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Abstract—Software deobfuscation is a crucial activity in secu-
rity analysis and especially in malware analysis. While standard
static and dynamic approaches suffer from well-known short-
comings, Dynamic Symbolic Execution (DSE) has recently been
proposed as an interesting alternative, more robust than static
analysis and more complete than dynamic analysis. Yet, DSE ad-
dresses only certain kinds of questions encountered by a reverser,
namely feasibility questions. Many issues arising during reverse,
e.g., detecting protection schemes such as opaque predicates, fall
into the category of infeasibility questions. We present Backward-
Bounded DSE, a generic, precise, efficient and robust method
for solving infeasibility questions. We demonstrate the benefit
of the method for opaque predicates and call stack tampering,
and give some insight for its usage for some other protection
schemes. Especially, the technique has successfully been used
on state-of-the-art packers as well as on the government-grade
X-Tunnel malware – allowing its entire deobfuscation. Backward-
Bounded DSE does not supersede existing DSE approaches, but
rather complements them by addressing infeasibility questions
in a scalable and precise manner. Following this line, we propose
sparse disassembly, a combination of Backward-Bounded DSE
and static disassembly able to enlarge dynamic disassembly in
a guaranteed way, hence getting the best of dynamic and static
disassembly. This work paves the way for robust, efficient and
precise disassembly tools for heavily-obfuscated binaries.

I. INTRODUCTION

Context. Obfuscation [1] is a prevalent practice aiming at

protecting some functionalities or properties of a program. Yet,

while its legitimate goal is intellectual property protection,

obfuscation is widely used for malicious purposes. Therefore,

(binary-level) software deobfuscation is a crucial task in reverse-

engineering, especially for malware analysis.

A first step of deobfuscation is to recover the most accurate

control-flow graph of the program (disassembly), i.e., to recover

all instructions and branches of the program under analysis.

This is already challenging for non-obfuscated codes due to

tricky (but common) low-level constructs [2] like indirect

control flow (computed jumps, jmp eax) or the interleaving

of code and data. But the situation gets largely worst in the

case of obfuscated codes.

� Work partially funded by ANR, grant 12-INSE-0002.

Standard disassembly approaches are essentially divided

into static methods and dynamic methods. On one hand, static

(syntactic) disassembly tools such as IDA or Objdump have

the potential to cover the whole program. Nonetheless, they

are easily fooled by obfuscations such as code overlapping

[3], opaque predicates [4], opaque constants [5], call stack

tampering [6] and self-modification [7]. On the other hand,

dynamic analysis cover only a few executions of the program

and might miss both significant parts of the code and crucial

behaviors. Dynamic Symbolic Execution (DSE) [8], [9] (a.k.a

concolic execution) is a recent and fruitful formal approach to

automatic testing, recently proposed as an interesting approach

for disassembly [10], [11], [12], [13], [14], more robust than

static analysis and covering more instructions than dynamic

analysis. Currently, only dynamic analysis and DSE are robust
enough to address heavily obfuscated codes.

Problem. Yet, these dynamic methods only address reachability

issues, namely feasibility questions, i.e., verifiying that certain

events or setting can occur, e.g., that an instruction in the code

is indeed reachable. Contrariwise, many questions encountered

during reversing tasks are infeasibility questions, i.e., checking
that certain events or settings cannot occur. It can be used

either for detecting obfuscation schemes, e.g., detecting that a

branch is dead, or to prove their absence, e.g., proving that a

computed jump cannot lead to an improper address.

These infeasibility issues are currently a blind spot of
both standard and advanced disassembly methods. Dynamic

analysis and DSE do not answer the question because they only

consider a finite number of paths while infeasibility is about

considering all paths. Also, (standard) syntactic static analysis

is too easily fooled by unknown patterns. Finally, while recent

semantic static analysis approaches [15], [13], [16], [17] can

in principle address infeasibility questions, they are currently

neither scalable nor robust enough.

At first sight infeasibility is a simple mirror of feasibility,

however from an algorithmic point of view they are not the

same. Indeed, since solving feasibility questions on general

programs is undecidable, practical approaches have to be one-

sided, favoring either feasibility (i.e., answering “feasible” or
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"don’t know”) or infeasibility (i.e., answering "don’t know” or

“infeasible”). While there currently exist robust methods for

answering feasibility questions on heavily obfuscated codes,

no such method exist for infeasibility questions.

Goal and challenges. In this article, we are interested in

solving automatically infeasibility questions occurring during

the reversing of (heavily) obfuscated programs. The intended

approach must be precise (low rates of false positives and false

negatives) and able to scale on realistic codes both in terms

of size (efficient) and protection – including self-modification

(robustness), and generic enough for addressing a large panel

of infeasibility issues. Achieving all these goals at the same

time is particularly challenging.

Our proposal. We present Backward-Bounded Dynamic Sym-
bolic Execution (BB-DSE), the first precise, efficient, robust

and generic method for solving infeasibility questions. To

obtain such a result, we have combined in an original and

fruitful way, several state-of-the-art key features of formal

software verification methods, such as deductive verification

[18], bounded model checking [19] or DSE. Especially, the

technique is goal-oriented for precision, bounded for efficiency

and combines dynamic information and formal reasoning for

robustness.

Contribution. The contribution of this paper are the following:

• First, we highlight the importance of infeasibility issues in

reverse and the urging need for automating the investiga-

tion of such problems. Indeed, while many deobfuscation-

related problems can be encoded as infeasibility questions

(cf. Section V) it remains a blind spot of state-of-the-art

disassembly techniques.

• Second, we propose the new Backward-Bounded DSE
algorithm for solving infeasibility queries arising during

deobfuscation (Section IV). The approach is both precise

(low rates of false positives and false negatives), efficient

and robust (cf. Table I), and it can address in a generic

way a large range of deobfuscation-related questions –

for instance opaque predicates, call stack tampering or

self-modification (cf. Section V). The technique draws

from several separated advances in software verification,

and combines them in an original and fruitful way. We

present the algorithm along with its implementation within

the BINSEC open-source platform 1 [20], [21].

• Third, we perform an extensive experimental evaluation

of the approach, focusing on two standard obfuscation

schemes, namely opaque predicates and call stack tam-
pering. In a set of controlled experiments with ground
truth based on open-source obfuscators (cf. Section

VI), we demonstrate that our method is very precise

and efficient. Then, in a large scale experiment with
standard packers (including self-modification and other

advanced protections), the technique is shown to scale on

realistic obfuscated codes, both in terms of efficiency and

robustness (cf. Section VI).

1http://binsec.gforge.inria.fr/

• Finally, we present two practical applications of Backward-

Bounded DSE. First, we describe an in-depth case-
study of the government-grade malware X-TUNNEL [22]

(cf. Section VIII), where BB-DSE allows to identify

and remove all obfuscations (opaque predicates). We

have been able to automatically extract a de-obfuscated

version of functions – discarding almost 50% of dead

and “spurious” instructions, and providing an insights

into its protection schemes, laying a very good basis for

further in-depth investigations. Second, we propose sparse
disassembly (cf. Section IX), a combination of Backward-

Bounded DSE, dynamic analysis and standard (recursive,

syntactic) static disassembly allowing to enlarge dynamic

disassembly in a precise manner – getting the best of

dynamic and static techniques, together with encouraging

preliminary experiments.

Discussion. Several remarks must be made about the work

presented in this paper.

• First, while we essentially consider opaque predicates

and call stack tampering, BB-DSE can also be useful in

other obfuscation contexts, such as flattening or virtual-

ization. Also self-modification is inherently handled by

the dynamic aspect of BB-DSE.

• Second, while we present one possible combination for

sparse disassembly, other combinations can be envisioned,

for example by replacing the initial dynamic analysis

by a (more complete) DSE [10] or by considering more

advanced static disassembly techniques [2].

• Finally, some recent works target opaque predicate detec-

tion with standard forward DSE [12]. As already pointed

out, DSE is not tailored to infeasibility queries, while

BB-DSE is – cf. Sections VI and XI.

Impact. Backward-Bounded DSE does not supersede existing

disassembly approaches, it complements them by addressing

infeasibility questions. Altogether, this work paves the way for

robust, precise and efficient disassembly tools for obfuscated

binaries, through the careful combination of static/dynamic and

forward/backward approaches.

TABLE I: Disassembly methods for obfuscated codes

feasibility infeasibility
efficiency robustness

query query

dynamic analysis �/×(†) × � �
DSE � × × �
static analysis � �/×(††) � ×
(syntactic)

static analysis × � × ×
(semantic)

BB-DSE × �(‡) � �
(†): follow only a few traces
(††): very limited reasoning abilities
(‡): can have false positive and false negative, yet very low in practice
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II. BACKGROUND

Obfuscation. These transformations [1] aim at hiding the real

program behavior. While approaches such as virtualization or

junk insertion make instructions more complex to understand,

other approaches directly hide the legitimate instructions of the

programs – making the reverser (or the disassembler) missing

essential parts of the code while wasting its time in dead code.

The latter category includes for example code overlapping,

self-modification, opaque predicates and call stack tampering.

We are interested here in this latter category. For the sake

of clarity, this paper mainly focuses on opaque predicates and

call stack tampering.
• An opaque predicate always evaluates to the same value,

and this property is ideally difficult to deduce. The

infeasible branch will typically lead the reverser (or

disassembler) to a large and complex portion of useless

junk code. Figure 1 shows the x86 encoding of the opaque

predicate 7y2 − 1 �= x2, as generated by O-LLVM [23].

This condition is always false for any values of DS:X,

DS:Y, so the conditional jump jz <addr_trap> is never

going to be taken.

