
Finding and Preventing Bugs in JavaScript Bindings
Fraser Brown� Shravan Narayan† Riad S. Wahby�

Dawson Engler� Ranjit Jhala† Deian Stefan†

�Stanford University †UC San Diego

Abstract—JavaScript, like many high-level languages, relies on run-
time systems written in low-level C and C++. For example, the
Node.js runtime system gives JavaScript code access to the under-
lying filesystem, networking, and I/O by implementing utility func-
tions in C++. Since C++’s type system, memory model, and execution
model differ significantly from JavaScript’s, JavaScript code must
call these runtime functions via intermediate binding layer code that
translates type, state, and failure between the two languages. Unfor-
tunately, binding code is both hard to avoid and hard to get right.

This paper describes several types of exploitable errors that bind-
ing code creates, and develops both a suite of easily-to-build static
checkers to detect such errors and a backwards-compatible, low-
overhead API to prevent them. We show that binding flaws are a
serious security problem by using our checkers to craft 81 proof-of-
concept exploits for security flaws in the binding layers of the Node.js
and Chrome, runtime systems that support hundreds of millions of
users. As one practical measure of binding bug severity, we were
awarded $6,000 in bounties for just two Chrome bug reports.

1 Introduction
Many web services and other attacker-facing code bases are

written in high-level scripting languages like JavaScript, Python,

and Ruby. By construction, these languages prevent developers

from introducing entire classes of bugs that plague low-level

languages—e.g., buffer overflows, use-after-frees, and memory

leaks. On the other hand, high-level languages introduce new

classes of severe, exploitable flaws that are often less obvious

than low-level code bugs.

High-level languages push significant functionality to their

runtime systems, which are written in low-level, unsafe lan-

guages (mainly C and C++). Runtime systems provide function-

ality not possible in the base scripting language (e.g., network

and file system access) or expose fast versions of routines that

would otherwise be too slow (e.g., sorting routines). Since the

high-level, dynamically-typed scripting language and low-level

language have different approaches to typing, memory man-

agement, and failure handling, the scripting code cannot call

runtime routines directly. Instead, it invokes intermediary bind-
ing code that translates between value types, changes value

representations, and propagates failure between the languages.

Binding code has the dangerous distinction of being both

hard to avoid and hard to get right. This paper demonstrates the

severity of the problem by demonstrating 81 proof-of-concept

exploits for bugs in multiple widely-used runtimes for the

JavaScript language. We picked JavaScript because of its ubiq-

uity: it is both the most popular language on GitHub and the

language with the largest growth factor [11, 110]. And though

it was originally confined to web pages, JavaScript now appears

in desktop applications, server-side applications, browser ex-

tensions, and IoT infrastructure. Organizations like PayPal and

Walmart use JavaScript to process critical financial information,

and as a result implicitly rely on runtimes and binding code for

secure foundational operations [40, 68, 106]. This paper focuses

on detecting and exploiting flaws in two pervasive JavaScript

runtime systems—Node.js and Chrome—since binding bugs in

these systems endanger hundreds of millions of people (e.g., all

users of the Chrome browser).

JavaScript’s variables are dynamically typed. Therefore,

when JavaScript code calls a binding layer function, that C++

binding function should first determine the underlying type of

each incoming parameter. Then, the function should translate

each parameter’s current value to its equivalent statically-typed

representation in C++. The binding code should also determine

if values are legal (e.g., whether an index is within the bounds

of an array); if not, the binding should propagate an error back

to the JavaScript layer. Finally, before the function completes,

it should store any result in the memory and type representation

that JavaScript expects.

