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Abstract—Order-preserving encryption and its generaliza-
tion order-revealing encryption (OPE/ORE) allow sorting,
performing range queries, and filtering data — all while only
having access to ciphertexts. But OPE and ORE ciphertexts
necessarily leak information about plaintexts, and what level
of security they provide in practice has been unclear.

In this work, we introduce new leakage-abuse attacks
that recover plaintexts from OPE/ORE-encrypted databases.
Underlying our new attacks is a framework in which we cast
the adversary’s challenge as a non-crossing bipartite matching
problem. This allows easy tailoring of attacks to a specific
scheme’s leakage profile. In a case study of customer records,
we show attacks that recover 99% of first names, 97% of last
names, and 90% of birthdates held in a database, despite all
values being encrypted with the OPE scheme most widely used
in practice.

We also show the first attack against the recent frequency-
hiding Kerschbaum scheme, to which no prior attacks have
been demonstrated. Our attack recovers frequently occurring
plaintexts most of the time.

I. INTRODUCTION

Due to frequent data breaches and broad interest in out-

sourcing data to the cloud, companies increasingly want

to encrypt sensitive information before storing it in local

databases or uploading to services operated by third parties.

Standard encryption mechanisms would, however, reduce

the value of these databases and services by preventing

them from doing useful operations on the data. A seeming

solution is to use so-called property-revealing encryption

(PRE) schemes that allow limited operations over ciphertexts

by making public specific properties of plaintexts. Systems

based on PREs are already used in industry [3, 13, 36, 43]

and increasingly studied in the academic literature [3,20,24,

28, 38, 39].

A widely desired property to preserve is order. This allows

sorting, as well as range and prefix search queries, which

are needed to support other server-side operations. Order-

preserving encryption (OPE) [1, 5] ensures that Ek(m1) <
Ek(m2) for m1 < m2 and Ek the encryption algorithm.

By allowing standard comparison operators directly on ci-

phertexts one can easily integrate OPE into systems, and

many have done so [3, 13, 36, 38, 43]. A generalization of

OPE is order-revealing encryption (ORE) [7] which reveals

ordering relations by way of a public comparison function

that operates on pairs of plaintexts.

What level of security OPE and ORE schemes achieve

is poorly understood. Boldyreva et al. [5, 6] explicitly warn

about the uncertain security of OPE. When encryption is

deterministic, no security is achieved should an encrypted

dataset include all possible plaintexts. (Simply sort the ci-

phertexts and their order reveals the plaintexts.) A recent

study by Naveed, Kamara, and Wright (NKW) [34] empir-

ically explores the security of deterministic OPE and ORE

schemes when not all possible plaintexts appear in the target

dataset. They exploit inference attacks: using some auxiliary

information about the distribution of plaintexts, the adversary

abuses the order and frequency of plaintexts preserved within

a sequence of ciphertexts to recover as many plaintexts as

possible. Their best performing attack, called the cumulative

attack, worked well to recover data that lies within small

domains, such as days of the year (365 possible values).

Intuitively, their attacks perform well when most possible

plaintexts appear in a target dataset, seeming to limit their

applicability when plaintexts are from large domains. The

NKW cumulative attack also scales poorly, requiring time

O(n3), where n is the greater of the number of unique items

in the ciphertexts or auxiliary data. All this leaves open the

possibility that OPE and ORE schemes remain secure in

practice for plaintext data drawn from larger domains, and

practitioners could simply avoid using OPE for small-domain

data. Indeed researchers have suggested exactly that approach

as a hedge against known attacks [17].

Our contributions. We develop new attacks that target,

in aggregate, all suggested OPE/ORE schemes, and show

their efficacy against plaintexts drawn from larger domains.

Our attacks come in two flavors: generic, like the NKW

attack, and scheme-specific. Generic attacks work against any

scheme that leaks frequency and order information. We also

introduce the first scheme-specific attacks that exploit addi-

tional leakage about plaintexts. These latter attacks cover the

OPE scheme most widely used in practice, due to Boldyreva,

Chenette, Lee, and O’Neill (BCLO) [5]. Finally, we provide

an attack against the recent frequency-hiding scheme of

Kerschbaum [25].

We use as a running case study an encrypted customer

record database, a frequent scenario for these encryption

technologies in industry. We utilize a variety of public

datasets as stand-ins for the kind of data targeted in an

attack, including such customer attributes as first names,

last names, ZIP codes, and birthdates. These attribute types

come from domains much larger than those considered in

the prior work; for example there are hundreds of thousands

of unique first names, tens of thousands of birthdates (across
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Scheme(s) First names Last names

Kerschbaum [25] 30% 7%
Popa et al. [37], Kerschbaum [26] 84% 38%
BCLO [5, 6] 99% 97%
CLWW [12] 98% 75%
BCLO + CLWW [12] 85% 44%
Baseline Guessing 5% 1%

Figure 1: Average recovery rate of plaintexts (in percent of all target
ciphertexts) across all first and last name datasets for our best attacks
against the indicated OPE/ORE scheme(s). The last row indicates
the recovery rate given by just guessing the most likely message
for each ciphertext. We have bolded those attacks that fully recover
more than half the plaintexts, on average.

a given century span), and tens of thousands of unique ZIP

codes in the United States. We identify distinct public data

sets that can be used as auxiliary information in inference

attacks.

Generic attacks and non-crossing matching. We first

revisit the NKW attack, which is generic in that it works

against any scheme that reveals plaintext frequency and order.

Its accuracy in our customer record case study is relatively

poor. For example, it recovers on average 44% of encrypted

first name records but this accounts for only 5% of the

unique first names in the data set, meaning the attack only

recovers a small fraction of the high-frequency elements of

the distribution. The attack is also relatively slow, requiring

six hours for the Fraternal Order of Police dataset on a well-

provisioned cluster.

We explore their attack in more detail, and point out some

limitations of their approach. Their most accurate attack,

called the cumulative attack, casts the adversarial task as

solving a linear sum assignment problem. This approach,

however, typically yields solutions that violate adversarially

known ordering constraints, outputting a guess that ciphertext

c1 encrypts plaintext p2 and ciphertext c2 encrypts plaintext

p1, yet c1 < c2 and p2 > p1.

We observe that the adversary’s goal can be cast as a

classic graph problem: a min-weight non-crossing bipartite

matching. One set of nodes consists of ciphertexts and the

other possible plaintexts, and the edges are weighted using

frequency information. Non-crossing refers to the fact that

we want the solution to abide by the adversarially known or-

dering constraints. Unlike the NKW attack, our non-crossing

attack takes fuller advantage of frequency and order infor-

mation. We use a classic algorithm [32] to solve the min-

weight non-crossing matching problem, and its runtime is

both asymptotically and concretely better than the NKW

approach.

We show that our non-crossing attack achieves signifi-

cantly better accuracy, for example it recovers on average

84% of first names in our target encrypted datasets, about

a 2x improvement over NKW. High-frequency plaintexts are

particularly at risk: our attack recovers on average 95% of

the 20 most frequent first name plaintexts, and 88% of the

20 most frequent last names. The non-crossing attack runs in

only a few hours, even for the largest target dataset, where

the induced matching problem has over 17 billion edges.

Exploiting further leakage. The attacks so far are generic,

and do not take advantage of the additional leakage exhibited

by the OPE schemes used in practice. The most widely used

scheme is due to Boldyreva, Chenette, Lee, and O’Neill

(BCLO) [5], because it is fast, easy to deploy, and has

ciphertexts that are only a few bits longer than plaintexts. It’s

been proven secure in the sense of indistinguishability from

a random order-preserving function, but this provides only

modest guarantees: prior work has shown that for a uniformly

chosen plaintext, the corresponding ciphertext leaks almost

the entire first half of the plaintext [6]. Despite widespread

deployment of BCLO, the implications of this leakage for

real datasets has not been studied.

We rectify this, showing that in practical scenarios using

the BCLO scheme to encrypt a set of first names, for exam-

ple, allows an attacker to recover almost half the data set.

The leakage is even worse for last names, with almost 97%

of last names trivially recoverable. A key issue making this

leakage so damaging is that varying-length plaintexts must

be padded to the maximum length plaintext, ensuring that

shorter messages completely reside in the leaked first half

of the padded plaintext. We emphasize that exploiting this

leakage does not require mounting an inference attack, rather

an adversary simply can inspect ciphertexts, perform a few

elementary calculations, and produce (most) plaintexts.

That said, our graph-based viewpoint on inference attacks

allows us to easily combine this leakage with inference to

improve recovery rates further. We adapt our non-crossing

attack to first compute the leakage implied by [6], use it

to exclude matchings that cannot occur, and then solve the

resulting, narrower non-crossing matching problem. The re-

sulting attack allows us to recover on average 99% of first

names, more than doubling the recovery rate over using the

BCLO leakage alone without inference.

We also apply our approach to exploit the leakage of the

more recent Chenette, Lewi, Weis, and Wu (CLWW) [12]

ORE scheme. The leakage of CLWW is different than that

of BCLO, and they argue that their scheme may be more

secure: CLWW prove that for uniform randomly distributed

messages, their scheme’s leakage is asymptotically less than

the BCLO leakage. They also propose that security may be

further improved by composing an OPE scheme with their

ORE scheme. We apply our framework to both the CLWW

scheme and the composition of BCLO with CLWW, and

show that, unfortunately, CLWW provides an equivalently

poor level of security as compared to BCLO in the settings

we consider. Interestingly, some plaintext distributions are

particularly bad for CLWW leakage: for example, our attack
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against BCLO does not perform well on ZIP codes (achieving

12% recovery rate), but on CLWW our attack recovers 97%

of encrypted ZIP codes. Composition of the two schemes

does decrease attack accuracy, but is still far from providing

acceptable security.