• A (call) stack tampering, or call/ret violation, consists

in breaking the assumption that a ret instruction returns

to the instruction following the call (return site), as

exemplified in Figure 2. The benefit is twofold: the reverser

might be lured into exploring useless code starting from

the return site, while the real target of the ret instruction

will be hidden from static analysis.

mov eax, ds:x
mov ecx, ds:y
imul ecx, ecx
imul ecx, 7
sub ecx, 1
imul eax, eax
cmp ecx, eax
jz <addr_trap> //false jump to junk
.... ........ //real code

Fig. 1: opaque predicate: 7y2 − 1 �= x2

<main>: <fun>:

call <fun> [...]

..... // return site push X

..... // junk code ret //jump to X instead

..... // junk code //of return site

Fig. 2: Standard stack tampering

Disassembly. We call legit an instruction in a binary if it is

executable in practice. Two expected qualities for disassembly

are (1) soundness: does the algorithm recover only legit
instructions?, (2) completeness: does the algorithm recover all
legit instructions? Standard approaches include linear sweep,
recursive disassembly and dynamic disassembly.

• Recursive disassembly statically explores the executable

file from a given (list of) entry point(s), recursively

following the possible successors of each instruction. This

technique may miss a lot of instructions, typically due

to computed jumps (jmp eax) or self-modification. The

approach is also easily fooled into disassembling junk code

obfuscated by opaque predicates or call stack tampering.

As such, the approach is neither sound nor complete.

• Linear sweep linearly decodes all possible instructions

in the code sections. The technique aims at being more

complete than recursive traversal, yet it comes at the price

of many additional misinterpreted instructions. Meanwhile,

the technique can still miss instructions hidden by code

overlapping or self-modification. Hence the technique is

unsound, and incomplete on obfuscated codes.

• Dynamic disassembly retrieves only legit instructions and

branches observed at runtime on one or several executions.

The technique is sound, but potentially highly incomplete

– yet, it does recover part of the instructions masked by

self-modification, code overlapping, etc.

For example, while Objdump is solely based on linear

sweep, IDA performs a combination of linear sweep and

recursive disassembly (geared with heuristics).

Dynamic Symbolic Execution. Dynamic Symbolic Execution

(DSE) [9], [8] (a.k.a concolic execution) is a formal technique

for exploring program paths in a systematic way. For each path

π, the technique computes a symbolic path predicate Φπ as a

set of constraints on the program input leading to follow that

path at runtime. Intuitively, Φπ is the conjunction of all the

branching conditions encountered along π. This path predicate

is then fed to an automatic solver (typically a SMT solver

[24]). If a solution is found, it corresponds to an input data

exercising the intended path at runtime. Path exploration is

then achieved by iterating on all (user-bounded) program paths,

and paths are discovered lazily thanks to an interleaving of

dynamic execution and symbolic reasoning [25], [26]. Finally,

concretization [25], [26], [27] allows to perform relevant under-

approximations of the path predicate by using the concrete

information available at runtime.

The main advantages of DSE are correctness (no false

negative in theory, a bug reported is a bug found) and robustness
(concretization does allow to handle unsupported features of the

program under analysis without losing correctness). Moreover,

the approach is easy to adapt to binary code, compared to other

formal methods [28], [8], [29], [30]. The very main drawback

of DSE is the so-called path explosion problem: DSE is doomed

to explore only a portion of all possible execution paths. As

a direct consequence, DSE is incomplete in the sense that it

can only prove that a given path (or objective) is feasible (or

coverable), but not that it is infeasible.

DSE is interesting for disassembly and deobfuscation since

it enjoys the advantages of dynamic analysis (especially,

sound disassembly and robustness to self-modification or code

overlapping), while being able to explore a larger set of

behaviors. Yet, while on small examples DSE can achieve
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complete disassembly, it often only slightly improves coverage

(w.r.t. pure dynamic analysis) on large and complex programs.

III. MOTIVATION

Let us consider the obfuscated pseudo-code given in Figure 3.

The function <main> contains an opaque predicate in 1© and

a call stack tampering in 2©.

<main>: <fun1>:

if (C) { 1© .....

call <fun1> push <X> 2©
//junk a© ret

}

else {

call <fun2> b©
}

//junk c© <fun2>:

ret //fake end of fun .... d©
<X>: ret

//payload

Fig. 3: Motivating example

Getting the information related to the opaque predicate and

the call stack tampering would allow:

• 1© to know that <fun1> is always called and reciprocally

that <fun2> is never called. As consequence b© and d©
are dead instructions;

• 2© to know that the ret of <fun1> is tampered and

never return to the caller, but to <X>. As a consequence,
a© and c© are dead instructions, and we discover the real

payload located at <X>.

Hence the main motivation is not to be fooled by such

infeasibility-based tricks that slow-down the program reverse-

engineering and its global understanding.

Applications. The main application is to improve a disassembly

algorithm with such information, since static disassembly will

be fooled by such tricks and dynamic disassembly will only

cover a partial portion of the program. Our goal is to design

an efficient method for solving infeasibility questions. This

approach could then passes the original code annotated with

infeasibility highlights to other disassembly tools, which could

take advantage of this information – for example by avoiding

disassembling dead instructions. This view is depicted in Figure

4, and such a combination is discussed in Section IX.

Fig. 4: motivation schema

Finally, infeasibility information could also be used in other

contexts, e.g. , to obtain more accurate coverage rates in

software testing, or to guide vulnerability analysis.

IV. BACKWARD-BOUNDED DSE

We present in this section the new Backward-Bounded DSE

technique for solving infeasibility queries on binary codes.

Preliminaries. We consider a binary-level program P with

a given initial code address a0. A state s � (a, σ) of the

program is defined by a code address a and a memory state σ,
which is a mapping from registers and memory to actual values

(bitvectors, typically of size 8, 32 or 64). By convention, s0
represents an initial state, i.e., s0 is of the form (a0, σ). The
transition from one state to another is performed by the post
function that executes the current instruction. An execution π
is a sequence π � (s0 · s1 · ... · sn), where sj+1 is obtained by

applying the post function to sj (sj+1 is the successor of sj).

Let us consider a predicate ϕ over memory states. We call

reachability condition a pair c � (a, ϕ), with a a code address.

Such a condition c is feasible if there exists a state s � (a, σ)
and an execution πs � (s0 · s1 · ... · s) such that σ satisfies ϕ,
denoted σ |= ϕ. It is said infeasible otherwise. A feasibility
(resp. infeasibility) question consists in trying to solve the

feasibility (resp. infeasibility) of such a reachability condition.

Note that while these definitions do not take self-modification

into account, they can be extended to such a setting by

considering code addresses plus waves or phases [3], [31].

Principles. We build on and combine 3 key ingredients from

popular software verification methods:

• backward reasoning from deductive verification, for pre-
cise goal-oriented reasoning;

• combination of dynamic analysis and formal methods

(from DSE), for robustness;
• bounded reasoning from bounded model checking, for

scalability and the ability to perform infeasibility proofs.
The initial idea of BB-DSE is to perform a backward

reasoning, similar to the one of DSE but going from successors

to predecessors (instead of the other way). Formally, DSE is

based on the post operation while BB-DSE is based on its

inverse pre. Perfect backward reasoning pre∗ (i.e., fixpoint

iterations of relation pre, collecting all predecessors of a

given state or condition) can be used to check feasibility and

infeasibility questions. But this relation is not computable.

Hence, we rely on computable bounded reasoning, namely

prek, i.e., collecting all the “predecessors in k steps” (k-
predecessors) of a given state (or condition). Given a reachabil-

ity condition c, if prek(c) = ∅ then c is infeasible (unreachable).

Indeed, if a condition has no k-predecessor, it has no k′-
predecessor for any k′ > k and cannot be reached. Hence, prek

can answer positively to infeasibility queries. Yet, symmetry

does not hold anymore, as prek cannot falsify infeasibility
queries – because it could happen that a condition is infeasible

for a reason beyond the bound k. The example in Figures

6 and 7 give an illustration of such a situation. In this case,
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we have a false negative (FN), i.e. a reachability condition

wrongly identified as feasible because of a too-small k.

In practice, when the control-flow graph of the program
(CFG) is available, checking whether prek = ∅ can be easily

done in a symbolic way, like it is done in DSE: the set prek is

computed implicitly as a logical formula (typically, a quantifier-

free first-order formula over bitvectors and arrays), which is

unsatisfiable iff the set is empty. This formula is then passed to

an automatic solver, typically a SMT solver [24] such as Z3.
Moreover, it is efficient as the computation does not depend

on the program size but on the user-chosen bound k.

Yet, backward reasoning is very fragile at binary-level, since
computing a precise CFG may be highly complex because of
dynamic jumps or self-modification. The last trick is to combine

this prek reasoning with dynamic traces, so that the whole

approach benefits from the robustness of dynamic analysis.

Actually, the prek is now computed w.r.t. the control-flow

graph induced by a given trace π – in a dynamic disassembly

manner. We denote this sliced prek by prekπ .

Hence we get robustness, yet since some parts of prek

may be missing from prekπ , we now lose correctness and may

have false positive (FP), i.e., reachability conditions wrongly

identified as infeasible, additionally to the false negative FN

due to “boundedness” (because of too small k). A picture of

the approach is given in Figure 5.

Fig. 5: prek schema

BB-DSE through example. We now illustrate BB-DSE on a

toy example along with the impact of the bound k and of

the (set of) dynamic traces on FP and FN. Figure 6 shows a

simple pseudo-code program, where branch condition x” �=
y’ always evaluate to true (opaque predicate) – as it encodes

condition 7x2 − 1 �= y2 on the program input x and y. The
two other branch conditions can evaluate to both true and

false, depending on the input. Figure 7 shows the partial CFG

obtained by dynamic execution on the toy example, where the

call to function even is inlined for simplicity. We consider

two traces: π1 covers bold edges (true, true), and π2 covers

dash edges (false, false).