In practice, writing binding code is complicated: it can fail at

many points, and bindings should detect failure and correctly

communicate any errors back to JavaScript. Too often, binding

code simply crashes, leading to denial-of-service or covert-

channel attacks (§2). If a binding function does not crash, it

might still skip domain checking (e.g., checking that an array

index is in bounds)—or even ignore type checking, therefore

allowing attackers to use nonsensical values as legal ones. (e.g.,

by invoking a number as a function). One especially insidious

source of errors is the fact that binding code may invoke new

JavaScript routines during type and domain checking. For ex-

ample, in translating to a C++ uint32_t, bindings may use the

Uint32Value method, which could invoke a JavaScript “upcall”

(i.e., a call back into the JavaScript layer). JavaScript gives users

extreme flexibility in redefining fundamental language methods,

which makes it hard to know all methods that an upcall can

transitively invoke, and makes it easy for attackers to circum-

vent security and correctness checks. For example: bindings

may check that a start index is within the bounds of an array

before calling Uint32Value to get the value of an end index.

The Uint32Value call, however, may be hijacked by a mali-

cious client to change the value of the start index, invalidating

all previous bounds checking.

These bugs are neither hypothetical nor easily avoidable.

Our checkers find numerous exploitable security holes in both

Node.js and Chrome, heavily-used and actively developed code

bases. Furthermore, security holes in binding code may be sig-

nificantly more dangerous than holes in script code. First, these

bugs render attacks more generic: given an exploitable binding

bug, attackers need only trigger a path to that bug, rather than

craft an entire application-specific attack. Second, binding flaws

do not appear in scripts themselves: a script implementor can

write correct, flawless code and still introduce security errors

2017 IEEE Symposium on Security and Privacy

© 2017, Fraser Brown. Under license to IEEE.

DOI 10.1109/SP.2017.68

559

Violation type Possible consequence

Crash-safety DOS attacks, including poison-pill attacks [45]; breaking

language-level security abstractions, including [41, 42,

94, 109], by introducing a new covert channel.

Type-safety Above + type confusion attacks which, for example, can

be used to carry out remote code execution attacks.

Memory-safety Above + memory disclosure and memory corruption

attacks which, for example, can be used to leak TLS

keys [28] or turn off the same-origin policy [82].

Table 1—The three types of binding bugs that we describe

if their code calls flawed runtime routines. As a result, writing

secure scripts requires not only understanding the language

(already a high bar for many), but also knowing all of the bugs

in all of the versions of all of the runtime systems on which the

code might run.

To address this threat, this paper makes two contributions:

1. A series of effective checkers that find bugs in widely-used

JavaScript runtime systems: Node.js, Chrome’s rendering

engine Blink, the Chrome extension system, and PDFium.

We show how bugs lead to exploitable errors by manually

writing 81 exploits, including multiple out-of-bounds mem-

ory accesses in Node.js and use-after-frees in Chrome’s

PDFium (two of which resulted in $6,000 in bug bounties).

2. A backwards-compatible binding-code library that wraps

the V8 JavaScript engine’s API, preventing bugs without

imposing significant overhead. Our library does not break

any of Node.js’s over 1,000 tests or the test suites of 74

external Node.js-dependent modules. By design, the migra-

tion path is simple enough that we are able to automatically

rewrite a portion of Node.js’s bindings to use our safe API.

While we focus on (V8-based) JavaScript runtime systems,

JavaScript is not special: other scripting languages have es-

sentially identical architectures and face essentially identical

challenges; it would be remarkable if these languages did not

contain essentially identical flaws. Therefore, we believe that

other high-level language runtimes (e.g., those for Ruby and

Python) stand to benefit from lightweight checkers and more

principled API design.

2 The Problems with Binding Code
In this section we introduce binding code and explain how

bugs in bindings can lead to violations of JavaScript’s crash-

safety, type-safety, and memory-safety—and how these safety

violations manifest as security holes. Crash-safety violations,

the least severe, can enable JavaScript code—e.g., ads in

Chrome—to carry out denial-of-service attacks. They also pro-

vide a termination covert channel that attackers can leverage

to bypass language-level JavaScript confinement systems, such

as [10, 41, 42, 94].1 Type- and memory-safety bugs have even

more severe security implications. For example, use-after-free

bugs in Blink and PDFium are considered “high severity” since

they may “allow an attacker to execute code in the context of,

1A crash or its absence can signal whether a secret is true or false.