Exploiting known plaintexts. Our attacks, as well as the

NKW attack, assumes a relatively weak adversary that only

obtains ciphertexts, but has no information about any specific

plaintext values. As we discuss in detail in the body, in real-

world deployments many systems relying on OPE/ORE offer

attackers the ability to mount known- or chosen-plaintext

attacks. We show how to extend our attack framework to

take advantage of known plaintexts by simply partitioning

the attack problem based on the known values and running

an attack against each resulting sub-problem independently.

As the BCLO and CLWW attacks already recover most

plaintexts, we see how well this partitioning approach would

help our generic non-crossing attack. Knowing some small

percentage of plaintexts provides a modest improvement for

first names and last names, but a huge boost for birthdates

and ZIP codes.

Attacking frequency-hiding schemes. The attacks men-

tioned above work against schemes that at least leak both fre-

quency and order, but Kerschbaum [25] recently introduced

a scheme that hides frequency information. Here there is no

prior work, as the NKW attacks do not apply to frequency-

hiding schemes, and our non-crossing attack framework also

does not apply. We propose a new “binomial” attack that

performs reasonably well, recovering on average 30% of first

names and 7% of last names. Notably, it recovers the majority

of high-frequency plaintexts (despite not having frequency

information leaked), suggesting these plaintexts are particu-

larly poorly protected by any order-revealing scheme.

Newer ORE schemes. The ORE schemes we consider have

been defined as having a public, unkeyed, noninteractive
procedure the server can use to reveal the order relation-

ship between the underlying plaintexts of two ciphertexts.

Recently, a new line of work [16,30,41] explore schemes at a

different point in the design space. These schemes are more

similar to searchable symmetric encryption (SSE) in that a

user must generate a query-specific trapdoor, or complete

multiple rounds of interaction, to perform a range query on

ciphertexts. Unfortunately there are currently major impedi-

ments barring deployment of these schemes in practice (see

Section IX). Our results may encourage systems designers to

consider them in greater earnest.

Summary. We are the first to explore the security of OPE

and ORE schemes when used with plaintext data types that

were, before our work, not known to admit attacks. What’s

more, our case study of customer data is representative of

common industry practice. Underlying our new results is a

framework for constructing attacks based on min-weight non-

crossing bipartite matching, which allow for easy extensibil-

ity in the face of leakage beyond frequency and order. Most

importantly for current industry practice, our results show,

for the first time, how the leakage of the BCLO scheme

would enable recovery of essentially all plaintexts encrypted

in typical customer record databases. Suggested practical

alternatives such as the CLWW scheme, or the composition

of it with BCLO, do not fare much better. See Figure 1 for

a high level summary of our quantitative results for first and

last names.

Our results offer guidance to practitioners about the secu-

rity level offered by OPE and ORE schemes. While obviously

using property-revealing encryption is better than leaving

data in the clear (in some settings the only viable alternative

currently), our work indicates that the security benefits of

deployed schemes is quite marginal.

In terms of countermeasures, an obvious suggestion is to

move towards less leaky schemes, such as those that only

reveal order, including Kerschbaum’s scheme and the more

recent Boneh et al. scheme based on multilinear maps [7,

29]. Unfortunately in most settings there exists inherent

challenges to deployment of these schemes. Kerschbaum’s

scheme is relatively efficient, but requires client-side state

which impedes scaling. The Boneh et al. scheme has cipher-

texts larger by 10 orders of magnitude than BCLO ciphertexts

and requires tens of minutes to compute encryptions. Even

so, our attack against such frequency hiding schemes shows

that for common use cases the high frequency plaintexts may

nevertheless be revealed to attackers.

II. PRELIMINARIES

Basic notation. Let D be a set and let its size be denoted by

s = |D|. We assume some total ordering of elements in D.

Let D be a sequence of elements (d1, . . . , ds), where each

di ∈ D. For 1 ≤ i ≤ s, we define the histogram function for

D to be the function HD(i) that outputs the number of times

the ith element of D appears in D, divided by s. For 1 ≤
j ≤ s, we define the cumulative distribution function (CDF)

for D to be the function FD(j) = (
∑j
i=1 hi)/s, where hi is

the number of occurrences of the ith element of D. Observe

that one can represent histograms and CDFs linearly in the

number of unique elements in D. Below, we will use both

“birth date” and “birthdate” to refer to the month, day, and

year of an individual’s birth.

Order-preserving and revealing encryption. An order-

preserving encryption (OPE) [1,5] E allows encrypting data

under a secret key k such that Ek(m1) < Ek(m2) for any

m1 < m2. We focus primarily on deterministic schemes,

meaning Ek defines a function. The benefit of OPE is that

existing comparison operations will work transparently on

ciphertexts, thus providing a drop-in way to replace plaintexts

with ciphertexts while preserving the ability to perform order

comparisons, range queries, etc. Order-revealing encryption
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(ORE) [7] does not allow an existing comparison operator

to work on ciphertexts, but instead comes with a public pro-

cedure that can determine the order of two plaintexts given

only their two ciphertexts. Again, we will focus primarily on

ORE schemes that are deterministic.

PRE-based systems. OPE and ORE are examples of what

we refer to as property-revealing encryption (PRE) schemes.

PRE schemes encrypt data while allowing limited compu-

tation over the revealed plaintext properties. A motivating

scenario for PRE schemes is in client-server systems where

one wants to perform encryption on the client side but take

advantage of the server performing some operations on the

client’s behalf. In a PRE-based encrypted database, for exam-

ple, OPE is often used to enable certain kinds of expressive

SQL-like queries on encrypted data. The standard database

functionality in such a system is extended and modified by

a database proxy, which rewrites queries and performs en-

cryption/decryption on behalf of database clients. The clients

are often application servers (acting on behalf of human

users) which address the database proxy as though it were the

database. Example PRE-based databases include IQrypt [22],

CryptDB [38, 40], and Cipherbase [3].

Another concrete application arises with security-

conscious businesses that use network middleware to encrypt

and decrypt data as users interact with cloud software-as-

a-service (SaaS) applications. Such “encryption proxies”

are similar to the database proxy described above, except in

most cases it cannot change the way the SaaS application

works. PRE schemes including OPE and ORE become

useful to ensure stored data does not break (some) useful

cloud functionality. Commercial products from Skyhigh

Networks [43], CipherCloud [13], and Perspecsys [36] are

examples.

In all these deployment settings, a minimal security re-

quirement is the confidentiality of plaintext data in the face

of attackers that obtain access to a PRE-encrypted database,

e.g., by compromising a server or obtaining insider access to

it.

Types of ORE/OPE schemes. OPE and ORE schemes

come in several flavors that affect their deployability in the

above application scenarios. Unlike the OPE/ORE schemes

mentioned above, some schemes require state beyond the se-

cret key to be stored with the client. This state can potentially

be held by proxies on behalf of clients, but regardless com-

plicates scaling to large numbers of clients. These schemes

are mutable: ciphertexts might change as more values are

added to a database. They are also interactive, requiring

multiple rounds of communication between the client and

server to store or retrieve ciphertexts. Examples of such

schemes include [25, 26, 37].

Statefulness, mutability, and interactivity all hinder de-

ployability. The reason to consider such schemes is that

the more deployable stateless schemes (e.g., [5]), which

are the only ones currently used in practice, leak more

information about plaintexts than just ordering and frequency

information. We will only consider these more advanced

schemes in Section IV and Section VIII.

III. OVERVIEW AND METHODOLOGY

To experimentally evaluate OPE and ORE security, we fix

a methodology in which we empirically evaluate security

using public datasets as stand-ins for sensitive plaintexts.

Prior work by NKW focused on medical settings, where a

database of patient data was outsourced in encrypted form.

The attributes (columns) of the databases they considered

had plaintext values falling within small domains, the largest

being the days of the year (365 possible values). We want to

explore security for larger domains where it is not known if

effective attacks can be mounted.

Customer records as case study. We therefore fix a

running case study of an outsourced database of customer

information. In industry currently, OPE is used to encrypt

customer records before uploading to cloud services such as

Salesforce. A client (sometimes an encryption proxy acting

on its behalf) takes as input plaintext records, encrypts their

attributes independently, and uploads them to a cloud service

using (often) an existing API. While customer data can take

on a number of forms, we focus particularly on a subset:

(1) first name, (2) last name, (3) US ZIP code, and (4)

date of birth. All such attributes benefit from server-side

processing that takes advantage of the ability to compare

plaintext ordering, and OPE in industry is used to encrypt

such data for exactly this reason.

We restrict our attention to male first names, because

research on inference attacks has shown that the binary

“gender” attribute cannot be hidden by any PRE scheme [34].

Partitioning database records based on gender would be a

trivial preprocessing step to remove some uncertainty about

the underlying plaintexts of encrypted values. To model real

adversaries as closely as possible, we perform this prepro-

cessing as well.

In these contexts, revealing plaintext order to servers en-

ables a variety of server-side operations. Sorting is the most

obvious, and for names this allows sorting alphabetically. It

also allows range queries, such as finding all names starting

with “A”, “B”, or “C”. Perhaps more subtly, OPE enables pre-

fix searches over ciphertexts, so one could search for “Dav*”

and retrieve Dave, David, Davik, etc. Date of birth and ZIP

codes also benefit from such range and prefix searches be-

cause prefixes have structural meaning. For example, query-

ing “606*” gives all ZIP codes associated with the city of

Chicago. Together, all this allows preserving functionality on

the server-side, in some cases allowing drop-in replacement
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of plaintext data with encrypted without modifying server

implementations at all.

Threat model. We investigate the security of OPE/ORE

encrypted attributes when an adversary obtains a one-time

snapshot of the encrypted database. Our attacks will target

each attribute (column) independently (i.e., we won’t use

information about the encrypted last name column to help

improve recovering first names). Exploring the benefit of

such cross-column attacks in this setting remains an inter-

esting topic for future work. So our attacks will consider

an adversary that obtains a sequence C = (c1, . . . , cn) of

encryptions of one column of data. Here ci = Ek(mi) for

some unknown plaintext mi and encryption scheme E . The

key k remains unknown to the attacker, and we assume it

is intractable to recover it. The passive adversary can take

advantage of auxiliary information about the distribution

from which plaintexts are drawn. This is the same attack

setting as considered by NKW.