<main>: <even(int a)>:

x = input() if (a % 2 == 0) {

y = input() res = 1

x’ = 7*(x*x) }

result = even(y) else {

y’ = y*y res = 0

x”= x’-1 }

if (result) { 1© return res

if(x” �= y’){ 2©
//always taken

}

else {//dead }

}

else {

...

}

Fig. 6: Toy example

Fig. 7: Partial CFG from toy example

Suppose we want to use BB-DSE to prove that branch

condition 2© is indeed opaque, i.e., that x”=y’ is infeasible

at program location 2©. The algorithm goes backward from

program location 2© and predicate x′′ = y′, and gathers back all

dynamic suffixes up to the bound k. Considering only trace π1

(bold edges) and k = 8, we obtain (after substitution): prekπ1
�

7x2 − 1 = y2 ∧ result = 1∧ result �= 0∧ y%2 = 0, which is

UNSAT, as 7x2 − 1 = y2 is UNSAT. Hence, branch condition
2© is indeed proved opaque. In the case where we consider also

π2, then prekπ1,π2
� (7x2 − 1 = y2) ∧ ((y%2 = 0 ∧ result =

1 ∧ result �= 0) ∨ (y%2 �= 0 ∧ result = 0 ∧ result �= 0)),
where prekπ1,π2

is obtained by simplifying the disjunction of

both formulas prekπ1
and prekπ2

. It is easy to see that prekπ1,π2

is also UNSAT. Once again, branch condition 2© is successfully
proved opaque.

We now illustrate the case where our technique misses an
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infeasible condition (FN). Consider once again traces π1, π2

and branch condition 2©, with bound k′ = 3. Then prek
′

π1,π2
�

x′ − 1 = y2 ∧ result �= 0, which is satisfiable (with x′ =
1, y = 0, result = 1). Hence, branch condition 2© is not
proved opaque. We miss here an unfeasible condition because

of a too-small bound k′, yielding a false negative (FN).

Finally, we illustrate the case where our technique can

wrongly identify a condition as infeasible (FP). We are

interested now in deciding whether branch condition 1© can take

value false, i.e., if result can be 0 at program location 1©.

We consider trace π1 and bound k′′ = 4 (or higher). We obtain

prek
′′

π1
� result = 0∧ . . .∧ result = res∧ res = 1, which is

UNSAT, and we wrongly conclude that branch condition 1© is
opaque, because of the missing path where res is assigned

to 0. This corresponds to a false positive (FP). If we consider

also π2, then prek
′′

π1,π2
� result = 0 ∧ x′′ = x′ − 1 ∧ y′ =

y2 ∧ result = res ∧ (res = 1 ∨ res = 0) is satisfiable (with

y′ = y = x′′ = 0, x′ = 1, res = 0) and branching condition
1© is now (correctly) not identified as opaque.

Algorithm. Considering a reachability condition (a, ϕ), BB-

DSE starts with a dynamic execution π:

• if π reaches code address a, then compute prekπ((a, ϕ))
as a formula and solve it

– if it is UNSAT, then the result is INFEASIBLE;

– if it is SAT, then the result is UNKOWN;

– if it is TO (timeout), then the result is TO;

• otherwise the result is UNKOWN.

As a summary, this algorithm enjoys the following good

properties: it is efficient (depends on k, not on the trace or

program length) and as robust as dynamic analysis. On the other

hand, the technique may report both false negative (bound k too

short) and false positive (dynamic CFG recovery not complete

enough). Yet, in practice, our experiments demonstrate that the
approach performs very well, with very low rates of FP and
FN. Experiments are presented in Sections VI, VII and VIII.

We will not distinguished anymore between the predicate ϕ
and the reachability condition (a, ϕ), when clear from context.

Impact of the bound on correctness and completeness. In
the ideal case where the dynamic CFG recovery is perfect

w.r.t. the bound k, i.e., prekπ = prek (all suffixes of size k have

been collected by the trace), the technique has no false positive

FP and the effect of k is (as expected) a tradeoff between

computation cost and false negatives FN: longer suffixes allow

to correctly identify more infeasible conditions. Things are

less intuitive when prekπ is incomplete, i.e. prekπ ⊂ prek.
There, the technique yields also FP because of missing suffixes

(cf. previous example). Since a larger k means more room to

miss suffixes, it yields also more FP. Hence, in the general

case a larger k leads to both less FN and more FP 2.

A straightforward way to decrease the number of FP is

to consider more dynamic traces in order to obtain a “more

complete” dynamic CFG and come closer to the ideal case

2cf. Figure 14 in Appendix.

above (cf. toy example in Figure 7). As such, the technique

can benefit from fuzzing or standard (forward) DSE.

Implementation. This algorithm is implemented on top of

BINSEC/SE [21], a forward DSE engine inside the open-source

platform BINSEC [20] geared to formal analysis of binary codes.

The platform currently proposes a front-end from x86 (32bits)

to a generic intermediate representation called DBA [32]

(including decoding, disassembling, simplifications). It also

provides several semantic analyses, including the BINSEC/SE

DSE engine [21]. BINSEC/SE features a strongly optimized

path predicate generation as well as highly configurable search

heuristics [21], [13] and C/S policies [27]. The whole platform3

amounts for more than 40k of OCaml line of codes (loc).

BINSEC also makes use of two other components. First, the

dynamic instrumentation called PINSEC, based on Pin, in charge

of running the program and recording runtime values along

with self-modification layers. Written in C++ it amounts for

3kloc. Second, IDASEC is an IDA plugin written in Python

(∼13kloc) aiming at triggering analyzes and post-processing

results generated by BINSEC.

The BB-DSE algorithm is tightly integrated in the BINSEC/SE

component. Indeed, when solving a predicate feasibility,

BINSEC/SE DSE performs a backward pruning pass aiming

at removing any useless variable or constraint. BB-DSE works

analogously, but takes into account the distance from the

predicate to solve: any definition beyond the (user-defined)

k bound is removed. In a second phase, the algorithm creates

a new input variable for any variable used but never defined

in the sliced formula. Actually, we do not compute a single

formula for prekπ , but enumerate its suffixes (without repetition)

– this could be optimized. For a given suffix the algorithm

is standard [27]. Yet, we stay in a purely symbolic setting

(no concretization) with formulas over bitvectors and arrays,

making simplifications [21] important.

V. SOLVING INFEASIBILITY QUESTIONS WITH BB-DSE

We show in this section how several natural problems

encountered during deobfuscation and disassembly can be

thought of as infeasibility questions, and solved with BB-DSE.

A. Opaque Predicates

As already stated in Section II, an opaque predicate (OP)

is a predicate always evaluating to the same value. They have

successfully been used in various domains [33], [1]. Recent

works [12] identify three kinds of opaque predicates:

• invariant: always true/false due to the structure of the

predicate itself, regardless of inputs values,

• contextual: opaque due to the predicate and its constraints

on input values,

• dynamic: similar to contextual, but opaqueness comes

from dynamic properties on the execution (e.g., memory).

Approach with BB-DSE. Intuitively, to detect an opaque

predicate the idea is to backtrack all its data dependencies

3http://binsec.gforge.inria.fr/tools
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and gather enough constraints to conclude to the infeasibility

of the predicate. If the predicate is local (invariant), the distance

from the predicate to its input instantiation will be short and the

predicate will be relatively easy to break. Otherwise (contextual,

dynamic) the distance is linear with the trace length, which

does not necessarily scale.
This is a direct application of BB-DSE, where p � (a, ϕ)

is the pair address-predicate for which we want to check for

opacity. We call π the execution trace under attention (extension

to a set of traces is straightforward). Basically, the detection

algorithm is the following:

• if p is dynamically covered by π, then returns FEASIBLE;

• otherwise, returns BB-DSE (p), where INFEASIBLE is

interpreted as “opaque”.

Results are guaranteed solely for FEASIBLE, since BB-DSE has

both false positives and negatives. Yet, experiments (Sections

VI-VIII) show that error ratios are very low in practice.
Concerning the choice of bound k, experiments in Section VI

demonstrates that a value between 10 and 20 is a good choice

for invariant opaque predicates. Interestingly, the X-TUNNEL

case study (Section VIII) highlights that such rather small

bound values may be sufficient to detect opaque predicates

with long dependency chains (up to 230 in the study, including

contextual opaque predicates), since we do not always need to

recover all the information to conclude to infeasibility.

B. Call Stack Tampering
Call stack tampering consists in altering the standard

compilation scheme switching from function to function by

associating a call and a ret and making the ret return to

the call next instruction (return site). The ret is tampered

(a.k.a violated) if it does not return to the expected return site.

New taxonomy. In this work we refine the definition of a stack

tampering in order to characterize it better.

• integrity: does ret return to the same address as pushed

by the call? It characterizes if the tampering takes place

or not. A ret is then either [genuine] (always returns

to the caller) or [violated].
• alignment: is the stack pointer (esp) identical at call

and ret? If so, the stack pointer is denoted [aligned],
otherwise [disaligned].

• multiplicity: in case of violation, is there only one possible

ret target? This case is noted [single], otherwise

[multiple].

Approach with BB-DSE. The goal is to check several properties

of the tampering using BB-DSE. We consider the following

predicates on a ret instruction:

• @[esp{call}] = @[esp{ret}]: Compare the content of the

value pushed at call @[esp{call}] with the one used

to return @[esp{ret}]. If it evaluates to VALID, the

ret cannot be tampered [genuine]. If it evaluates

to UNSAT, a violation necessarily occurs [violated].
Otherwise, cannot characterize integrity.

• esp{call} = esp{ret}: Compare the logical ESP value at

the call and at ret. If it evaluates to VALID, the ret

necessarily returns at the same stack offset [aligned],
if it evaluates to UNSAT the ret is [disaligned].
Otherwise cannot characterize alignment.