Application code

V8

Binding code

Blink runtime system

C++

JavaScript

Figure 1—The Blink runtime system uses the V8 JavaScript engine

to execute JavaScript application code. Blink also uses V8’s APIs to

extend the base JavaScript environment with new functionality and

APIs, such as the DOM. This code—which bridges the JavaScript

application code and Blink’s C++ runtime—is binding code.

or otherwise impersonate other [website] origins” [84]. Table 1

summarizes the security consequences of these classes of bugs.

In §4 we will discuss the precise security implications of safety

violations with respect to the systems that we analyze.

We start with an overview of how binding code works in

runtime systems and how untrusted JavaScript application code

can call into the trusted C++ runtime system to exploit binding

bugs. We find that these bugs often arise because JavaScript en-

gines like V8 make it easy for developers to violate JavaScript’s

crash-, type-, and memory-safety; even V8’s “hello world” code

examples depend on hard-crashing functions [105]. We con-

clude with a detailed overview of V8-based binding functions.

Runtime system binding bugs. Runtime systems use

JavaScript engines to execute application code written in

JavaScript. For example, the Chrome rendering engine, Blink,

relies on the V8 engine to interpret and run JavaScript code

embedded in web pages as <script> elements. The JavaScript

application code embedded in the <script> elements can use

APIs like the Document Object Model (DOM), a representation

of a web page, to modify the page and content layout. Binding

code makes these modifications possible: Blink developers use

the V8 engine API to extend the JavaScript application code’s

environment with such new functionality. Figure 1 illustrates

the role that binding code plays in the interaction between the

runtime system, the JavaScript engine, and the application.

To explain the challenges with preserving JavaScript’s crash-,

type-, and memory-safety in bindings, we walk through how to

implement and expose a simplified version of the Blob interface

to JavaScript [81]. This interface defines JavaScript Blob ob-

jects, which store binary data that can be sent over the network

via other APIs (e.g., XMLHttpRequest). In order to efficiently

pack data in memory, we implement Blobs in C++. We use the

V8 API to expose Blobs to JavaScript—specifically, we use it

to expose an interface for Blob creation and manipulation. In

WebIDL [62], this interface is:

[Constructor(DOMString[] blobParts)]

interface Blob {

readonly attribute unsigned long size;

readonly attribute DOMString contentType;

Blob slice(optional unsigned long start,

optional unsigned long end);

};

560

Implementing this interface in C++ (as binding code) and ex-

posing it to JavaScript allows applications to create Blobs from

the array of strings (e.g., new Blob(["foo", "bar"])). It also

allows JavaScript code to check the byte-length of a Blob (e.g.,

blob.size), get its content type (e.g., blob.contentType),

and extract its subsets (e.g., blob.slice(2)).

The following binding-layer function implements the con-

structor for JavaScript Blobs:

1 void

2 blobConstr(const FunctionCallbackInfo<Value>& args)

3 {

4 // Get the current execution context

5 Local<Context> ctx

6 = args.GetIsolate()->GetCurrentContext();

7

8 // Extract first argument after type checking

9 if (args.Length() != 1 || !args[0]->IsArray())

10 // ... throw exception and return ...

11

12 Local<Array> blobParts = args[0].As<Array>();

13

14 // Create new C++ obj to back the new JS 'this' obj

15 Blob* blobImpl = new Blob(args.This());

16

17 // Add each string part to the blob

18 uint32_t n = blobParts->Length();

19 for (uint32_t i = 0; i < n; i++) {

20 // Get the ith element from array argument

21 Local<Value> part =

22 blobParts->Get(ctx, i).ToLocalChecked();

23 // Convert it to a string and add it to the blob

24 blobImpl->AddV8StringPart(part.As<String >());

25 }

26

27 // Return the receiver to the calling JS code

28 args.GetReturnValue().Set(args.This());

29 }

This binding code uses the V8 JavaScript engine APIs to

handle JavaScript values in C++. For example, V8 represents

the JavaScript arguments to the blobConstr function as an

args array.blobConstr takes its first argument—an array of

strings—and adds each string part to the underlying object.