We also initiate investigation of stronger adversarial mod-

els. In Section VII we consider non-adaptive known-plaintext

attacks. In these, a subset of the n plaintexts are known by

the adversary. Despite not being considered in prior attacks

on OPE/ORE, we believe known-plaintext attacks are likely

to be prevalent risks in practice. As we discuss in Section VII,

for example, attackers in many contexts can obtain (perhaps

indirect) access to an encryption oracle before compromising

the encrypted database. We will not examine chosen-plaintext

attacks in great detail, though our known-plaintext attacks

clearly work in this setting as well.

In all attacks the adversary finishes by outputting a list of n
ciphertext, plaintext pairs indicating the attacker’s guesses.

We measure success in several ways. The raw recovery rate

is the fraction of n records that are mapped to the correct

plaintext. For deterministic encryption schemes, this means

that if we can correctly infer the mapping between the

ciphertext for “Michael” and the correct plaintext, and this

ciphertext accounts for (say) 4% of the database, then our raw

recovery rate will be at least 4%. We therefore also report on

unique recovery rate, which is the fraction of unique plaintext

values recovered correctly. Finally, neither of these measures

indicate how much partial information may arise, since the

attacker gets no credit for mapping an encryption of the

birthdate “19620105” to “19620106” despite the fact that this

leaks a lot of information. We report on prefix recovery rate as

the average, over the n data items, of the length of the prefix

that matches between the correct plaintext and the one output

by the adversary. Note that prefix accuracy for birthdates has

an important caveat: all our target birth dates occurred in

the twentieth century, so the baseline prefix accuracy is 25%

(because the first two characters are always “19”).

Data sets. We use a number of datasets to drive our simu-

lated attacks. We have two kinds of datasets, target datasets

and, when used, auxiliary data sets. The latter is given to the

Dataset # 1st names # Last Names Total Records
FOP (FOP) 3,862 116,677 621,662
California Muni (CALC) 3,777 59,935 255,956
Washington (WA) 3,525 67,206 228,934
Texas Compt. (TXCOM) 2,416 33,802 149,678
Florida (FL) 2,091 32,986 112,566
Maryland (MD) 2,551 36,698 111,183
Connecticut (CT) 2,016 30,623 77,613
New Jersey (NJ) 1,964 29,094 73,119
Iowa (IA) 1,734 22,616 60,035
Ohio (OH) 1,440 21,034 58,792
Texas A&M U. (TXAMU) 1,466 11,437 25,192
North Carolina (NCAR) 696 3,688 6,976
Illinois (IL) 243 1,021 1,259

Figure 2: Unique and overall record counts for our target datasets
that include first and last names.

adversary in the clear to provide it an empirical estimate of

the target dataset’s distribution.

For target first and last name data sets, we used a mixture of

municipal, state, and public university government employ-

ees, publicly published by the government. We additionally

use the database dump from the Fraternal Order of Police

(FOP) breach.1 This includes 623,372 records on police

officers for which all rows contain both first and last names,

237,392 rows contain birthdates, and 617,280 contain ZIP

codes. There are 22,485 unique birthdates and 26,914 unique

ZIP codes. A summary of the datasets is given in Figure 2.

The distributions observed in these datasets are non-

uniform. The most common first name appeared in 4.06%

of records on average across all the datasets (with variance

0.29% across data sets). The most common last name

appeared in 0.8% of records on average across all datasets

(with variance of 0.04%). This translates to an empirical

min-entropy of 4.63 bits for first names and 7 bits for last

names, on average. For the FOP data set, the most common

ZIP code appeared in 0.09% of the records (7.6 bits), and the

most common birth date in 0.01% of records (11 bits). For

reference, password leaks often indicate min-entropies of

about 6–7 bits [8]. The maximum accuracy of the baseline

guessing attack, in which the most frequent element of the

auxiliary data is matched to every ciphertext, was 5.0%

for first names from the Connecticut dataset and 1.2% for

last names from the North Carolina dataset. Below we will

consider first and last name datasets as subsets of the set

of all alphabetical strings less than or equal to some fixed

length. The effect of this is that our first and last name

datasets are quite sparse.

Most of our attack simulations require auxiliary data. We

restrict ourselves to publicly available data that would be

easy for any attacker to obtain, and do not consider scenarios

where an attacker obtains, say, an earlier version of the same

database. Our auxiliary data for experiments on first names is

statistics for baby names gathered by the US Social Security

Administration [46]. For our experiments, we used a year-by-

1For privacy reasons we will not include links to these datasets, but they
are available from the authors by request.
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year tally of the most popular American male first names for

the years 1945 to 1993. For experiments on last names, we

used statistics gathered by the US Census Bureau during the

2000 census on the exact frequency of last names for every

person who filled out the census that year [45]. The census

data included 5,023 and 151,672 distinct first and last names,

respectively.

Our auxiliary data for birth dates came from the American

Community Survey (ACS) 2013, a yearly survey conducted

by the US Census Bureau. First, since our target dataset

is a database of law enforcement union members, we used

the 2013 American Community Survey (ACS) to compute a

histogram for the ages of all respondents who marked “law

enforcement” as their current line of work. Using known

statistics on birth month frequency we synthesized an accu-

rate distribution for birth dates with per-day granularity for

all days between 1920 and 1999.

Our auxiliary data for ZIP codes is a list of the reported

population of each assigned ZIP code according to the 2010

census. The frequency of a ZIP code in the auxiliary data

was computed as the proportion of the total US population

living there. Intuitively, it seems like the distribution of ZIP

codes in a nationwide database like the FOP dump will be

similar to the distribution of people into ZIP codes because

more populous areas will likely have more police officers,

and therefore more FOP members. However, we note that

the two distributions are not particularly well-correlated and

that our attacks below would probably be more effective with

better auxiliary data.

For large, sparse domains like the ones considered here,

it is possible for a target datum to be “un-recoverable”

according to our accuracy metrics for attacks with auxiliary

data, meaning its underlying plaintext does not exist in the

auxiliary data. For birth dates and ZIP codes this is not the

case, but it is for first and last names. On average for our

datasets, above 99% of first name records are recoverable

but only 91% of unique first names are. For last names, only

89% of records and 71% of unique values are recoverable on

average. Below, we will not correct our results to account for

this artificial cap on attack accuracy, since a real adversary

would likely face this same problem. This is in line with

our very conservative approach to auxiliary data overall.

However, in Section V we will evaluate an attack that does

not require auxiliary data, so this limitation does not apply

there.

IV. THE NON-CROSSING ATTACK

In this section we recall the NKW cumulative attack which

can work against OPE and ORE schemes that leak both

frequency and order. This includes all deterministic OPE

schemes, including [5, 12, 26, 31, 37].

We discuss some limitations both in terms of efficiency

and accuracy of their attack, and suggest a new attack that

performs significantly better. We call this the non-crossing

attack. It works for any scheme for which the original NKW

cumulative attack works, and it also will be what we build

off in later sections when we take advantage of more leakage

and stronger adversarial models.

Attack setting. In this section, we follow NKW and con-

sider known-ciphertext attacks with auxiliary information,

but no knowledge of any plaintexts. More precisely, an at-

tacker obtains a sequence of ciphertexts C = (c1, . . . , cn)
for ci = EK(mi). Plaintexts may repeat and are drawn

according to some (typically unknown) distribution pm over

a message space M. The attacker additionally has auxiliary
information about pm, which in practice is simply a sequence

Z = (z1, . . . , zψ) of plaintexts that is believed to be drawn

fromM using a distribution close to pm. For our datasets, it’s

always the case that n < ψ. The attacker outputs a guess of

each ciphertexts’ plaintexts, and we measure success as per

the three recovery rate types defined in the previous section.

The NKW attacks. NKW describes two attacks against

schemes which leak order and frequency: the sorting attack

and the cumulative attack. The sorting attack simply sorts

C and Z and matches the ith largest element of C to the

ith largest element of Z. When the target data is sparse, or

when |C| �= |Z| (as is the case for our datasets), this attack

performs poorly, so we will not consider it further.

In the cumulative attack, NKW models the inference task

as a linear sum assignment problem [9]. We find it conceptu-

ally simpler to cast the problem NKW solves in the language

of graph algorithms. Let G = (U, V,E) be a bipartite graph

where every vertex in U corresponds to a distinct ciphertext

and every vertex V corresponds to a plaintext value in the

auxiliary data. Thus n = |U | and ψ = |V |. For u ∈ U and

v ∈ V , the edge (u, v) ∈ E is labeled according to a cost

(or weight) of mapping ciphertext u to auxiliary datum v. A

matching for G is a subset of edges for which no two share a

common vertex. For our context, any matching is a potential

decryption of some or all of the target ciphertexts. Finding

a minimum cost (equivalently, maximum weight) matching

should help an attacker obtain a good solution.

NKW explore the following approach to labeling edges.

Given a ciphertext sequence C and a side information se-

quence Z, their attack lets edge (i, j) ∈ U × V have label

given by

w(i, j) = |HC(i)− HZ(j)|2 + |FC(i)− FZ(j)|2 (1)

where H and F are as in Section II. The attacker seeks a

minimal-cost bipartite matching of the graph G, one that

contains an edge for each node in U . To do so they use the

Hungarian algorithm, padding if necessary U with dummy

nodes until |U | = |V |. The algorithm runs in time O(ψ3).

NKW also briefly discuss labeling edges with only the

square distance of CDFs, but they conclude that using CDF
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and frequency as in Equation 1 performs substantially better.

We therefore only use the latter in our experiments.