• T �= @[esp{ret}]: Check if the logical ret jump target

@[esp{ret}] can be different from the concrete value from

the trace (T ). If it evaluates to UNSAT the ret cannot

jump elsewhere and is flagged [single]. Otherwise

cannot characterize multiplicity.

The above cases can be checked by BB-DSE (for checking

VALID with some predicate ψ, we just need to query BB-DSE

with predicate ¬ψ). Then, our detection algorithm works as

follow, taking advantage of BB-DSE and dynamic analysis:

• the dynamic analysis can tag a ret as: [violated],
[disaligned], [multiple];

• BB-DSE can tag a ret as: [genuine], [aligned],
[single] ([violated] and [disaligned] are

already handled by dynamic analysis).

As for opaque predicates, dynamic results can be trusted,

while BB-DSE results may be incorrect. Table II summarizes

all the possible situations.

TABLE II: Call stack tampering detection

RT Status integrity alignment multiplicity

RT Genuine RT: KO[disaligned]

VALID: [genuine] - VALID: [aligned]

RT Tampered RT: KO[disaligned] RT: (2+)[multiple]

[violated] - VALID: [aligned] - UNSAT: [single]

This call stack tampering analysis uses BB-DSE, but with a

slightly non-standard setting. Indeed, in this case the bound

k will be different for every call/ret pair. The trace is

analysed in a forward manner, keeping a formal stack of call
instructions. Each call encountered is pushed to the formal

stack. Upon ret, the first call on the formal stack is poped

and BB-DSE is performed, where k is the distance between the

call and the ret.
From an implementation point of view, we must take care

of possible corruptions of the formal stack, which may happen

for example in the following situations:

• Call to a non-traced function: because the function is not

traced, its ret is not visible. In our implementation these

calls are not pushed in the formal stack;

• Tail call [2] to non-traced function: tail calls consists in

calling functions through a jump instruction instead of

call to avoid stack tear-down. This is similar to the

previous case, except that care must be taken in order to

detect the tail call.

C. Other deobfuscation-related infeasibility issues

Opaque constant. Similar to opaque predicates, opaque

constants are expressions always evaluating to a single value.

Let us consider the expression e and a value v observed

at runtime for e. Then, the opaqueness of e reduces to the

infeasibility of e �= v.

Dynamic jump closure. When dealing with dynamic jumps,

switch, etc., we might be interested in knowing if all the
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targets have been found. Let us consider a dynamic jump

jump eax for which 3 values v1, v2, v3 have been observed

so far. Checking the jump closure can be done through checking

the infeasibility of eax �= v1 ∧ eax �= v2 ∧ eax �= v3.

Virtual Machine & CFG flattening. Both VM obfuscation

and CFG flattening usually use a custom instruction pointer

aiming at preserving the flow of the program after obfuscation.

In the case of CFG flattening, after execution of a basic block

the virtual instruction pointer will be updated so that the

dispatcher will know where to jump next. As such, we can

check that all observed values for the virtual instruction pointer

have been found for each flattened basic block. Thus, if for

each basic block we know the possible value for the virtual

instruction pointer and have proved it cannot take other values,

we can ultimately get rid of the dispatcher.

A glimpse of conditional self-modification. Self-modification

is a killer technique for blurring static analysis, since the

real code is only revealed at execution time. The method is

commonly found in malware and packers, either in simple

forms (unpack the whole payload at once) or more advanced

ones (unpack on-demand, shifting-decode schemes [34]). The

example in Figure 8 (page 10) taken from ASPack combines

an opaque predicate together with a self-modification trick

turning the predicate to true in order to fool the reverser. Other

examples from existing malwares have been detailed in previous

studies (NetSky.aa [10]).

Dynamic analysis allows to overcome the self-modification

as the new modified code will be executed as such. Yet, BB-

DSE can be used as well, to prove interesting facts about self-
modification schemes. For example, given an instruction known

to perform a self-modification, we can take advantage of BB-

DSE to know whether another kind of modification by the same

instruction is possible or not (conditional self-modification).

Let us consider an instruction mov [addr], eax identified

by dynamic analysis to generate some new code with value

eax = v. Checking whether the self modification is conditional

reduces to the infeasibility of predicate eax �= v.
As a matter of example, this technique has been used on the

example of Figure 8 to show that no other value than 1 can
be written. This self-modification is thus unconditional.

VI. EVALUATION: CONTROLLED EXPERIMENTS

We present a set of controlled experiments with ground truth
values aiming at evaluating the precision of BB-DSE as well

as giving hints on its efficiency and comparing it with DSE.

A. Preliminary: Comparison with Standard DSE

As already stated, forward DSE is not fit to infeasibility

detection, both in terms of scalability and error rate (false

positive, FP), since DSE essentially proves the infeasibility

of paths, not of reachability conditions. The goal of this

preliminary experiment is to illustrate this fact clearly, since

DSE is sometimes used for detecting opaque predicates [12].

We consider a trace of 115000 instructions without any opaque
predicate, and we check at each conditional jump if the branch

not taken is proved infeasible (if so, this is a FP). We take the

BB-DSE algorithm for opaque predicate from Section V, with

bound k = 20, which is a reasonable value (cf. Section VI-B).

We take the forward DSE of BINSEC/SE. Results are presented

in Table III. As expected, BB-DSE is much more efficient than

DSE and yields far less FP and timeouts (TO).

These results were expected, as they are direct consequences

of the design choices behind DSE and BB-DSE. On the opposite,

BB-DSE is not suitable for feasibility questions.

TABLE III: Benchmark DSE versus BB-DSE

bound Cond. branch Total

k # FP #TO time

forward DSE - 7749 2460 17h43m
BB-DSE 20 54 0 4m14s

total number of queries: 10784 – TO: timeout (60 seconds)
#FP: #false positive – no false negative on this example

B. Opaque Predicates evaluation

We consider here the BB-DSE-based algorithm for opaque

predicate detection. We want to evaluate its precision, as well

as to get insights on the choice of the bound k.

Protocol and benchmark. We consider two sets of programs:

(1) all 100 coreutils without any obfuscation, as a genuine

reference data set, and (2) 5 simple programs taken from the

State-of-the-Art in DSE deobfuscation [10] and obfuscated with

O-LLVM [23]. Each of the 5 simple programs was obfuscated

20 times (with different random seeds) in order to balance

the numbers of obfuscated samples and genuine coreutils.
We have added new opaque predicates, listed in Table IV, in

O-LLVM (which is open-source) in order to maximize diversity.

TABLE IV: OP implemented in O-LLVM

Formulas Comment

∀x, y ∈ Z y < 10||2|(x× (x− 1)) (initially present in O-LLVM)

∀x, y ∈ Z 7y2 − 1 �= x2

∀x ∈ Z 2|(x+ x2)

∀x ∈ Z 2|�x2

2
� (2nd bit of square always 0)

∀x ∈ Z 4|(x2 + (x+ 1)2)

∀x ∈ Z 2|(x× (x+ 1))

In total, 200 binary programs were used. For each of them a

dynamic execution trace was generated with a maximum length

of 20.000 instructions. By tracking where opaque predicates

were added in the obfuscated files, we are able a priori

to know if a given predicate is opaque or not, ensuring a

ground truth evaluation. Note that we consider all predicates

in coreutils to be genuine. The 200 samples sums up a total

of 1,091,986 instructions trace length and 11,725 conditional

jumps with 6,170 genuine and 5,556 opaque predicates. Finally,

experiments were carried using different values for the bound

k, and with a 5 second timeout per query.

Results. Among the 11,725 predicates, 987 were fully covered

by the trace and were excluded from these results, keeping
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10,739 predicates (and 5,183 genuine predicates). Table V (and

Figure 14 in Appendix) shows the relation between the number

of predicates detected as opaque (OP) or genuine, false positive

(FP, here: classify a genuine predicate as opaque) and false

negatives (FN, here: classify an opaque predicate as genuine)
depending of the bound value k. The experiment shows a

tremendous peak of opaque detection with k = 12. Alongside,

the number of false negative steadily decreases as the number

of false positive grows. An optimum is reached for k = 16,
with no false negative, no timeout and a small number of false

positive (372), representing an error rate of 3.46%, while the

smallest error rate (2.83%) is achieved with k = 12. Results

are still very precise up to k = 30, and very acceptable for k
= 50.

TABLE V: Opaque predicate detection results

k
OP (5556) Genuine (5183) TO Error rate Time avg/query

ok miss ok miss (FP+FN)/Tot (s) (s)

(FN) (FP) (%)

2 0 5556 5182 1 0 51.75 89 0.008

4 903 4653 5153 30 0 43.61 96 0.009

8 4561 995 4987 196 0 11.09 120 0.011

12 5545 11 4890 293 0 2.83 152 0.014
16 5556 0 4811 372 0 3.46 197 0.018
20 5556 0 4715 468 2 4.36 272 0.025
24 5556 0 4658 525 7 4.89 384 0.036
32 5552 4 4579 604 25 5.66 699 0.065

40 5548 8 4523 660 39 6.22 1145 0.107

50 5544 12 4458 725 79 6.86 2025 0.189

. 10,739 predicates, 5,556 opaque predicates, 5,183 genuine predicates

. ok: well-classified predicate – miss: badly-classified predicate

. Timeout (TO): 5 sec, counts UNKNOWN (classifies the predicate as genuine)

A glimpse at efficiency. Taking the same detection algorithm

and queries, we want to evaluate predicate solving time. Each

predicate formula is solved using Z34 with a 5 seconds timeout.

Table V gives for each value of k the total time taken for

solving and the average time per query. For k = 16 the average

time per query is 0.018s which proves that the technique

scales. Previous works based on forward DSE aiming at solving

invariant opaque predicates [12] reports an average of 0.49s per

queries (min:0.09, max:0.79). As expected, BB-DSE provides

a very significant speed up.