Unfortunately, blobConstr misuses V8 functions to introduce

several errors, which we describe in the next paragraphs.

Violating JavaScript’s crash-safety. blobConstr uses a hard-

crashing function to extract elements from an array (line 20):

blobParts->Get(ctx, i).ToLocalChecked(). This line can

hard crash because Get returns either a wrapped value (in case

of a successful get) or an empty wrapper (in case of failure)—

and ToLocalChecked crashes when its receiver is empty. As a

result, an attacker can write the following JavaScript to trigger

a crash in any runtime system that exposes Blobs:

1 var evilarr = [];

2 Object.defineProperty(evilarr, 0, {

3 get: () => { throw 'die!'; }

4 });

5 var blob = new Blob(evilarr);

In this case, V8’s Get function calls attacker-defined get;

when get throws an error, Get returns an empty handle, and

ToLocalChecked hard crashes. Attackers can use this kind of

bug to carry out denial-of-service attacks—e.g., in Node.js, a

third-party library can take down a web server while in Chrome,

a third-party advertisement can essentially take down a site by

crashing many users’ tabs.

These security risks are not present in the base JavaScript

language, since JavaScript itself is crash-safe: it will never hard

crash. Instead, errors—even stack frame exhaustion—manifest

as catchable exceptions. In contrast, in C++ code, failing grace-

fully requires nontrivial effort on the part of the programmer;

bindings introduce the possibility of hard crashes to an other-

wise crash-safe language.

Unfortunately, hard-crashing bindings can result from the

design of the binding layer API itself. For example, some of

V8’s type-safe casting APIs are not crash-safe. These functions

(e.g., ToLocalChecked, above) are supposed to convert from

V8’s wrapper types to unwrapped types. Developers have two

options when confronted with a wrapper: they can either (1) in-

spect it and, if it is empty, throw an exception back to JavaScript,

or (2) use the V8 function that converts wrapped to unwrapped

but hard crashes when the wrapper is empty. The second choice

is easier, so real bindings often follow this (unsafe) pattern.

Violating JavaScript’s type-safety. An attacker could use the

following JavaScript code to trigger a type-safety violation in

the Blob bindings:

1 var evilarr = [3, 13, 37];

2 var blob = new Blob(evilarr);

On line two, the attacker calls the Blob constructor with

an array of numbers. This kicks off a call to the binding

layer blobConstr constructor, which checks that it has re-

ceived a single argument of type Array. Then, blobConstr

extracts the first element of the evilarr array and casts

it to a String using the As<String> method (line 23):

blobImpl->AddV8StringPart(part.As<String>()). Since

evilarr’s first element is a Number and not a String, the pro-

gram segfaults when blobConstr tries to use the incorrectly

cast value. Crashes are not the only possible ramifications of

type-safety errors, however. §3 describes an exploit for Node.js

that leverages a function that does not type check to perform an

out-of-bounds write. Type confusion bugs can also enable other

kinds of attacks (e.g., remote code execution) [16–19, 38].

These attacks are a direct result of violations of (a certain

notion of) JavaScript’s type-safety. JavaScript does not have

a static type system and does not satisfy the standard notion

of type-safety [79]. Still, it satisfies a weaker notion of dy-

namic type-safety: JavaScript code cannot misuse a value by

reinterpreting its underlying type representation—e.g., numbers

cannot be reinterpreted and used as functions. If code tries to

misuse a number as a function, for example, the JavaScript

engine will raise a TypeError. This weak type-safety protects

JavaScript from, say, accidently reading data beyond an array’s

bounds or calling into unexpected or unsafe parts of the runtime.

561

Bugs that violate type-safety appear in real binding code; they

are common because neither JavaScript nor C++ nor V8 help

programmers use correct types. JavaScript, by design, does not

employ any static type checking. C++ is statically typed, but this

applies only to C++ code—the type checking does not extend

to the JavaScript code invoking the binding functions. Finally,

V8 gives all values coming from JavaScript the same Value

type, and the C++ binding-layer developer must determine, at

run time, whether objects are Objects or Arrays or Uint32s.