Limitations of the cumulative attack. NKW show that

the cumulative attack can effectively recover plaintexts, albeit

only ones from relatively small domains. The largest message

space they consider is 365 elements (days of the year).

This has left open the question of whether plaintexts drawn

from larger domains might still be secure when encrypted

under OPE. Unfortunately the performance of the attack is

prohibitive for large datasets such as the last name, birthdate,

and ZIP code datasets we consider in this paper.

We observe that there exists a classic greedy heuristic that

works to find min-cost bipartite matchings efficiently [4,9]. It

just takes the minimum cost for each ciphertext individually,

and gives a 2-approximate solution in time O(nψ). In exper-

iments we have observed that this heuristic often produces

fairly accurate approximations. For first names, the average

gap between the cumulative attack’s recovery rate and the

greedy heuristic’s recovery rate is 14%. Below we will refer

to the attack that finds the matching with the greedy heuristic

as “NKW greedy”.

The NKW attack, when using either the exact Hungarian

algorithm or greedy approximation to find the matching,

does not necessarily enforce adversarially-known ordering

constraints on plaintexts. The algorithm can obtain solutions

from the Hungarian algorithm that include edges that “cross”,

i.e. ciphertext c is mapped to p′ and ciphertext c′ is mapped

to p but c < c′ and p′ > p. In fact, the NKW attack

violated ordering constraints in every one of our experiments

on real datasets. One can avoid such crossings by labeling

edges with just the square distance of CDFs, but as mentioned

this performs poorly. We therefore seek a way to avoid

violating ordering constraints, while still taking advantage of

the available frequency information.

The non-crossing attack. We introduce what we refer to as

the non-crossing attack. An attacker can avoid crossings in

their solution by solving a max-weight non-crossing bipartite

matching problem on the graph G. Since ordering constraints

are encoded into the matching algorithm, we will not include

any ordering information in our edge labels. Rather, we will

use the L1 distance of frequencies. For ciphertext i and

auxiliary datum j, the labeling function is

w(i, j) = α− |HC(i)− HZ(j)|
where α is a fixed constant parameter that converts a min-

cost problem into a max-weight problem. In our context,

any choice of α > 1 will not change which matchings are

maximum-weight, so the solution to the inference problem

will be the same for any α > 1. Different choices of α will

change what that maximum weight is, but for our purposes

this is inconsequential.

This approach also significantly improves computational

performance over NKW: there is a well-known dynamic-

programming approach that runs in time O(nψ) to find the

optimal non-crossing matching [32].

Results. We compare the non-crossing and cumulative at-

tacks for our customer record datasets detailed in Section III.

We could not scale the NKW’s use of the Hungarian algo-

rithm to complete in reasonable time for last name, birthdate,

or ZIP code datasets. With the largest last name dataset,

we estimated the NKW attack would have taken roughly

one hundred days to complete a single experiment on the

well-provisioned compute cluster we used for the first name

experiments. The Hungarian algorithm is highly nontrivial to

parallelize, compounding its scalability issues. For last name,

birthdate, and ZIP codes, we will compare our non-crossing

attack to the NKW greedy attack. For first names, we will

compare the non-crossing attack with the exact Hungarian

algorithm.

Figure 3 compares the success of the two attacks for first

names (left bars) and last names (right bars), showing raw

recovery rates for each dataset. The non-crossing attack al-

ways performs strictly better than NKW’s cumulative attack,

and some times substantially so, nearly doubling the average

recovery rate (44% vs. 83%) for first names and septupling

(5% vs. 38%) the average recovery rate for last names.

When taken as percentage of the “recoverable” names (those

plaintexts that also appear in the auxiliary data), on average

we recover 84% of first names and 42% of last names.

The unusually low performance on the Illinois dataset is

due to its small size — it is only about one-third of the size of

the next smallest dataset. Its small size is problematic because

it impacts the statistical quality of the sample. For example,

the most frequent first name only occurs 34 times and the

most frequent last name only occurs 10 times.

Figure 4 shows the average unique recovery rate for high-

frequency first and last names. It is cumulative, so the x

axis labels refer to the recovery rate for that number of top

names. For example, the point (40, 95) means the attack

recovered 38 of the top 40 most frequent names, on average.

Our attack is especially accurate for these values. From this,

we can conclude that for almost all datasets no real security

guarantee can be made for high-frequency names. We do not

include a separate graph for unique recovery rates for first

and last names, but the overall trend is very similar.

Inference on birthdates and ZIP codes is much less accu-

rate for both attacks: exact recovery rates were less than 2%

across the board. This occurred for two reasons. First, the

auxiliary information available for attackers is not as accurate

a reflection of the target data distribution, compared to the

names data. For example, our ZIP code data is not really a

sample from the same distribution as our auxiliary data — the

ZIP code frequencies in our auxiliary data are proportional

to the number of people living there, but the frequencies in

our target dataset are proportional to FOP membership, which

varies state-to-state. Second, the distributions themselves are
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Figure 3: Comparison of raw recovery rates of NKW and the non-crossing attack on first and last names. The non-crossing attack outperforms
NKW for all target datasets.

flatter and do not have frequency “peaks” which can be easily

recovered by inference attacks.

We do note that partial information is often leaked. The

non-crossing attack’s prefix recovery rate was 34% for birth-

dates and 23% for ZIP codes. The corresponding prefix

recovery rates for the NKW attack are similar. The non-

crossing attack outperforms the baseline by about ten percent

in overall prefix recovery for birth dates: we recovered the

decade of birth for 75% of the unique birth dates in the

database (16,847 out of 22,485). The non-crossing attack also

recovered, on average, the first digit of a target ZIP code,

giving the adversary the region of residence of the record

(e.g. eastern seaboard, midwest, southwest). In all cases, the

NKW with greedy heuristic attack performs worse than non-

crossing.

In terms of runtime performance, both the NKW with

greedy heuristic and the non-crossing attack are reasonably

fast. They require at most ten and twelve hours, respectively,

to run to completion on the FOP last name dataset, the

largest of any we examined. It includes n ≈ 116, 000 unique

ciphertexts and ψ ≈ 151, 000 unique values in the auxiliary

data. The induced bipartite graph has around 17.4 billion

edges. The non-crossing attack is slower than the greedy

heuristic due to the need for a backtracking step (similar

to the one used in the classical edit distance algorithm) to

recover the edges of the max-weight matching. It also writes

to two large data structures at each iteration of the inner loop,

which can be slow if the memory layout is not tuned. We

optimized our implementation by exploiting the fact that the

algorithm only needs to examine two rows of the dynamic

programming table at a time: the one currently being written

to, and the previous one. We reuse two fixed-width buffers

for these rows rather than allocating an entire n × ψ matrix

in memory. These two buffers are small enough to fit in the

CPU’s cache, so the number of slow operations on DRAM
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Figure 4: Average unique recovery rates for high-frequency first and
last names for non-crossing attack. The red line with circles is first
names. The blue line with squares is last names. Note that the y-axis
starts from 70.

is effectively halved. It also reduces the overall memory

footprint by about 90%.

V. ATTACKING THE BCLO SCHEME

The attacks discussed in the previous section only take ad-

vantage of frequency and order information. While there exist

schemes that leak only this information (or even less), they

are not deployed in any real-world systems because all such

schemes require either inefficient multilinear maps or client

state, mutable ciphertexts (their value changes over time),

and multiple rounds of communication to insert a ciphertext

or perform a search. Instead, practitioners have widely been

deploying more efficient schemes such as the classic one

due to Boldyreva, Chenette, Lee, and O’Neill (BCLO) [5].

This scheme is known to leak more than just frequency and

order [6], and we now show how to build highly damaging
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attacks that augment our non-crossing attack to exploit this

additional leakage.

The BCLO scheme. The BCLO scheme realizes an OPE

scheme by a recursive procedure that samples according to

the hypergeometric distribution based on coins pseudoran-

domly derived from a secret key. The details of the con-

struction are not important to our attacks, and so for brevity

we refer readers to [5] for details. It is secure in the sense

of being indistinguishable from a random order-preserving

function (ROPF).

An ROPF, however, still may leak significant information

about the plaintext. Boldyreva, Chenette, and O’Neill [6] ana-

lyzed ROPFs relative to a notion of security they call window

one-wayness. Let M = |M| be the size of the domain. They

show that an adversary, given the encryption of a uniformly

chosen plaintext, can use the ciphertext to immediately infer

with high probability that the hidden plaintext falls within

a set of size b · √M for some small constant b. When b is

small relative to
√
M , this means the attacker learns most of

the first half of the plaintext.

We will explore how this leakage affects security for in

our running case study, and then show how to build even

more damaging inference attacks by augmenting our non-

crossing attack to take advantage of the additional leakage.

First, however, we discuss one security-critical issue that

arises in practical use of the BCLO scheme.

The problem of padding. In previous work on OPE and

ORE, the question of variable-length inputs is rarely dis-

cussed. Real systems that use OPE for variable-length plain-

texts, though, must pad to preserve the functionality of being

able to compare strings of different length.

For encryption schemes that reveal or preserve order,

variable-length inputs represent a trickier problem than

for other types of encryption, because different ways

of ordering strings of characters handle variable lengths

differently. For example, take the two strings “banana” and

“zoo”. Viewed as English words, it is clear that “banana”

is lexicographically less than “zoo”. However, some OPE

algorithms (in particular [5]) only accept inputs that are

integers in some set. Thus, the question becomes how

to convert strings in a specified alphabet to integers but
preserve their alphabetical order. The naive way to do

this for “banana” and “zoo” is to treat them as big-endian

numbers base 26, and convert to base 2 (or 10) before

encrypting with OPE. It is not hard to see that this approach

fails, because the base-2 number represented in base-26 as

“banana” is larger than the corresponding base-2 number for

“zoo”. Encrypted with OPE, their relative ordering would be

reversed.