Conclusion. BB-DSE is very precise at detecting opaque

predicates, and while the choice of bound is important, the

technique still performs very well if the bound is not too far

from the optimal one (k between 10 and 30). Query solving

time is also very low.

C. Call Stack Tampering evaluation

We want to assess the precision BB-DSE for stack tampering

detection (Section VI-C). Especially, we would like the

technique to identify as genuine or single-target tampered
(cf. Section VI-C) as many ret as possible, so that latter

analyses (human or automated) do not have to reason about

them anymore. We consider two sets of programs: (1) the

4http://github.com/Z3Prover/z3

5 samples used Section VI-B, obfuscated with the source-

to-source obfuscator Tigress [35]; (2) 5 (randomly selected)

coreutils without any obfuscation. The 5 samples from

Section VI-B have been obfuscated with the AntiBranchAnal-

ysis transformation that replaces all conditional branches with

calls and rets. The two schemes used by the obfuscator are:

• push; call; ret; ret (the last ret jumps on pushed value)

• push; ret (idem)

Results. Results are given in Table VI. The 5 obfuscated

samples sums up 218 different ret. Among them 77 are

genuine and 141 violated (including 132 single-target). Our

detection method achieves here a perfect score, with no false

positive nor false negative. On the 5 coreutils, BB-DSE

does not yield any false positive and most of the ret are

proved genuine (149/156). The few remaining unproved ret
come from unhandled libc side-effects.

TABLE VI: Stack tampering results

Sample

runtime genuine runtime violation

#ret † proved proved
#ret † proved proved

genuine a/d a/d single

obfuscated programs
simple-if 6 6 6/0 9 0/0 8

bin-search 15 15 15/0 25 0/0 24

bubble-sort 6 6 6/0 15 0/1 13

mat-mult 31 31 31/0 69 0/0 68

huffman 19 19 19/0 23 0/3 19

non-obfuscated programs
ls 30 30 30/0 0 - -

dir 35 35 35/0 0 - -

mktemp 21 20 20/0 0 - -

od 21 21 21/0 0 - -

vdir 49 43 43/0 0 - -

†each ret is counted only once – a: aligned, d: disaligned (cf. Sect. VI-C)

Conclusion. BB-DSE performs very well here, with no false

positive and a perfect score on obfuscated samples. The tech-

nique recovers both genuine ret and single-target tampered

ret. Interestingly, no tampered ret were found on the few

(randomly selected) coreutils, supporting the idea that

such tampering is not meant to occur in legitimate programs.

D. Conclusion

These different controlled experiments demonstrate clearly

that BB-DSE is a very precise approach for solving different

kinds of infeasibility questions. They also demonstrate that

finding a suitable bound k is not a problem in practice. Finally,

the approach seems to be scalable. This last point will be

definitely proved in Sections VII and VIII.

VII. LARGE-SCALE EVALUATION ON PACKERS

To validate the scalability of BB-DSE on representative codes,

in terms of both size and protection, we perform a large

scale experiment on packers with the two detection algorithms

already used in Section VI.

Context. Packers are programs embedding other programs and

decompressing/deciphering them at runtime. Since packers are
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used for software protection, most of them contain several

obfuscation schemes (including self-modification). As a matter

of fact, packers are also widely used by malware, and actually

in many cases they are the only line of defense. Hence, packers
are very representative for our study, both in terms of malware

protections and size, as packed programs tend to have huge

execution traces.

Protocol. We want to check if BB-DSE is able to detect opaque

predicates or call stack tampering on packed programs. For

that, a large and representative set of packers was chosen,

ranging from free to commercial tools. Then a stub binary

(hostname) was packed by each packer. Analyses are then

triggered on these packed programs in a black-box manner, that

is to say, without any prior knowledge of the internal working

of the packers – we do not know which obfuscation are used.

For homogeneity, trace length are limited to 10M instructions

and packers reaching this limit were not analysed.

A. Results

Table VII shows the partial results on 10 packers. The

complete results are given in Table XVI in Appendix. First,

BB-DSE is efficient and robust enough to pass on most of

the packed programs, involving very long traces (≥ million of

instructions) and advanced protections such as self-modification.

Second, over the 32 packers, 420 opaque predicates and 149

call/stack tampering have been found, and many ret have

been proved genuine. All the results that have been manually

checked appeared to be true positive (we did not checked them

all because of time constraints).

B. Other Discoveries

Opaque predicates. Results revealed interesting patterns,

for instance ACProtect tends to add opaque predicates by

chaining conditional jumps that are mutually exclusive like:

jl 0x100404c ; jge 0x100404c. In this example the

second jump is necessarily opaque since the first jump

strengthens the path predicate, enforcing the value to be lower.

This example shows that our approach can detect both invariant

and contextual opaque predicates. Many other variants of this

pattern were found: jp/jnp, jo/jno, etc. Similarly, the well-

known opaque predicate pattern xor ecx, ecx; jnz was

detected in ARMADILLO. Because of the xor, the non-zero

branch of jnz is never taken.

The dynamic aspect of BB-DSE allowed to bypass some

tricks that would misled a reverser into flagging a predicate

as opaque. A good example is a predicate found in ASPack
seemingly opaque but that turned not to be opaque due to a
self-modification (Figure. 8). Statically, the predicate is opaque

since BL is necessarily 0 but it turns out that the second opcode

bytes of the MOV BL, 0X0 is being patched to 1 in one branch

in order to take the other branch when looping back later on.

Call/stack tampering. According to the taxonomy of Section

V, many different kinds of violations are detected. For instance,

the two patterns found in ACProtect (Figures 9 and 10) are

detected as [violated], [disaligned], [single] and

Fig. 8: ASPack opaque predicate decoy

[violated], [aligned], [single]. More details can

be found in Appendix. Especially, in Aspack, stack tampering

detection allows to find precisely that moment in the trace,

where the packer payload (i.e., the original unpacked program)

is very likely decompressed in memory.

address mnemonic comment

1004328 call 0x1004318 //push 0x100432d as return

1004318 add [esp], 9 //tamper the value in place

100431c ret //return to 0x1004n336

Fig. 9: ACProtect violation 1/2

address mnemonic comment

1001000 push 0x1004000

1001005 push 0x100100b

100100a ret jump on the ret below

100100b ret jump on 0x1004000

Fig. 10: ACProtect violation 2/2

C. Conclusion

By detecting opaque predicates and call/stack tampering on

packers with very long trace length, this experiment clearly

demonstrates both the ability of BB-DSE to scale to realistic

obfuscated examples (without any prior-knowledge of the

protection schemes) and its usefulness. This study yields also

a few unexpected and valuable insights on the inner working

on the considered packers, such as some kinds of protections

or the location of the jump to the entrypoint of the original

unpacked program.

VIII. REAL-WORLD MALWARE: X-TUNNEL

A. Context & Goal

Context. As an application of the previous techniques we focus

in this section on the heavily obfuscated X-TUNNEL malware.

X-TUNNEL is a ciphering proxy component allowing the

X-AGENT malware to reach the command and control (CC) if it

cannot reach it directly [22]. It is usually the case for machines
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TABLE VII: Packer experiment, OP & Stack tampering

Packers

Static Dynamic information Obfuscation detection

size (self-mod.) Opaque Pred. Stack tampering

prog #tr.len (tr.ok/host) #proc #th #layers Unk OP TO RTok (a/d/g) RTko (a/d/s)

ACProtect v2.0 101K 1.8M (�,×) 1 1 4 74 159 0 0 (0/0/0) 48 (45/1/45)

ASPack v2.12 10K 377K (�,�) 1 1 2 32 24 0 11 (7/0/7) 6 (1/4/1)

Crypter v1.12 45K 1.1M (�,×) 1 1 0 263 24 0 125 (94/0/94) 78 (0/30/32)

Expressor 13K 635K (�,�) 1 1 1 42 8 0 14 (10/0/10) 0 (0/0/0)

nPack v1.1.300 11K 138K (�,�) 1 1 1 41 2 0 21 (14/0/14) 1 (0/0/0)

PE Lock 21K 2.3M (�,�) 1 1 6 53 90 0 4 (3/0/3) 3 (0/1/0)

RLPack 6K 941K (�,�) 1 1 1 21 2 0 14 (8/0/8) 0 (0/0/0)

TELock v0.51 12K 406K (×,�) 1 1 5 0 2 0 3 (3/0/3) 1 (0/1/0)

Upack v0.39 4K 711K (�,�) 1 1 2 11 1 0 7 (5/0/5) 1 (0/0/0)

UPX v2.90 5K 62K (�,�) 1 1 1 11 1 0 4 (2/0/2) 0 (0/0/0)

. opaque pred.: bound k = 16 – OP: proved opaque – Unk: query returns unknown – TO: timeout (5 sec.)

. stack tampering: RTok: #ret runtime genuine - RTko: #ret runtime tampered - a/d/g/s: proved aligned/disaligned/genuine/single target

. dynamic information: tr.ok: whether the executed trace was successfully gathered without exception/detection - host: whether the payload was
successfully executed - #proc: #process spawned - #th: #threads spawned - #layers: #self-modification layers

not connected to internet but reachable from an internal network.

These two malwares are being used as part of target attack

campaigns (APT) from the APT28 group also known as Sednit,

Fancy Bear, Sofacy or Pawn Storm. This group, active since

2006, targets geopolitical entities and is supposedly highly

tight to Russian foreign intelligence. Among alleged attacks,

noteworthy targets are NATO [36], EU institutions [37], the

White House [38], the German parliaments [39] and more

recently the American Democrate National Comittee DNC [40]

that affected the running of elections. This group also makes

use of many 0-days [41] in Windows, Flash, Office, Java and

also operate other malwares like rootkits, bootkits, droppers,

Mac 0SX malwares [42] as part of its ecosystem.