If the developer forgets to check a Value’s type before using or

casting it, they can introduce type confusion vulnerabilities.

Violating JavaScript’s memory-safety. There are more con-

cerns with our Blob implementation. The Blob slice func-

tion, for example, could introduce a memory bug. In order to

return a subset Blob, slice must access the receiver Blob’s

underlying binary data—a byte array. In accessing the array,

the slice function must be wary to read only the data that is

within bounds. The starting index and length are supplied by

user JavaScript, however; if the slice function checks bounds

before calling JavaScript methods that might invalidate invari-

ants, it could introduce a memory bug (e.g., an arbitrary write

vulnerability). Memory-safety bugs can be used to exfiltrate

sensitive information such as web server TLS keys [28].

These vulnerabilities are not present in JavaScript without

bindings: JavaScript is a garbage collected, memory-safe lan-

guage, so it can only access memory that has already been ini-

tialized by the underlying engine. Furthermore, JavaScript code

may only access memory in a way that preserves abstraction—

for example, it should not be able to inspect local variables

as encapsulated by closures [43, 64]. C++, in contrast, is not
memory safe—and bugs in binding code make it possible for

JavaScript code to violate JavaScript’s memory-safety as well.

Most binding layer memory errors arise because JavaScript

values adversely affect the data- or control-flow of binding func-

tions that perform memory operations like memcpy or delete.

These bugs are not typically caused by developers forgetting

to validate incoming JavaScript values; in fact, most binding

functions check arguments in some capacity. Rather, memory

bugs often arise because developers misuse V8 functions that

implicitly upcall back into JavaScript. Attackers may change in-

variants during these upcalls; if developers unwittingly assume

that invariants are still true, they may introduce vulnerabili-

ties. For example, a JavaScript array indexing operation in the

binding layer sometimes triggers an upcall into user JavaScript;

attackers can use this upcall to shorten the length of the array.

If a binding code developer does not re-check the length in-

variant and instead iterates blithely forward, they introduce an

out-of-bounds memory read vulnerability.

The challenge of writing memory-safe binding code is anal-

ogous to the problem of writing memory-safe concurrent C++

code. C++ binding code upcalling into JavaScript, which can,

in turn, call into C++ binding code (and so on), is a form of

cooperative concurrent programming. It is no surprise that con-

current (JavaScript) code can change shared memory and cause

concurrent C++ code to thereafter violate memory-safety. Un-

fortunately, the V8 API is “deceptive”: it does not make this

concurrency explicit; it does not make it clear that certain API

calls may trigger upcalls into JavaScript. We list the categories

of “deceptive” upcalling functions in Table 2.

Detailed overview of V8-based bindings. For completeness—

and because the V8 documentation is somewhat limited—we

explain the implementation of blobConstr in full; the uninter-

ested reader can skip this paragraph, but may find it useful as a

reference in later sections. As with all binding-layer functions,

V8 calls blobConstr with a callback-info object that contains

the JavaScript receiver (args.This()) and the list of JavaScript

function arguments (args[i]). The receiver is an instance of

v8::Object, the class that V8 uses to represent JavaScript ob-

jects, while the arguments are v8::Values; the v8::Value su-

per class is used to represent arbitrary JavaScript values, which

may be v8::Objects, v8::Numbers, etc. Lines 8–10 ensure

that our binding-layer function is called with a JavaScript ar-

ray argument. If any of these checks fail, the function raises

a JavaScript exception and returns early; V8 will throw this

exception upon returning control flow to JavaScript. Otherwise,

the binding function creates a new C++ Blob instance that will

be used to store the binary data (line 14). This object, blobImpl,

serves as a backing object for the newly created JavaScript ob-

ject referenced by args.This(). Specifically, the C++ Blob

constructor uses the V8 API to store a pointer to blobImpl

in one of the internal fields of the receiver object; this field

is not accessible to JavaScript. The internal field ensures that

whenever JavaScript calls a binding-layer Blob function, the

bindings can retrieve the underlying C++ object (blobImpl)