The solution is to right-pad all strings to a common input

length (i.e., the length of the longest possible input) with

the lexicographically smallest character (in our case, a space)

before converting the string to an integer for encryption with
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Figure 5: Length distributions of first and last names. The right
vertical line is half of the longest last name length, which roughly
means every last name to the left of that line will be leaked fully.
The left vertical line is the same boundary for first names.

OPE. This approach was suggested in a technical report by

Kolesnikov and Shifka [27], in the context of randomizing

OPE ciphertexts while preserving sort order. This is painful

when it comes to security of schemes like BCLO that leak

high order bits: the padding pushes sensitive data into those

bits that are leaked. Figure 5 gives histograms of the lengths

of first names and last names across our datasets. As can

be seen, a bit more than half of first names and the vast

majority of last names fall below half the maximal length.

This means that many or, for last names, most plaintexts will

be immediately leaked when encrypted under BCLO.

In theory, one could pad to a shorter length and truncate

values that are too long. Besides the obvious loss of strict

order preservation for all plaintexts, this also removes the

ability to decrypt all ciphertexts to the correct plaintext. In

practice this truncation would necessitate appending another

encryption of the plaintext to the end of the OPE ciphertext

so that decryption could occur correctly, which would at least

double the storage required for that column in the database.

Thus, this method of handling variable-length inputs is at

best much more expensive than the alternative, and at worst

impossible because of, e.g., unchangeable constraints in SaaS

applications.

In our experiments, we encoded first and last names as

base-27 integers and padded plaintexts to the length of the

longest possible plaintext with the space character, which

we defined to be the lexicographically smallest character

of our input alphabet. This method of encoding strings as

integers may seem strange initially, but observe that the naive

way of treating each byte as a base-256 digit will cause

the parameters (and, by extension, the ciphertexts) to be

much larger than they need to be, since only a small subset

of the 256 possibilities are valid characters. As mentioned

before, the longest first name appearing in our data sets is

14 characters, and the longest last name is 28 characters.
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Birth dates and ZIP codes are fixed-width, so padding is not

required.

BCLO’s additional leakage. Since the BCLO scheme leaks

additional information other than order and frequency, it is

logical to ask how much information an adversary learns just

by computing the BCLO leakage. This is not an “inference

attack” as we have defined it above, because it does not

use auxiliary data. It does require knowledge of the input

alphabet and padding rules. Below, we will describe how to

combine this attack with inference.

We first describe how to compute the leakage given a

ciphertext as per [6]. Let M be the message space with size

M = |M| and let the ciphertext space be C = {1, . . . , C}.
Typically in implementations of BCLO one uses message and

ciphertext spaces that are of size a power of two, and sets

logC = 3 + logM as suggested in [6]. Then let

mc =

⌈
M · c
C + 1

⌉
and δ =

b

2
√
M − 1

,

where b is a parameter. Roughly speaking, mc is the

ciphertext-specific point around which a window of size

up to 2δ can be drawn that contains the plaintext with

high probability. The larger the parameter b, the larger the

window. Of course we must truncate the window by the

endpoints of the message space, meaning that m will be

with high probability contained in the range

Rc =
[
max{1,mc − �δM�} , min{M,mc + �δM�}

]
The analysis of Boldyreva et al. shows that for b = 3 the

probability of landing in this window is negligibly far from

one for uniformly sampled plaintexts [6]. For non-uniform

message distributions, it is likely that more careful analysis

could shrink the window and obtain more leakage, but we

will be conservative and use the larger window for our first

and last name attacks. We will use b = 1 for our attacks

on ZIP codes and birth dates. Making the window smaller

slightly increases the leakage and helps reduce the overlap

in leaked ranges for nearby values, though it increases the

likelihood that the true plaintext falls outside the range.

Our birthdate and ZIP code datasets contained a substantial

fraction of all the possible plaintexts2, so there is a great deal

of overlap in the leakage which, intuitively, gives the non-

crossing attack more chances to match a value incorrectly.

Having a smaller window mitigates this.

Abusing just the BCLO leakage. An adversary can attempt

to immediately recover the plaintext for each ciphertext in a

database using just the leaked range Rc and knowledge of

the input alphabet and padding rules. This approach does not
require any auxiliary data, and requires just a few elementary

computations for each ciphertext. In fact, a human attacker

2This fraction is about 56% for ZIP codes and 66% for birthdates,
precluding effective use of the sorting attack from NKW, which requires
almost all plaintexts to be present.

Plaintext Ciphertext mc

michael cyrzjipnouushzh michaekypfbkfr
david aenpse cevvpkmr david jwbvhec
robert emlqrnycvblqqnd robert lwyeorr
john ccnnczzzpruvjhd johmzzzysfbunn
james bzkxrq gzortby james zyovtq
daniel aelfspocabjdvjc daniel jgaginu
richard ekrzjmjhjxykbba richardkmfnwwx
jose ccqrlzzziozokby josdzzzxvfruqg
mark cwmlfzzzjxhlklh marjzzzxzqyduv
christopher zokwwbrbibyouo christotnqfolw

Figure 6: The value mc computed for encryptions of ten first names
in the California dataset.

can easily just read off partial or even full plaintexts from

the mc values trivially computable from a ciphertext. Some

examples are shown in Figure 6.

To automate this, we fix a simple heuristic that an attacker

can use to guess a message given the ciphertext c. First,

compute mc and the range Rc. Let [ml,mu] = Rc. Check

if any of ml,mc,mu contains two consecutive spaces in the

first half of their string representations. Some names contain

a single space, so we can only confirm padding after seeing

two consecutive spaces. If none do, then forego outputting

a guess. Otherwise, for (an arbitrary) one of the strings that

does contain two consecutive spaces, simply take the prefix

preceding these spaces as the plaintext guess. Observe that

this is not guaranteed to be the correct plaintext as there

could be other validly padded plaintexts in the range Rc.

This heuristic performs quite well, particularly for last

names. On average across all our datasets, the raw recovery

rate is 45% for first names and 97% for last names. Referring

back to Figure 5, our heuristic is able to do almost as well

as predicted by simply halving the maximum length and

observing the fraction of plaintexts that lie below that length:

on average across datasets, 67% of first names are less than

7 characters long, and 99% of last names are less than

14 characters long. While this leakage has been known in

the academic literature [6], we believe its severity was not

understood for practical scenarios before our work.

We have described above how to directly exploit BCLO’s

leakage for first and last names, but this approach is readily

generalizable to any plaintext distribution containing mes-

sages of different lengths. In the case of fixed input length

plaintexts, such as ZIP codes and birth dates, there is no need

for padding, and so it is impossible to exactly recover any

plaintexts using the heuristic above. Nevertheless significant

partial information leaks that we will exploit next.

Inference attack with BCLO leakage. The heuristic above

recovers less than half of first names on average, and as

just mentioned cannot recover full plaintexts for fixed-input-

length domains. We can however integrate the BCLO leakage

into our non-crossing inference attack.
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Let G = (U, V,E) be a bipartite graph where every vertex

in U corresponds to a unique ciphertext in C and vertices

in V correspond to unique auxiliary data from Z. The sets

U and V are sorted, so that the ith largest unique ciphertext

is vertex ui and likewise for v. For each ciphertext u ∈ U
where the ciphertext corresponding to u is c, the adversary

computes Rc and then adds an edge (u, v) for each v whose

corresponding value p falls within Rc. This excludes edges

that fall outside the window for c. Each edge is weighted

as before, by α − |HC(i) − HZ(j)|. The adversary outputs

the mappings implied by the solution to the max-weight non-

crossing bipartite matching problem the graph defines.

For fixed-length inputs such as ZIP codes and birth dates,

we run the inference as described above. For variable-length

data such as first names and last names, we first run our

heuristic attack, and then run the inference as described above

only on the ciphertexts for which the heuristic fails to make

a guess. The reason to do this is that many plaintexts that are

not in the auxiliary data are nevertheless fully recovered by

the heuristic.

Inference attack results. Combining the heuristic with

inference increases first name recovery rate from 45% to

99% on average across datasets. The smallest recovery rate

in any single dataset was 97%. For last names the increase

from inference was negligible, as the heuristic alone already

obtained 97% recovery on average. The average unique re-

covery rate was 90% for first names and 94% for last names,

with standard deviation less than 2% for both. Our attack

here recovers the vast majority of plaintext records, as well

as most unique plaintexts. The few unrecovered plaintexts

are ones for which the heuristic fails to retrieve them fully

and they additionally do not appear in the auxiliary data (i.e.,

names that are both longer than average and quite rare). Of

course, even for these long and rare names, a prefix of the

name is nevertheless apparent to attackers.

Figure 7 summarizes the inference attack’s recovery rates

for birthdates and ZIP codes, for b = 3 and b = 1. The

attacks are much more accurate with b = 1. With b = 3
we only recover about 1.5% more ZIP codes than with the

non-crossing attack. Our accuracy for birthdates with b = 3
does not improve compared to the non-crossing attack. With

b = 1 the attack performed well for birthdates, recovering

more than 90% of records and nearly 70% of unique values.

This attack performed more modestly on ZIP codes, but we

still recovered about 12% of the ZIP code records and 8%

of the unique values. The BCLO leakage by itself revealed,

on average, 36% of the plaintext for ZIP codes and 31% for

birth dates.

That our attack performs well with b = 1 is surprising

because the probability that the correct plaintext is in the

computed window is (roughly) an inverse exponential of b.
When b = 1 the success probability of their lower-bound

attack should ostensibly be only about 0.3 for each ciphertext,

Birthdates ZIP codes
Raw, b = 1 91 12
Unique, b = 1 70 9
Raw, b = 3 0 4
Unique, b = 3 0 3

Figure 7: Raw and unique recovery rates for birthdates and ZIP
codes encrypted with BCLO. The value b refers to the window width
discussed above.

but this was clearly not the case in our experiments. The

probability of success for the attack in [6] is, however, only

analyzed for uniformly-sampled messages, and so they may

not be predictive for the non-uniform birthdate and ZIP code

distributions.