Goal. This use-case is based on 3 X-TUNNEL samples5

covering a 5 month period (according to timestamps). While

Sample #0 is not obfuscated and can be straightforwardly

analyzed, Samples #1 and #2 are, and they are also much

larger than Sample #0 (cf. Table VIII). The main issue here is:

G1: Are there new functionalities in the obfuscated samples?

Answering this question requires first to be able to analyse

the obfuscated binaries. Hence we focus here on a second goal:

G2: Recover a de-obfuscated version of Samples #1 and #2.

We show in the latter how BB-DSE can solve goal G2, and

we give hints on what is to be done to solve G1.

Analysis context. Obfuscated samples appeared to contain a

tremendous amount of opaque predicates. As a consequence,

our goal is to detect and remove all opaque predicates in

order to remove the dead-code and meaningless instructions

to hopefully obtain a de-obfuscated CFG. This deobfuscation

step is a prerequisite for later new functionality finding. The

analysis here has to be performed statically:

5We warmly thank Joan Calvet for providing the samples.

TABLE VIII: Samples infos

Sample #0 Sample #1 Sample #2

42DEE3[...] C637E0[...] 99B454[...]

obfuscated No Yes Yes

size 1.1 Mo 2.1 Mo 1.8 Mo

creation date 25/06/2015 02/07/2015 02/11/2015

#functions 3039 3775 3488

#instructions 231907 505008 434143

• as the malware is a network component, it requires to

connect to the CC server, which is truly not desirable;

• moreover, many branching conditions are network-event

based, thus unreliable and more hardly reproducible.

Fortunately, a quick inspection (dynamic run skipping server

connexion) confirms that X-TUNNEL does not seem to use any

self-modification or neatly tricks to hamper static disassembly.

Thus, we proceed as follows: we take the CFG recovered by

IDA, and from that we compute the prek of each conditional

branch (IDASEC). This is a realistic reverse scenario when

dynamic recovery is not desirable, IDA being the de facto static

disassembly standard. Correctness of the analysis depends

on the quality of the CFG recovered by IDA, so we cannot

have absolute guarantees. Our goal here is to improve over
state-of-the-practice on a realistic scenario.

B. Analysis

OP detection. The analysis performs a BB-DSE on every

conditional jumps of the program, testing systematically both

branches. Taking advantage of previous experiments, we set

the bound k to 16. The solver used is Z3 with a 6s timeout.

If both branches are UNSAT, the predicate is considered dead,

as the unsatisfiability is necessarily due to path constraints

indicating that the predicate is not reachable.
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Code simplification. We perform three additional computa-

tions in complement to the opaque predicate detection:

• predicate synthesis recovers the high-level predicate of an

opaque predicate by backtracking on its logical operations.

The goal of this analysis is twofold: (1) indexing the

different kind of predicates used and (2) identifying

instruction involved in the computation of an OP denoted

spurious instructions (in order to remove them);

• liveness propagation based on obfuscation-related data

aims at marking instruction by theirs status, namely alive,
dead, spurious;

• reduced CFG extraction extracts the de-obfuscated CFG

based on the liveness analysis.

C. Results

Execution time. Table IX reports the execution time of the the

BB-DSE and predicate synthesis. The predicate synthesis takes

a non-negligible amount of time, yet it is still very affordable,

and moreover our implementation is far from optimal.

TABLE IX: Execution time

#preds DSE Synthesis Total

Sample #1 34505 57m36 48m33 1h46m

Sample #2 30147 50m59 40m54 1h31m

OP diversity. Each sample presents a very low diversity

of opaque predicates. Indeed, solely 7x2 − 1 �= x2 and
2

x2+1 �= y2 + 3 were found. Table X sums up the distribution

of the different predicates. The amount of predicates and

their distribution supports the idea that they were inserted

automatically and picked randomly.

TABLE X: Opaque predicates variety

7y2 − 1 �= x2 2
x2+1

�= y2 + 3

Sample #1 6016 (49.02%) 6257 (50.98%)

Sample #2 4618 (45.37%) 5560 (54.62%)

Detection results. As the diversity of opaque predicates is very

low, we are able to determine, with quite a good precision,

the amount of false negatives and false positives based on the

predicate synthesized. If a predicates matches one (resp. do

not match any) of the two identified opaque predicates and is

classified as genuine (resp. opaque), then we considered it a

false negative (respectively false positive). Results are given

in Table XI and Figure 11. The detection rate is satisfactory,

with 3% of false negative and 8.4 to 8.6% of false positive. A

few conditions are classified as unknown, since both branches

are proved infeasible due to some unhandled syscalls.

Dependency evaluation. While the average distance between

an opaque predicate and its variable definitions is here 8.7

(less than the bound k = 16), the maximum distances are 230

TABLE XI: Opaque predicates evaluation

#pred
Genuine OP Unknown

(syntactic) (syntactic)

Genuine FN OP FP

Sample #1 34505 17197 1046 11973 2968 1321

(49.8%) (3.0%) (34.7%) (8.6%) (3.8%)

Sample #2 30147 16148 914 9790 2543 652

(53.7%) (3.0%) (32.5%) (8.4%) (2.5%)

(a) OP results Sample #1 (b) OP results Sample #2

� FN � OK � Opaque � FP

Fig. 11: Graph of opacity distribution

(Sample #1) and 148 (Sample #2). Fortunately, we dot not

need all this information to prove infeasibility.

Difference with O-LLVM. Interesting differences with OP

found in O-LLVM are to be emphasized. First, there is more

interleaving between the payload and the OPs computation.

Some meaningful instructions are often encountered within the

predicate computation. Second, while O-LLVM OPs are really

local to the basic block, there are here some code sharing

between predicates, and predicates are not fully independent

from one another. Also, the obfuscator uses local function

variables to store temporary results at the beginning of the

function for later usage in opaque predicates. This increases the

depth of the dependency chain and complicates the detection.

Code simplification, Reduced CFG extraction. Table XII

shows the number of instructions re-classified based on

their status. The dead code represents 1/4 of all program

instructions. Computing the difference with the original non-

obfuscated program shows a very low difference. Therefore,

the simplification pass allowed to retrieve a program which is

roughly the size of the original one. The difference is highly

likely to be due to the false negatives or missed spurious
instructions. Finally, Figure 12 shows a function originally

(a), with the status tags (b), and the result after extraction (c)

using tags (red:dead, orange:spurious, green:alive). Although

the CFG extracted still containing noise, it allows a far better

understanding of the function behavior. A demo video showing

the deobfuscation of a X-TUNNEL function with BINSEC and

IDASEC is available as material for this paper6.

D. Conclusion

About the case-study. We have been able to automatically

detect opaque predicates in the two obfuscated samples

6https://youtu.be/Z14ab_rzjfA
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(a) Original function CFG (b) CFG tagged (c) CFG extracted

Fig. 12: Examples of CFG extraction

TABLE XII: Code simplification results

#instr #alive #dead #spurious diff sample #0†

Sample #1 507,206
279,483 121,794 103,731

47,576
(55%) (24%) (20%)

Sample #2 436,598
241,177 113.764 79,202

9,270
(55%) (26%) (18%)

† Sample #0: 231,907 instrs

of the X-TUNNEL malware, leading to a significant (and

automatic) simplification of these codes – removing all spurious

and dead instructions. Moreover, we have gained insights

(both strengths and weaknesses) into the inner working of

X-TUNNEL protections. Hence, we consider that goal G2 has

been largely achieved. In order to answer to the initial question

(G1), some similarity algorithms should be computed between

the non-obfuscated and simplified samples. This second step

is left as future work.

About X-TUNNEL protections. The obfuscations found here

are quite sophisticated compared with existing opaque predi-

cates found in the state-of-the-art. They successfully manage

to spread the data dependency across a function so that some

predicates cannot be solved locally at the basic block level.

Thankfully, this is not a general practice across predicates so

that BB-DSE works very well in the general case. The main

issue of the obfuscation scheme is the low diversity of opaque

predicates, allowing for example pattern matching techniques

to come in relay of symbolic approaches.

IX. APPLICATION: SPARSE DISASSEMBLY

A. Principles

As already explained, static and dynamic disassembly

methods tend to have complementary strengths and weak-

nesses, and BB-DSE is the only robust approach targeting

infeasibility questions. Hence, we propose sparse disassembly,
an algorithm based on recursive disasssembly reinforced

with a dynamic trace and complementary information about

obfuscation (computed by BB-DSE) in order to provide a

more precise disassembly of obfuscated codes. The basic

idea is to enlarge and initial dynamic disassembly by a

cheap syntactic disassembly in a guaranteed way, following

information from BB-DSE, hence getting the best of dynamic

and static approaches.

The approach takes advantage of the two analyses presented

in Sections VI-B and VI-C as follows (cf. Figure 13):

• use dynamic values found in the trace to keep disassem-

bling after indirect jump instructions;

• use opaque predicates found by BB-DSE to avoid dis-

assembling dead branches (thus limiting the number of

recovered non legit instructions);

• use stack tampering information found by BB-DSE to

disassemble the return site of the call only in the genuine

case, and the real ret targets in case of violation.

Fig. 13: Sparse disassembly combination

Implementation. A preliminary version of this algorithm has
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been integrated in BINSEC, taking advantage of the existing

recursive disassembly algorithm. The BB-DSE procedure sends

OP and ret information to the modified recursive disassembler,

which takes the information into account.

B. Preliminary Evaluation

We report two sets of experiments, designed to assess the

precision of the approach and its ability to enlarge an initial

dynamic trace. We compare our method mainly to the well-

known disassembly tools IDA and Objdump. IDA relies on

a combination of recursive disassembly, linear sweep and

dedicated heuristics. Objdump performs only liner sweep.