from the JavaScript object (args.This()). It also allows bind-

ings to register a garbage collection (GC) callback with the V8

engine. When the V8 garbage collector collects the JavaScript

Blob object, it will call the registered callback to free the cor-

responding C++ object. After allocating the C++ Blob object,

blobConstr iterates over its array argument and adds the in-

dividual string elements to the blob (lines 17–23). Lastly, it

returns the corresponding JavaScript object (line 27) that V8, in

turn, hands off to the JavaScript code that called the constructor.

Summary. The bugs that our checkers target (§3) and our API

aims to prevent (§5) are patterns caused by violations of three

fundamental JavaScript properties: crash-, type-, and memory-

safety. These violations come up repeatedly in the JavaScript

systems that we analyze; in fact, our checkers automatically

identified 81 real bugs. In the next section, we walk through a

number of bugs, the automatic checkers that detect them, and

the proof-of-concept attacks that trigger them. Afterwards, in

§4, we contextualize these bugs and their security implications

by describing the attacker models of the various systems that

we analyze.

3 Static Checkers for Finding and Exploiting
Vulnerabilities

In this section, we present static checkers for binding code

and proof-of-concept exploits for the bugs that they find. The

checkers, which are tailored for the systems on which they run

(e.g., Node.js or PDFium), analyze a parse tree of the program

source and point out potential errors. Then, as an attacker might,

562

Feature Description Example

Getters, setters Untrusted JavaScript code can define a custom function to be called when an object

property is set/get.

object->Get(context, i)

Prototypes JavaScript code can poison global prototypes such as Array.prototype and

Object.prototype which are then called on property access. This is especially useful

when getters/setters cannot be defined.

array->Set(context, i)

toPrimitive, toString JavaScript code can define a function that is called when the JavaScript engine tries to

implicitly cast an object to a primitive value or String.

val->Uint32Value()

Proxy traps JavaScript code can pass in JavaScript proxies instead of objects. This allows it to trap

operations such as set, get, delete, hasOwnProperty, etc.

obj->HasOwnProperty(context, prop)

Table 2—Tricky JavaScript edge cases that can form the basis of exploits. All of these cases can result in upcalls to user-defined JavaScript.

we create JavaScript that triggers the binding bugs. This process

demonstrates that:

1. Binding code is an exploitable weakness in JavaScript

runtime systems. We write five checkers that identify 81

exploitable bugs (with 30 false positives) in binding code,

including 3 use-after-free errors in PDFium. Chrome takes

these errors seriously: we were awareded $6,000 in boun-

ties for two UAF error reports [24, 25].

2. Binding code is easy to exploit. The static checkers in this

section are at most a hundred lines long, and we typically

create them in a day or two. In fact, after examining the

V8 documentation for a couple days, we believe that at-

tackers or developers could easily conceptualize and create

a checker. Once our checkers identify vulnerabilities, it

often takes fewer than a hundred lines to exploit them.

Checker implementation. We implement the checkers in

μchex [6], a language-agnostic static checking system, because

it allows us to build small and extensible checkers. Our checkers

are tiny since they ignore most of the language that they check.

Instead, they only parse and analyze portions of the language

relevant to the checker properties themselves. The simplicity

of the framework allows us to prototype quickly and to adapt

checkers from one runtime system to another with little work;

for example, the Node.js and Chrome invocations of one of our

checkers differ by one line of code. Finally, like many static

systems, our checkers are unsound: they do not guarantee the

absence of bugs in any system that they check.