VI. ATTACKING THE CLWW SCHEMES

Our results show that the BCLO scheme’s additional leak-

age represents a significant threat to plaintext confidentiality

for real datasets. We now turn to suggestions by Chenette,

Lewi, Weis, and Wu (CLWW) to provide ORE and OPE that

they prove leak less than the BCLO scheme, yet remains

practical [12]. We will test this empirically.

The CLWW ORE scheme. In [12] the authors construct a

new ORE scheme. As with BCLO, we will for brevity omit

the details of the CLWW scheme; our attacks will only abuse

its leakage profile. Towards that profile, for two equal-length

bit strings x, y let inddiff(x, y) be the index of the first bit that

differs between x and y. If x = y then inddiff(x, y) outputs

|x|+1. Then, a sequence of ciphertexts C = (c1, . . . , cn) for

which ci = Ek(mi) leaks order as well as, for every pair 1 ≤
i < j ≤ n, the value inddiff(mi,mj). (Note that frequency of

plaintexts is leaked by the latter.)

The CLWW authors argue that their scheme leaks less than

BCLO for uniform messages: for only one ciphertext their

scheme is semantically secure, and for n revealed ciphertexts

of length k, the probability that more than log k bits leak is

negligible. The BCLO scheme, in contrast, always reveals

approximately one-half of the bits of a plaintext. While

this is true, it may not matter in practice, as for certain

plaintext distributions the CLWW leakage may be worse (or

better) than BCLO. Indeed, we will see that for ZIP codes

in particular the CLWW leakage reveals nearly every bit of

every plaintext.

The CLWW attack. Because the scheme leaks the index

of the first bit that differs between two ciphertexts and the

ordering of their underlying plaintexts, it also leaks the value
of the plaintext bit at that index: the lesser plaintext has a 0 at

that position, and the greater plaintext has a 1. We now detail

how to take advantage of this leakage. Like the attack against

BCLO in the last section, we first compute leakage, modify

the bipartite graph to include only viable solutions relative to

this leakage, and then apply the non-crossing attack.

665



Birthdates ZIP codes First names Last names

CLWW ORE
Raw RR 98 97 98 75
Unique RR 90 77 79 47

Composed ORE
Raw RR 86 11 85 44
Unique RR 61 8 48 18

Figure 8: Results of CLWW and decomposition attacks.

In more detail, for each ciphertext, compute the leaked

bit relative to every other ciphertext in the database. This

gives the values of bits at certain positions in the plain-

text, which we can represent as a list of pairs L(c) =
((p0, b0), . . . , (p�, b�)). Then, initialize a bipartite graph G =
(U, V,E) as per the BCLO attack. The edge set E is initially

empty. An edge (i, j) corresponding to ciphertext ci and aux-

iliary datum zj is added only if for each (pk, bk) pair in L(ci),
the value of the pk bit position of zj equals bk. Such edges

are given weight as in the non-crossing attack. Finally, the

adversary solves the non-crossing bipartite matching problem

and outputs the resulting guesses.

CLWW attack results. Recovery rates for our CLWW

are presented in Figure 8. For first and last names, the

average raw recovery rate across all datasets for the attack

against CLWW is 98% and 75%. When these percentages

are taken as a fraction of the “maximum” recovery rate,

meaning names that cannot be matched are not included,

the recovery rate for first names is 98% on average, and

85% on average for last names. Our attack against CLWW

is nearly as accurate as the attack against BCLO, meaning

that despite the difference in leakage profiles (and proofs

by CLWW that it leaks less for uniform plaintexts), the

leakage is, in effect, the same for our non-uniform plaintext

distributions. For first and last names, the ORE leakage by

itself removes most of the uncertainty from the ciphertexts.

We can measure this explicitly by looking at the number of

auxiliary data elements that have the same bits in the same

positions as those that are leaked from a ciphertext. These are

the auxiliary elements that will have edges to this ciphertext

in the graph G above. For first names on average, there were

only four such elements in the auxiliary data. For last names

on average there were nineteen elements. The variance in

this number was quite high for last names — there was one

dataset whose average was only 1.3 elements, but another

dataset whose average was 148 elements.

The recovery rates for birthdates and ZIP codes show that

the CLWW attack is quite devastating, recovering almost

100% of values. This is better than the attack against BCLO,

suggesting that empirically at least, there are realistic distri-

butions for which CLWW performs poorly. The reason is that

the birthdates and ZIP codes target datasets contain a large

fraction of the possible plaintexts, for example the ZIP codes

dataset has about 56% of the approximately 40,000 possible

values. In such a situation, the leakage of CLWW is very

bad: 85% of all plaintext bits were immediately leaked by

inddiff. The non-crossing step has little trouble recovering the

remaining unknown bits.

Composed OPE and ORE. CLWW also suggest that one

might improve security by first encrypting with an OPE

scheme and then double-encrypting using an ORE scheme.

They argue that this at least inherits the security of the OPE

scheme, and may do even better. We refer to this as the

composed scheme, and investigate it for the case of applying

first the BCLO scheme and then the CLWW scheme.

The decomposition attack. We can combine the CLWW

and BCLO attacks to recover a smaller prefix of the message

(than would be revealed directly by BCLO ciphertexts). At

a high level the attack will simply compute the individual

bits leaked by CLWW, which are now intermediate BCLO

OPE ciphertext bits. We can nevertheless still use these bits

to define a window within which the plaintext falls with high

probability. The window now will be larger, because we must

conservatively span the windows for all possibilities of the

unknown intermediate ciphertext bits. In turn, larger windows

mean a smaller prefix being leaked. In more detail the attack

works as follows, given target ciphertext C = {c0, . . . , cn}
and auxiliary data Z = {z0, . . . , zψ}.

In the first step, the adversary computes the CLWW leak-

age for each ciphertext, resulting in a list of pairs for each

ciphertext L(ci) = ((p0, b0), . . . , (p�, b�)). Note that the

bit values b0, . . . , b� are not plaintext values, but rather the

intermediate OPE ciphertext bits. Form a bit string for each

ciphertext ci by setting bit pi to bi and all other bits to zero.

Call this bit string cL
i . Form another bit string cR

i similarly,

except now setting bits whose positions do not appear in the

list to one. The true intermediate ciphertext must lie in the

range [cL
i , c

R
i ].

Now the attacker computes a BCLO leakage window that

contains the leakage windows for both cL
i and cR

i . Do so

by computing the leakage for each of those two ciphertexts,

and then taking the lower bound on the window for cL
i and

the upper bound on the window for cR
i . Call this range Rci .

The probability (for uniformly-sampled messages) that the

message lies in this range is at least the same probability for

the BCLO leakage function, since the range is computed in

the same way but is larger.

Initialize a bipartite graph G = (U, V,E) as before, and

add edge (ci, zj) only if zj ∈ Rci . Weight edges as before,
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by the distance in frequencies. Finally solve the non-crossing

bipartite matching instance and output the associated guesses.

Decomposition attack results. Recovery rates for the de-

composition attack are also presented in Figure 8. Compo-

sition does reduce attack efficacy, suggesting the CLWW

intuition about composition improving security is sound, with

average raw recovery rates of 85% and 44% for first and

last names. This is about two percent and seven percent

better for first and last names than the attacks with just order

and frequency leakage discussed in Section IV. When taken

as a percentage of the “maximum”, the recovery rates are,

on average, 86% for first names and 50% for last names.

Composition also seems to improve security for birthdates

and ZIP codes, reducing the raw recovery rates by 13%

and 86% respectively. These are still much better than the

corresponding numbers from Section IV. Unfortunately, this

reduction in attack efficacy is probably not enough to con-

clude security, and it may be that one can improve on our

composition attack somehow.

VII. KNOWN-PLAINTEXT ATTACKS

The threat models considered in the OPE literature thus

far have excluded known- and chosen-plaintext attacks. In

some use-cases of OPE/ORE, untrusted parties may not be

able to know or add values. However, this assumption seems

unfounded in many practical scenarios, as we now discuss.

Adversarial capabilities in practice. Recall from

Section II that ORE and OPE are often deployed to encrypt

customer data ultimately stored in customer relationship

management systems such as Salesforce. A typical practice

of companies is to allow any website visitor to download

technical reports if they provide some personal information

in a contact form. This technique, sometimes referred to as

marketing automation, is widely used. For those companies

that use encryption tools, the information entered in these

forms is automatically encrypted and then stored in a cloud

service used for marketing analytics.

This immediately gives rise to the ability to mount chosen-

plaintext attacks. The adversary can fill out the form as

desired, and later see the encryptions of this data in the

database. It will be apparent to the adversary what encryp-

tions relate to the adversarially chosen inputs, if for no other

reason than the timing of submission of data and receipt of

new encrypted database items. A similar (albeit artificial)

example of a chosen-plaintext oracle on email encrypted

with OPE was given in a technical report by Kolesnikov and

Shifka [27]. As far as we know, we are the first to report on

a chosen-plaintext attack on OPE which arose naturally from

a customer use case. A diagram of the attack is shown in

Figure 9.

There exists a folklore chosen-plaintext attack against any

OPE construction that allows an adversary to learn every bit

of a plaintext from a ciphertext given only log(M) encryption

Figure 9: A chosen-plaintext attack against cloud-hosted marketing
automation

oracle queries, where M is the size of the ciphertext space.

Call the ciphertext the adversary wants to decrypt ct. The

attack is a simple binary search, as follows: first the adversary

queries the plaintext M2 and gets a ciphertext c1. If c1 < ct it

queries M
4 , else it queries 3M

4 . It repeatedly halves the range

until it finds the point pt whose ciphertext is ct.

