 2005.

[87] B. Coppens, I. Verbauwhede, K. D. Bosschere, and B. D.
Sutter, “Practical mitigations for timing-based side-channel
attacks on modern x86 processors,” in Proceedings of the 2009
30th IEEE Symposium on Security and Privacy, 2009.

[88] G. Barthe, T. Rezk, and M. Warnier, “Preventing timing leaks
through transactional branching instructions,” Electron. Notes
Theor. Comput. Sci., vol. 153, May 2006.

[89] D. Zhang, A. Askarov, and A. C. Myers, “Predictive mitigation
of timing channels in interactive systems,” in Proceedings of
the 18th ACM Conference on Computer and Communications
Security, 2011.

[90] P. Mardziel, M. S. Alvim, M. Hicks, and M. R. Clarkson,
“Quantifying information flow for dynamic secrets,” in Proceed-
ings of the 2014 IEEE Symposium on Security and Privacy,
2014.

[91] C. Pasareanu, Q.-S. Phan, and P. Malacaria, “Multi-run side-
channel analysis using symbolic execution and max-smt,” in
Proceedings of the 29th IEEE Computer Security Foundations
Symposium, 2016.

[92] G. Doychev, D. Feld, B. Kopf, L. Mauborgne, and J. Reineke,
“Cacheaudit: A tool for the static analysis of cache side channels,”
in Proceedings of the 22nd USENIX Security Symposium,
(Washington, D.C.), USENIX, 2013.

[93] A. Sabelfeld and A. C. Myers, “Language-Based Information
Flow Security,” IEEE Journal on Selected Areas in Communi-
cations, vol. 21, no. 1, pp. 5–19, 2003.

[94] D. Brumley and D. Boneh, “Remote timing attacks are
practical,” in Computer Networks, 2005.

[95] D. Osvik, A. Shamir, and E. Tromer, “Cache attacks and
countermeasures: the case of AES,” in Topics in Cryptography,
2006.

728