Checker results. Our checkers flag binding layer functions that

unsafely use JavaScript engine APIs—V8 and shims around

V8. We run the checkers on a Node.js master version from

early September 2016 [74] and Chrome version 56.0.2915.0

(Developer build) [13]. We do not check test- and debugging-

related files. Additionally we omit any files that have been

removed (e.g., due to refactoring) from more recent versions

of the runtimes—Node.js 7.7.4 and Chrome 56.0.2924.87—

to simplify the bug reporting process. For each of the checker

results, we manually inspected the flagged code and categorized

the results. Some flags were clear false positives (e.g., due to

our simple intra-procedural analysis). Others we confirmed

by writing exploits; though most of the exploited bugs were

in binding functions directly callable by JavaScript, in some

cases we exploited helper functions that are only called by other

binding code (see below) to demonstrate feasibility. Finally, we

marked some results suspicious: we believe many of these to

be exploitable, but since we do not have exploits confirming

them, we count them separately. The extended version of this

paper [5] will contain the updated classification of these results

as we explore them in more detail.

We outline the results in Table 4 and the checkers that find

them in Table 3. The checkers look for three different classes

of errors. First, violations of crash-safety: one checker identi-

fies hard-crashing asserts that depend on user JavaScript, and

the other flags hard-crashing conversions from V8 types. Next,

type-safety: a checker flags variables that are cast without being

type-checked. Finally, memory-safety: one checker flags mem-

ory operations that are affected by upcalls back into JavaScript,

while the other flags instances where JavaScript can force col-

lection of a variable still used by C++. Our reports and exploits

are not intended as worst case scenarios for how attackers may

exploit bugs. For example, while we crash unchecked type bugs,

attackers may instead leverage them to carry out remote code

execution attacks. We provide links to all confirmed bugs in the

extended version of this paper [5].

3.1 Crash-Safety Violations

We write two basic checkers that flag violations of JavaScript’s

crash-safety in the binding layer: one checker identifies hard-

crashing Node.js asserts that depend on user JavaScript, and the

other flags hard-crashing conversions from V8 types. We adapt

the latter hard-crashing conversion checker slightly for each of

the systems that we check (Node.js and Chrome’s extension

system, PDFium, and Blink), a process that we describe further

in the extended version of this paper. We run the checkers on

the systems’ source code and craft JavaScript to trigger the bugs

that the checkers detect.

Hard-crashing checks on user-supplied input. This checker

identifies instances in Node.js where hard-crashing checks (e.g.,

CHECK) depend on user-supplied JavaScript input. For example,

the checker flags the following binding code bug [93]:

/* src/node_buffer.cc */

245 size_t Length(Local<Value> val) {

246 CHECK(val->IsUint8Array());

247 Local<Uint8Array> ui = val.As<Uint8Array>();

248 return ui->ByteLength();

249 }

563

Checker Type Problem Example

Crash Attacker can trigger hard crashing asserts CHECK(js)

Crash Attacker can trigger hard crashing conversions js->Get(..).ToLocalChecked()

Types Attacker can trigger bad cast notString.As<String>()

Memory Attacker can alter memory operations that depend on implicitly casting functions memcpy(js->ToUint32()...)

Memory Attacker can free object still being used by C++ ptr*; js->ToUint32(); use(ptr)

Table 3—The binding code bugs that our checkers identify.

Checker System Flagged Exploited Suspicious False

Hard crash

Node.js 68 37 19 12

PDFium 13 3 5 5

PDFium (lib) 39 29 10 0

Extensions 2 0 0 2

Blink 6 1 2 3

All 128 70 36 22

Type

Node.js 8 4 0 4

PDFium 0 0 0 0

Extensions 2 0 0 2

Blink 3 0 2 1

All 13 4 2 7

Memory
Node.js 5 4 0 1

PDFium 9 3 6 0

All 14 7 6 1

Total 155 81 44 30

Table 4—Bugs in JavaScript runtime systems. Our counts are con-

servative in several ways: (1) we do count multiple occurrence of a

particular bug kind (e.g., crashing) for a single function even though

in practice a crashing function, for example, can be crashed in mul-

tiple ways, and (2) we count bugs that are more difficult to trigger

(e.g., because they are deeply nested) as suspicious or false positives,

depending on the seeming difficulty.