Precision. In the first evaluation, we compare these different

tools on simple programs obfuscated either by O-LLVM

(opaque predicates) or Tigress (stack tampering). In each

experiment, we compare the set of disassembled instructions

with the set of legitimate instructions of the obfuscated program

(i.e., those instructions which can be part of a real execution).

It turns out on these small examples that all methods are able

to find all the legitimate instructions, yet they may be lured

into dead instructions introduced by obfuscation.

Tables XIII and XIV present our results. We report for each

program and each disassembly method the number of recovered

instructions. It turns out that this information is representative

of the quality of the disassembly (the less instruction, the

better), given the considered obfuscations and the fact that

here all methods recover all legitimate instructions (actually,

all results have been checked manually).

TABLE XIII: Sparse disassembly opaque predicates

sample

Obfuscated gain

no
perfect IDA Objdump

BINSEC vs IDA

obf. sparse (sparse)

simple-if 37 185 240 244 185 23,23%

huffman 558 3226 3594 3602 3226 10,26%

mat_mult 249 854 1075 1080 854 20,67%

bin_search 105 833 1110 1115 833 24,95%

bubble_sort 121 1026 1531 1537 1026 32,98%

TABLE XIV: Sparse disassembly stack tampering

sample

Obfuscated gain

no
perfect IDA Objdump

BINSEC vs IDA

obf. sparse (sparse)

simple-if 37 83 95 98 83 14.45%

huffman 558 659 678 683 659 2.80%

mat_mult 249 461 524 533 461 12.0%

bin_search 105 207 231 238 207 10.39%

bubble_sort 121 170 182 185 170 6.6%

In both cases, sparse disassembly achieves a perfect score –

recovering all but only legitimate instructions, performing better

than IDA and Objdump. Especially, when opaque predicates

are considered, sparse disassembly recovers up to 32% less

instructions than IDA.

Improvement over dynamic analysis. We now seek to assess

whether sparse disassembly can indeed enlarge a dynamic

analysis in a significant yet guaranteed way, i.e., without adding

dead instructions. We consider 5 larger coreutils programs

obfuscated with O-LLVM. We compare sparse disassembly to

dynamic analysis (starting from the same trace). The number of

recovered instructions is again a good metric of precision (the

bigger, the better), since both methods report only legitimate
instructions on these examples (we checked that BB-DSE

was able to find all inserted opaque predicates). Results are

reported in Table XV. We also report the output of IDA
and Objdump for the sake of information, yet recall that

these tools systematically get fooled by opaque predicates and

recover many dead instructions. The important metric here

is the differential between dynamic disassembly and sparse
disassembly. Moreover, note that the absolute coverage of both

dynamic and sparse disassembly can naturally be improved

using more dynamic traces.

TABLE XV: Sparse disassembly coreutils

sample

Obfuscated

Tr.len
Objdump IDA

Dynamic BINSEC

disas. sparse
basename 1,783 20,776 20,507 1,159 7,894
env 3,692 19,714 19,460 477 6,743
head 17,682 32,840 32,406 1,299 19,807
mkdir 1,436 57,238 56,767 1,407 10,428
mv 14,346 115,278 114,067 5,261 81,596

Actually, these experiments demonstrate that sparse disas-

sembly is an effective way to enlarge a dynamic disassembly,
in a both significant and guaranteed manner. Indeed, sparse
disassembly recovers between 6x and 16x more instructions

than dynamic disassembly, yet it still recovers much less

than linear sweep – due to the focused approach of dynamic

disassembly and the guidance of BB-DSE. Hence, sparse

disassembly stays close to the original trace.

Conclusion. The carried experiments showed very good and

accurate results on controlled samples, achieving perfect dis-

assembly. From this stand-point, sparse disassembly performs

better than combination of both recursive and linear like in

IDA, with up to 30% less recovered instructions than IDA.
The coreutils experiments showed that sparse disassembly

is also an effective way to enlarge a dynamic disassembly in a

both significant and guaranteed manner. In the end, this is a

clear demonstration of infeasibility-based information used in

the context of disassembly.

Yet, our sparse disassembly algorithm is still very preliminary.

It is currently limited by the inherent weaknesses of recursive

disassembly (rather than sparse disassembly shortcomings),

for example the handling of computed jumps would require

advanced pattern techniques.

X. DISCUSSION: SECURITY ANALYSIS

From the attacker point of view, three main counter-measures

can be employed to hinder our approach. We present them as

well as some possible mitigation.
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The first counter-measure is to artificially spread the compu-

tation of the obfuscation scheme over a long sequence of code,

hoping either to evade the “k” bound of the analysis (false

negatives) or to force a too high value for k (false positives or

timeouts). Nevertheless, it is often not necessary to backtrack

all the dependencies to prove infeasibility. An example is given

in X-TUNNEL were many predicates have a dependency chain

longer than the chosen bound (k=16, chain up to 230) but

this value was most of the time sufficient to gather enough

constraints to prove predicate opacity. Moreover, a very good

mitigation for these “predicates with far dependencies” is to

rely on a more generic notion of the k bound, based for example

on def-use chain length or some formula complexity criterias

rather than a strict number of instructions.

The second counter-measure is to introduce hard-to-solve

predicates (based for example on Mixed-Boolean Arith-

metic [43] or cryptographic hashing functions) in order to

lead to inconclusive solver responses (timeout). As we cannot

directly influence the solving mechanism of SMT solvers,

there is no clear mitigation from the defender perspective.

Nonetheless, solving such hard formula is an active research

topic and some progress can be expected in a middle-term on

particular forms of formulas [44]. Moreover, certain simpli-

fications typically used in symbolic execution (e.g., constant

propagation or tainting) already allow to bypass simple cases

of a priori difficult-to-solve predicates Additionally, triggering
a timeout is already a valuable information, since BB-DSE with

reasonable k bound usually does not timeout. The defender

can take advantage of it by manually inspecting the timeout

root cause and deduce (in-)feasible patterns, which can now

be detected through mere syntactic matching. In the same vein,

timeout may pinpoint to the reverser the most important parts

of the code, unless hard predicates are used everywhere, with

a possibly very significant runtime overhead. Finally, such

counter-measures would greatly complicate the malware design

(and its cost!) and a careless insertion of such complex patterns

could lead to atypical code structures prone to relevant malware

signatures.

Actually, our experiments show that symbolic methods are

quite efficient for deobfuscation. Yet, it is clear that dedicated

protections could be used, and indeed such anti-DSE protections

have been recently proposed [45], [10]. We are in the middle

of a cat-and-mouse game, and our objective is to push it further

in order to significantly raise the bar for malware creators.

The third counter-measure is to add anti-dynamic tricks,

in order to evade the first step of dynamic disassembly. Yet,

since our technique works with any tracer technology, the

dynamic instrumentation can be strengthened with appropriate

mitigations. Interestingly, certain dynamic tricks can be easily

mitigated in a symbolic setting, e.g., detection based on timing

can be defeated by symbolizing adequat syscalls.

XI. RELATED WORK

DSE and deobfuscation. Dynamic Symbolic Execution has

been used in multiple situations to address obfuscation,

generally for discovering new paths in the code to analyze.

Recently, Debray at al. [10], [11] used DSE against conditional

and indirect jumps, VM and return-oriented programming on

various packers and malware in order to prune the obfuscation

from the CFG. Mizuhito et al. also addressed exception-based

obfuscation using such techniques [46]. Recent work from

Ming et al. [12] used (forward) DSE to detect different classes

of opaque predicates. Yet, their technique has difficulties to

scale due to the trace length (this is consistent with experiments

in Section VI-A). Indeed, by doing it in a forward manner they

needlessly have to deal with the whole path predicate for each

predicate to check. As consequence they make use of taint to

counterbalance which far from being perfect brings additional

problems (under-tainting/over-tainting).

DSE is designed to prove the reachability of certain parts

of code (such as path, branches or instructions). It is com-

plementary to BB-DSE in that it addresses feasibility queries

rather than infeasibility queries. Moreover, BB-DSE scales very

well, since it does not depend on the trace length but on the

user-defined parameter k. Thus, while backward-bounded DSE

seems to be the most appropriate way to solve infeasibility

problems no researches have used this technique.

Backward reasoning. Backward reasoning is well-known in

infinite-state model checking, for example for Petri Nets [47].

It is less developed in formal software verification, where

forward approaches are prevalent, at the notable exception of

deductive verification based on weakest precondition calculi

[18]. Interestingly, Charreteur et al. have proposed (unbounded)

backward symbolic execution for goal-oriented testing [48].

Forward and backward approaches are well-known to be

complementary, and can often be combined with benefit [49].

Yet, purely backward approaches seem nearly impossible

to implement at binary level, because of the lack of a priori
information on computed jumps. We solve this problem in BB-

DSE by performing backward reasoning along some dynamic

execution paths observed at runtime, yet at the price of (a

low-rate of) false positives.

Disassembly. Standard disassembly techniques have already

been discussed in Section IX. Advanced static techniques

include recursive-like approaches extended with patterns dedi-

cated to difficult constructs [2]. Advanced dynamic techniques

take advantage of DSE in order to discover more parts of

the code [14], [28]. Binary-level semantic program analysis

methods [15], [16], [17], [13], [50] does allow in principle a

guaranteed exhaustive disassembly. Even if some interesting

case-studies have been conducted, these methods still face

big issues in terms of scaling and robustness. Especially, self-

modification is very hard to deal with. The domain is recent,

and only very few work exist in that direction [51], [52]. Several

works attempt to combine static analysis and dynamic analysis

in order to get better disassembly. Especially, CODISASM [3]

take advantage of the dynamic trace to perform syntactic static

disassembly of self-modifying programs.