Since this attack can trivially recover every plaintext from

any message distribution, we will not present results for it

in this work. We will instead look at the weaker assumption

where the plaintexts are known but not chosen, which may

make the attack even easier to mount in practice. As we

show below, just a handful of known values combined with

inference is enough to improve success rates. It may be

interesting to explore weaker versions of the chosen-plaintext

setting, such as one where the adversary has a limited number

of queries or must choose its queries non-adaptively. We

expect these attacks to perform even better than the ones

presented below, but we leave detailed investigation to future

work.

The partitioning attack. We now sketch a simple, generic

approach to taking advantage of known or chosen plaintexts.

It can be used against any scheme that leaks at least fre-

quency and order, and in conjunction with any of the chosen-

ciphertext inference attacks against such schemes.

Assume the attacker is given not only the ciphertext se-

quence C = (c1, . . . , cn) and auxiliary information Z =
(z1, . . . , zψ), but also the plaintexts for some q < n of these

ciphertexts. The adversary knows the positions of these q
ciphertexts, let those positions be p1, . . . , pq . For notational

simplicity assume that p1 > 1 and pq < n.

The adversary can then partition the inference problem

for the n ciphertexts into (at most) q + 1 sub-problems

by splitting at each location pi. In more detail, for each

1 ≤ i ≤ q and letting p0 = 1 and pq+1 = n, define the

new problem instances to be Ci = (cpi−1+1, . . . , cpi−1) and

Zi = (zpi−1+1 , . . . , zpi−1). Each (Ci, Zi) pair we can then

run independently using whichever ciphertext-only inference

attack we prefer. The adversary then takes the union of the

resulting guesses, adds the q known plaintexts to this solution

appropriately, and outputs the result as its guess.
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Birth dates ZIP codes
0.25% 2.75% 5.25% 0.25% 2.75% 5.25%

Raw RR 90 95 96 22 51 61
Unique RR 68 78 81 14 35 41

Figure 10: Known-plaintext attacks on Birth dates and ZIP codes
with order and frequency leakage. Numbers in the second row refer
to the percentage of known plaintexts.

Results. We perform experiments using the partitioning

attack together with the non-crossing attack using just fre-

quency and order leakage. While the attack increases suc-

cess for the BCLO, CLWW, and decomposition attacks as

well, the relative gain will be more modest as those attacks

(without known plaintexts) already perform well. To enable

comparison across the various names datasets, we set the

number of known plaintexts to be a fraction of the total

number of target plaintexts. We experiment with 0.25%,

2.75%, and 5.25% of randomly-sampled plaintexts being

known by the adversary. These correspond to somewhere

between 5 and 300 plaintexts for 0.25% and 150 and 6,000

plaintexts for 5.25%, depending on the dataset. Recovery

rates are averaged over five trials. Because the distribution

is uniform over unique names and first and last names are

long-tailed in terms of frequency, the raw frequency of the

randomly-sampled known plaintexts was very low in all

experiments. Intuitively, this is because only a small fraction

of unique names have high frequency; most occur only once

or twice. Birthdates and ZIP codes have a flatter distribution,

so the sampled plaintexts had very low frequency there as

well.

Figure 10 shows the results of our known-plaintext parti-

tioning attack for 0.25%, 2.75%, and 5.25% of the unique

birthdates and ZIP codes. The partitioning attack performs

extremely well for birthdates. With only 0.25% of values

known, the raw recovery rate jumps from less than one

percent (in our attack with no known plaintexts) to nearly

90%. This jump can be attributed to the density of birth

months and days for high-frequency years. Since the known

plaintexts will, with high probability, reveal the year of most

birth dates by upper- and lower-bounding unknown values,

the non-crossing attack simply matches the days of the year

in sequence. Another way of looking at this is that once the

partitioning occurs, the non-crossing attack just performs a

kind of sorting attack on the days in each partition. This

“density” property is not specific to our datasets — any

real birthdate dataset of comparable size to ours will have

this density property. The partitioning attack also increases

accuracy for ZIP codes substantially.

For first names, the increase in average recovery rates was

modest. For 0.25% the average was 84%, only about 0.5%

higher than the attack with no known plaintexts. With 5.25%
the average was 87%, again a modest gain. The non-crossing

attack with no known values already does quite well for

first names, so having known plaintexts can only aid us in

recovering very low-frequency values. For last names the

known plaintexts had a bigger effect. Compared to a 38%
average with no known plaintexts, having 0.25% of values

known gives a 40% average, and having 5.25% of values

known gives a large increase to 49% on average. The standard

deviation of attacks on first names was around 7%, and for

last names it was between 11% and 14%.

VIII. ATTACKING FREQUENCY-HIDING SCHEMES

All our previous attacks are against deterministic OPE and

ORE schemes. OPE and ORE are not inherently determinis-

tic but no security notions or constructions of randomized

OPE/ORE were known until recently. The first notion of

security for randomized ORE was provided by Boneh et

al. [7], and they also give a scheme based on multilinear

maps that provably meets their definition. A more efficient

randomized OPE scheme was proposed by Kerschbaum [25]

along with a suitable security notion it was shown to provably

meet. The scheme preserves order by storing state (in the

form of a binary search tree) on the client. When a value

is added, the tree is traversed as it would be in a standard

binary tree insertion operation. If the value to be inserted is

already present in the tree, randomness is used to choose a

new ciphertext for the value, while preserving order.

The Kerschbaum scheme is requires an interactive pro-

tocol, and the client must store state whose size is propor-

tional to the number of elements in the database. It also

has mutable ciphertexts. All these issues are inherent hurdles

to deployment. Nevertheless, there may in the future be

settings in which deployment is feasible, or other schemes

may be produced that hide frequency while being more

practical. We therefore seek to analyze security of schemes

that only leak order. To that end, we will describe a simple

attack that targets high-frequency elements of a distribution

by estimating where the ciphertexts of those elements are

relative to the others. We call this attack the “binomial” attack

because it uses a simple biased-coin model to estimate the

locations of plaintexts.

Plaintext ranges and coin flips. We’ll start with some

preliminaries. Let C = (c1, . . . , cn) be an ordered list

of (randomized) ciphertexts. For simplicity, assume each

ciphertext is an encryption of some element of the attacker’s

auxiliary data Z. As in all our attacks, the basic task we

need to perform is a kind of labelling or matching — given a

ciphertext, we need to guess what is its underlying plaintext.

None of our prior approaches apply here, though, since

frequency is not leaked. So, more precisely, we need to find

the range of ciphertexts which are all encryptions of the same

underlying plaintext. Let the plaintext whose range we’re

trying to find be zi. The encryptions of zi are, by correctness,

a contiguous sub-list of C, and we need to find the first and
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c1 cn< zi

�

zi

u

> zi

Figure 11: Pictorial aid for explaining the binomial attack. To
recover the plaintext zi, the attacker must locate the range [�, u]
of ciphertexts whose encryptions are zi.

last indices of this sub-list. In Figure 11 these two indices are

denoted � and u. We can estimate � and u using two simple

observations.

The first observation is that if we know �, we can esti-

mate u by estimating the number of times the element zi
occurs in an n-element draw with replacement from Z. If zi
is drawn k times, then u = k+ �. With the auxiliary data Z,

estimating k is trivial: if fzi is the probability of drawing zi,
the distribution of k is the number of times heads occurs in n
flips of a biased coin where the probability of a single head

is fzi . Thus, the expected value of k is n · fzi .
We know how to estimate the upper bound given the lower

bound, so to finish we only need to show how to estimate

the lower bound. Our second observation is that if we can

estimate the number of elements of Z strictly less than zi in

our sample, call this number j, then we know � right away.

Namely, � = j + 1. In Figure 11 this is the dashed blue

region labelled “< zi”. Estimating j is, again, another biased

coin model: if f<zi is the total probability of all elements

strictly less than zi, the distribution of j is the number of

heads in n flips of a biased coin, where heads occurs with

probability f<zi . The expected value of j is n · f<zi .
Confidence intervals. To account for deviations from the

expected values of � and u which can happen by chance,

we will instead bound the values � and u using Hoeffding’s

inequality. This inequality says that for n i.i.d. tosses of a

coin which returns heads with probability p, for any ε > 0,

the number of heads H(n) obeys the inequality

Pr [ (p− ε)n ≤ H(n) ≤ (p+ ε)n ] ≥ 1− 2e−2ε2n .

Clearly, a larger ε leads to a larger range of possible values

for H(n), which compensates for more uncertainty about the

exact plaintext distribution. However, a larger ε also lowers

the precision (i.e., causes false positives) and can cause

ranges to overlap, which requires special handling (as we will

describe below). Using the bound, an ε can be computed for

any desired confidence d ∈ [0, 1] as

ε =

√
log 1−d

2

−2n .

To sum up, for plaintext zi with fzi and f<zi defined

above, we will estimate the range [�, u] for zi as in Figure 11

as [
(f<zi − ε)n , (f<zi + ε)n+ (fzi + ε)n

]
.

First names Last names
Rank RR Rank RR

1 94 6 100
2 91 7 95
3 85 8 83
4 89 9 94
5 72 10 72

Rank RR Rank RR
1 83 6 98
2 63 7 82
3 87 8 62
4 100 9 74
5 37 10 63

Figure 12: Average recovery rates (RR) for top ten first and last
names in the auxiliary data with our binomial attack. Rank refers to
its position in the histogram sorted descending by frequency.

This takes the lower bound of the estimate for � and the upper

bound of the estimate for u.

There is one issue of practical importance we have not

resolved: if ranges for two different plaintexts overlap, the

attacker has some ambiguity about which guess is correct.

In our implementation, we resolve overlaps by splitting the

range proportional to the probabilities of the two elements.

So, for example, if ranges corresponding to plaintexts zi and

zj overlap, we allot a fraction fzi/(fzi + fzj ) of the overlap

to plaintext zi and fzj/(fzi + fzj ) to plaintext zj . This is

a heuristic that seems to work well, but a more principled

approach may be possible.

Running the binomial attack. To actually run the bi-

nomial attack to recover plaintexts from an ordered list of

ciphertexts (c1, . . . , cn) of size n, choose the first k highest

frequency plaintext elements Z ′ = {z1, . . . , zk} in the

auxiliary data. For each zi, compute the range [�zi , uzi ]
using the method described above and output the mapping

(zi, {c�, c�+1, . . . , cu}).
The attacker can target any number k of the highest-

frequency elements of the plaintext distribution. There is a

point of diminishing returns, though: when an element is

too low-frequency we will fail to find any of its ciphertexts

because small mismatches between the predicted and actual

frequency will cause its ciphertexts to be shifted entirely out

of the predicted range.

Results. For all experiments we computed the interval

width ε using confidence d = 0.99. Our recovery rates for

birthdates and ZIP codes were low. However, our prefix

recovery rate was 37% for birthdates, one full character

over the baseline on average. This means our hypothetical

attacker can (on average) learn the decade of birth for some

records in the database. Our prefix recovery rate for ZIP

codes was 12%. Our attack did not perform particularly well

for ZIP codes, which is unsurprising — its distribution is

closer to uniform than the others.

For first and last names we will discuss two different

notions of “recovery rate”. Since we are explicitly attack-

ing certain elements of the distribution, one logical way to

quantify recovery is as the fraction of ciphertexts of elements

we attacked that we correctly matched to their underlying

plaintext. We will refer to this as “average recovery rate

for the top k names”. The other notion of “recovery rate”
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is the standard one from above — namely, the number of

correctly recovered ciphertexts divided by the total number

of ciphertexts.

Recovery rates for the top 10 highest-frequency first and

last names (i.e., k = 10 in the attack description above)

are presented in Figure 12. For first names, we recovered

the name “michael” with 94% accuracy on average. For last

names, we recovered the name “brown” with 100% accuracy

in all datasets. The average recovery rate for the top 10

most frequent first names was 86%, and for the top 10 most

frequent last names was 76%. Attacking only the top 10 most

frequent names, the average whole-dataset recovery rate for

first names was 21% and for last names was 4%.

Attacking the top 40 most frequent names, the whole-

dataset recovery rates go up (to 30% for first names and 7%

for last names) but the per-name recovery rates are lower.

For example, when attacking the top 40 first names we only

recover 58% of the “michael”s on average. Note that this

whole-dataset recovery rate for last names is actually higher
than the corresponding recovery rate for the NKW greedy

attack on last names discussed in Section IV, despite the

fact that this attack (unlike NKW greedy) does not use any

frequency information.

One would expect that recovery rates might go down for

lower-frequency names, but the results suggest that some

lower-frequency names have higher recovery rates. This is

because of overlaps. For example, the names “james” and

“john” are lexicographically close, so fixing the overlaps in

their intervals introduces dataset-dependent error. This is also

the reason why the recovery rates for some names go down

as we attack more names (e.g., “michael” with k = 10 vs.

k = 40 in the previous paragraph).

Attack variants. The attack’s use of confidence intervals

allows the attacker to tune the precision/recall trade-off of the

attack. For example, if the attacker only cares about attacking

those people named “michael” but wants to be very sure only

“michael”s are attacked, it can lower the confidence value d
above to make fewer guesses which have high precision. If it

wants to maximize recall, it can instead set the d value very

close to 1.

We leave exploring the trade-off between accuracy and the

confidence value as an open problem. An interesting setting is

one in which the attacker has some model of the discrepancy

between its auxiliary data and the true plaintext distribution.

With this, an attacker could use different confidence values

for different plaintexts.

The bigger picture. Stepping back, we should reflect on

the implication of these results for the security of any OPE

or ORE. Our results show that high-frequency elements

encrypted with OPE or ORE can be reliably recovered (with

probability many times better than the baseline) even if their
frequency is not leaked. This raises questions about the fitness

of OPE and ORE for the highly non-uniform distributions

that arise in practice.

IX. RELATED WORK

Property-revealing encryption schemes. The study of en-

cryption schemes that reveal order was initiated by Agrawal

et al. [1], who constructed a scheme that preserved the order

property for numeric inputs, but lacked provable guarantees.

The first study of OPE with reductionist security guarantees

was due to BCLO [5]. Their scheme’s window one-wayness

security was subsequently analyzed by Boldyreva, Chenette,

and O’Neill [6]. We use their analysis in our attacks against

the BCLO scheme, as discussed in Section V.

In [6], it was shown that any OPE scheme provably leaking

only frequency and order must have exponentially large

ciphertexts. Popa et al. [37] extended this negative result

to cover stateful, interactive schemes that have immutable

ciphertexts. They also introduced an interactive OPE scheme

with mutable ciphertexts that leaks at most order and fre-

quency information. Kerschbaum and Schröpfer propose a

more efficient interactive OPE scheme [26]. Our attacks in

Section IV work against these schemes. Later, Kerschbaum

proposed a frequency-hiding, interactive OPE scheme [25],

our attack in Section VIII applies to this scheme.

ORE was introduced by Boneh et al. [7] with the hope of

providing better security while still allowing order compar-

ison. Their scheme relies on multilinear maps [18], making

them currently inefficient [29] and potentially insecure given

doubt about the validity of cryptographic hardness assump-

tions related to multilinear maps [2, 21, 33]. Our attack in

Section VIII would affect these schemes. CLWW provide a

practical ORE scheme that also leaks frequency [12], our

attacks in Section VI affect this scheme, as well as their sug-

gestion of composing OPE with ORE. Lewi and Wu [30] de-

veloped a new ORE construction that leaks less than CLWW,

but does not achieve ideal leakage. Their construction is

elegant but is not yet practical due to large ciphertext sizes.

For security parameter λ ≈ 128 and plaintext domain of

size n, their ciphertexts require O(λn) space.

Schemes supporting range queries Recent schemes [16,

30,41] have been developed that only support range queries.

Lewi and Wu’s scheme [30] can be modified to support

only range queries. Their modified scheme has security sim-

ilar to the frequency-hiding scheme of Kerschbaum, and is

vulnerable to our attacks on that scheme. The scheme of

Roche et al. [41] is designed with the assumption that not

all values will be queried. This assumption allows them

to achieve stronger security at the cost of applicability to

most applications of ORE. Faber et al. [16] adapt the OXT

searchable encryption protocol of Cash et al. [11] to support

range queries by transforming them into disjunctive queries,

but at the cost of a very large increase in database size.
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To enable range queries on a column containing M n-

bit values with security parameter λ ≈ 128, they require

size O(λM logn). Their scheme does resist offline inference

attacks, but the large increase in space complexity greatly

diminishes its practical deployability. Since these are not

ORE schemes they are outside the scope of this work.

Systems using ORE/OPE. Several companies and ser-

vices advertise encryption that preserves functionality, in-

cluding CipherCloud and Skyhigh Networks [13, 22, 36, 43].

CryptDB [38,40] was the first system in the academic litera-

ture that introduced a scheme for running a large subset of the

SQL language on the server side, given an encrypted database

(EDB). It used deterministic encryption and OPE, as well as

standard encryption. Since then, the popularity of EDBs has

increased. Many companies such as IQrypt [22] and SAP [42]

are producing their own CryptDB-inspired solutions. Some

more recent academic systems use OPE or ORE as well, such

as Seabed [35] and Minicrypt [48].

Attacks against property-revealing encryption. Inference

attacks were first considered against searchable symmetric

encryption [14, 44] by Islam, Kuzu, and Kantarcioglu [23]

with subsequent improvements and investigation of active

attacks by Cash et al. [10] and Zhang et al. [47]. Grubbs

et al. [19] presented an active attack against the multi-user

searchable encryption scheme used in Mylar [39]. Naveed et

al. [34] were the first to consider inference attacks against

CryptDB-style EDBs, as discussed in Section IV.

Concurrent work. In a concurrent and independent work,

Durak, DuBuisson, and Cash [15] show how the sorting

attack from NKW [34] can be extended to the multi-column

case, when two or more columns contain correlated data.

They demonstrate that multi-column attacks are more devas-

tating than separate attacks on individual columns. They also

show attacks on non-ideal OPE/ORE schemes that leak more

than the order and frequency of the ciphertexts, including the

BCLO scheme. Their primary focus is sparse datasets such

as GPS coordinates, and do not look at names, birthdates, or

ZIP codes as we consider in our running case study.

Durak et al. do not exploit auxiliary information, and

instead rely only on leakage, whereas our attacks show

how to both exploit leakage by itself and to augment an

auxiliary-information-using inference attack. Their attacks

therefore only provide approximate recovery of plaintexts

(e.g., determining that a plaintext lies within some 10km

radius), whereas our attacks recover entire plaintexts, and in

many cases fully recover most records in a database.

X. CONCLUSION AND FUTURE WORK

In this work we have studied the security of OPE and ORE

as they are used in real systems. We developed new cryptan-

alytic techniques for several extant OPE and ORE schemes

and evaluated them experimentally by performing plaintext

recovery attacks against first and last names, birthdates, and

ZIP codes from several real datasets. Our attacks are effective

in fully recovering plaintexts from OPE and ORE ciphertexts.

Our work here has been empirical, but we believe our

attacks will prove effective against many other kinds of data

sets used in practice. We also leave as an open question

providing a more formal analysis of inference attacks. Future

work could also develop adaptive inference attacks, where

an attacker can make a limited number of adaptive chosen

plaintext queries while running an inference attack.

Our results suggest that OPE/ORE often provides only

marginal security for an important usage case. We believe

the results will generalize to other use cases. We also do not

know if these attacks are optimal, so future work may surface

even more damaging attacks. Given all this, we recommend

practitioners avoid using OPE/ORE if possible. In some

deployment scenarios the only practical alternative in the

short term is leaving data in the clear, and here OPE/ORE

is clearly better than no encryption. For such cases, we hope

our methodologies can be used to help evaluate the security

achieved.
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