Again, our method is complementary to all these approaches

which are mainly based on forward reasoning [53].
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Obfuscations. Opaque predicates were introduced by Coll-

berg [4] giving a detailed theoretical description and possible

usages [54], [55] like watermarking. In order to detect them

various methods have been proposed [56], notably by abstract

interpretation [52] and in recent work with DSE [12]. Issues

raised by stack tampering and most notably non-returning

functions are discussed by Miller [2]. Lakhotia [6] proposes a

method based on abstract interpretation [6]. None of the above

solutions address the problem in such a scalable and robust

way as BB-DSE does.

XII. CONCLUSION

Many problems arising during the reverse of obfuscated

codes come down to solve infeasibility questions. Yet, this

class of problem is mostly a blind spot of both standard

and advanced disassembly tools. We propose Backward-

Bounded DSE, a precise, efficient, robust and generic method

for solving infeasibility questions related to deobfuscation.

We have demonstrated the benefit of the method for several

realistic classes of obfuscations such as opaque predicate and

call stack tampering, and given insights for other protection

schemes. Backward-Bounded DSE does not supersede existing

disassembly approaches, but rather complements them by ad-

dressing infeasibility questions. Following this line, we showed

how these techniques can be used to address state-sponsored

malware (X-TUNNEL) and how to merge the technique with

standard static disassembly and dynamic analysis, in order to

enlarge a dynamic analysis in a precise and guaranteed way.

This work paves the way for precise, efficient and disassembly

tools for obfuscated binaries.
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APPENDIX

(Section VI-B, extended). Figure 14 shows a graphical

representation of results from Table V. The x-axis represents

the value of the bound k, and the y-axis represents the numbers

of predicates identified as opaque, genuine, plus the number

of timeouts (TO), false positive (FP) and false negative (FN).

When k increases, #FN strongly decreases while #FP slowly

increases. Here, #TO is kept very low.

(Section VII-B, extended) Findings on call/stack tampering.
From the call/stack tampering perspective and according to

the taxonomy defined in Section V, many different kinds

of violations were detected. The first two patterns found

in ACProtect shown in Figures 15 and 16 are respectively

Fig. 14: OP detection: tradeoff between k, FN and FP

detected as [violated], [single], [aligned] and

[violated], [single], [disaligned]. Figures 18,

17 and 19 show three different kinds of violation found in

ASPack. In the first example (cf. Figure 18) the tampering is

detected with labels [violated], [disaligned] since

the stack pointer read the ret address at the wrong offset.

In the second example (cf. Figure 17), the return value

is modified in place. The tampering is detected with the

[violated], [aligned], [single] tags. The last ex-

ample (cf. Figure 19), takes place between the transition of two

self-modification layers and the ret is used for tail-transitioning

to the packer payload (i.e., the original unpacked program). This

violation is detected with [violated], [disaligned],
[single] since the analysis matches a call far upper in

the trace which is disaligned. Note that instruction push
0x10011d7 at address 10043ba is originally a push 0, but
it is patched by instruction at address 10043a9, triggering the

entrance in a new auto-modification layer when executing it.

This pattern reflects a broader phenomenon found in many

packers like nPack, TELock or Upack having a single ret
tampered: these packers perform their tail transition to the

entrypoint of the original (packed) program with push; ret.
Thus, such analysis allows to find precisely that moment in the
execution trace, where the payload is very likely decompressed
in memory.

address mnemonic comment

1004328 call 0x1004318 //push 0x100432d as return

1004318 add [esp], 9 //tamper the value in place

100431c ret //return to 0x1004n336

Fig. 15: ACProtect violation 1/2

address mnemonic comment

1001000 push 0x1004000

1001005 push 0x100100b

100100a ret jump on the ret below

100100b ret jump on 0x1004000

Fig. 16: ACProtect violation 2/2
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address len mnemonic comment

1004a3a 5 call 0x1004c96 //push 0x1004a3f as return site

1004c96 5 call 0x1004c9c //push 0x1004c9b as return site

1004c9c 1 pop esi //pop return address in esi

1004c9d 5 sub esi, 4474311

1004ca3 1 ret //return to 0x1004a3f

Fig. 17: ASPack violation 1/3

address mnemonic comment

1004002 call 0x100400a //push 0x1004007 as return

1004007 .byteinvalid //invalid byte (cannot disassemble)

1004008 [...] //not disassembled

100400a pop ebp //pop return address in ebp

100400b inc ebp //increment ebp

100400c push ebp //push back the value

100400d ret //jump on 0x1004008

Fig. 18: ASPack violation 2/3

address mnemonic layer comment

10043a9 mov [ebp+0x3a8], eax 0 //Patch push value at 10043ba*

10043af popa 0 //restore initial program context

10043b0 jnz 0x10043ba 0 //enter last SM layer (payload)

Enter SMC Layer 1

10043ba push 0x10011d7 1 //push the address of the entrypoint

10043bf ret 0 //use ret to jump on it

10011d7 [...] 1 //start executing payload

*(at runtime eax=10011d7 and ebp+0x3a8=10043bb)

Fig. 19: ASPack violation 3/3

(Section VII-A, extended) Detailed packer experiments.
Table XVI presents a complete view of the experiments

presented in Table VII.
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TABLE XVI: Packer experiment: Opaque Predicates & Call stack tampering

Packers

Static Dynamic Obfuscation detection

size self-mod. Opaque Predicates (k16) Stack tampering

prog #tr.len (tr.ok/host) #proc #th #layers OK OP To Covered OK (a/d) Viol (a/d/s)

ACProtect v2.0 101K 1.813.598 (�,×) 1 1 4 74 159 0 9 0 (0/0) 48 (45/1/45)

Armadillo v3.78 460K 150.014 (×,×) 2 11 1 1 20 0 1 2 (2/0) 0 (0/0/0)

Aspack v2.12 10K 377.349 (�,�) 1 1 2 32 24 0 136 11 (7/0) 6 (1/4/1)

BoxedApp v3.2 903K / (×,×)∗ 1 15 - - - - - - -

Crypter v1.12 45K 1.170.108 (�,×) 1 1 0 263 24 0 136 125 (94/0) 78 (0/30/32)

Enigma v3.1 1,1M 10.000.000 (×,×)† - - 1 - - - - - -

EP Protector v0.3 8,6K 250 (�,�) 1 1 1 10 1 0 2 4 (2/0) 0 (0/0/0)

Expressor 13K 635.356 (�,�) 1 1 1 42 8 0 39 14 (10/0) 0 (0/0/0)

FSG v2.0 3,9K 68.987 (�,�) 1 1 1 11 1 0 14 6 (4/0) 0 (0/0/0)

JD Pack v2.0 53K 42 (×,�) 1 1 0 2 0 0 0 0 (0/0) 0 (0/0/0)

Mew 2,8K 59.320 (�,�) - - 1 11 1 0 18 6 (4/0) 1 (0/0/0)

MoleBox 70K 5.288.567 (�,�)‡ 1 1 2 307 60 0 128 X X

Mystic 50K 4.569.154 (�,�)‡ 1 1 1 X X X X X X

Neolite v2.0 14K 42.335 (�,�) 1 1 1 95 1 0 42 9 (3/0) 0 (0/0/0)

nPack v1.1.300 11K 138.231 (�,�) 1 1 1 41 2 0 34 21 (14/0) 1 (0/0/0)

Obsidium v1364 116K 21 (×,�) - - 0 1 0 0 0 0 (0/0) 0 (0/0/0)

Packman v1.0 5,9K 130.174 (�,�) 1 1 1 12 1 0 21 7 (4/0) 0 (0/0/0)

PE Compact v2.20 7,0K 202 (�,�) 1 1 1 11 1 0 1 4 (2/0) 0 (0/0/0)

PE Lock 21K 2.389.260 (�,�) 1 1 6 53 90 0 42 4 (3/0) 3 (0/1/0)

PE Spin v1.1 26K / (×,×)∗ 1 1 - - - - - - -

Petite v2.2 12K 260.025 (×,×) 1 1 0 60 19 0 45 4 (1/0) 0 (0/0/0)

RLPack 6,4K 941.291 (�,�) 1 1 1 21 2 0 25 14 (8/0) 0 (0/0/0)

Setisoft v2.7.1 378K 4.040.403 (×,×)‡ 1 5 4 X X X X X X

svk 1.43 137K 10.000.000 (×,�)† - - 0 - - - - - -

TELock v0.51 12K 406.580 (×,�) 1 1 5 0 2 0 5 3 (3/0) 1 (0/1/0)

Themida v1.8 1,2M 10.000.000 (×,�)† 1 28 0 - - - - - -

Upack v0.39 4,1K 711.447 (�,�) 1 1 2 11 1 0 30 7 (5/0) 1 (0/0/0)

UPX v2.90 5,5K 62.091 (�,�) 1 1 1 11 1 0 26 4 (2/0) 0 (0/0/0)

VM Protect v1.50 13K / (×,�)∗ 1 1 0 - - - - - -

WinUPack 4,0K 657.473 (�,�) 1 1 2 12 1 0 33 7 (5/0) 1 (0/0/0)

Yoda’s Crypter v1.3 12K 240.900 (×,�) 1 1 3 38 1 0 16 4 (3/0) 9 (0/1/0)

Yoda’s Protector v1.02 18K 17 (×,�) 1 1 0 1 0 0 0 0 (0/0) 0 (0/0/0)

• size prog: size of the program
• #tr.len: execution trace length
• tr.ok: whether the executed trace was successfully gathered without exception/detection
• host: whether the payload was successfully executed (printing the hostname of the machine)
• #proc: number of process spawned
• #th: number of threads spawned
• #layers: number of self-modification layers recorded
• OK, OP, To, Covered: predicate ok, opaque predicate, timeout, predicate fully covered (both branches)
• (a/d/s): (aligned/disaligned/single)
• ∗ failed to record the trace
• † maximum trace length reached (thus packer not analyzed)
• ‡ analysis failed (due to lack of memory)
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