The Length function takes a user-supplied V8 Local<Value>—

V8’s C++ base “unknown” type for a JavaScript value—as its

argument; val is supposed to be a JavaScript byte-array whose

length the function will determine. On line 246, the function

CHECKs that val is actually of the correct type, hard-crashing

when this is not the case. Length is not directly exposed to

JavaScript—it is a helper function that various other Node.js

binding functions use. Unfortunately, neither the other binding

functions nor the JavaScript layer that calls into binding code

safely enforce val’s type. As a result, we can sneak a malicious

value argument through to trigger a crash in the Length function.

The following code triggers the crash:

1 const dgram = require('dgram');

2 const util = require('util');

3 // Create object that passes instanceof Buffer check

4 function FakeBuffer() { }

5 util.inherits(FakeBuffer, Buffer);

6 const message = new FakeBuffer();

7 // Pass object to code that eventually calls Length

8 dgram.createSocket('udp4').send(message, ...);

The send function on line 8 is what eventually triggers the

bug in the Length function above. Lines 1-6 are boilerplate to

create a message that will fool JavaScript-layer type checks:

since our message is an instance of FakeBuffer, which in-

herits from Buffer, it passes the JavaScript function send’s

type checks. send eventually passes message to the binding-

layer UDP::DoSend function, which calls Length(message).

This causes a hard crash: message is not a Uint8Array, so the

CHECK(val->IsUint8Array()) fails.

To detect hard-crashing CHECK bugs, the checker does a for-

ward, intra-procedural analysis of each binding layer Node.js

function. Its main computed data structure is the set of all

variables that come from user JavaScript. If it detects a user

JavaScript variable in a hard-crashing macro (e.g., CHECK,

ASSERT, etc.), it flags an error. This simple checker works well

for Node.js because, in this system, it is often clear (1) which

arguments are user-supplied JavaScript and (2) how these ar-

guments are passed in from the JavaScript layer. Furthermore,

Node.js developers consistently use hard-crashing asserts in

place of safe if-statements. In contrast, when we tried running

a version of the checker on Chrome code, we drowned in a

deluge of confusing reports: Chrome thoroughly performs safe

checks before calling hard-crashing functions. In Blink most of

these safe checks are automatically generated; in the Chrome

extension system the checks are performed in JavaScript from

WebIDL-like interface descriptions.

This checker flags 65 errors, 35 of which we confirmed by

writing crashing exploits for Node.js. We examined 9 reports

and decided that they were difficult or impossible to trigger

largely because the binding functions are “monkey-patched”

with safe type-checking JavaScript code before any application

code can run. Of the remaining checker flags, we mark 19 as

suspicious. Most of these functions are inner, helper binding

functions that are more challenging to trigger than functions di-

rectly exposed to JavaScript. We could have suppressed reports

for such non-public functions, but the Length exploit above

demonstrates that it is very feasible to trigger bugs that are

several layers deep in the JavaScript-C++ call stack. Moreover,

Length is not the only deep Node.js bug we have triggered.

Hence, we argue for more defensive (or less explicitly hard-

crashing) bindings [90].

Hard-crashing conversions from Maybe types. This checker

identifies instances where binding code unsafely uses hard-

crashing conversions. In other words, it flags binding functions

that use type conversion methods that hard-crash in the case

of unexpected types. For example, the ToChecked function

converts JavaScript values from Maybe<T> types—types that

signal success (value of type T) or failure (Nothing)—to T

564

types, crashing when the value is Nothing. Our checker flagged

the following Chrome hard crash [23]:

/* chrome/third_party/WebKit/Source/bindings/

core/v8/ScriptCustomElementDefinition.cpp */

85 template <typename T>

86 static void keepAlive(v8::Local<v8::Array>& array,

87 uint32_t index,

88 const v8::Local<T>& value,

89 ScopedPersistent<T>& persistent,

90 ScriptState* scriptState) {

91 if (value.IsEmpty())

92 return;

93

94 array->Set(scriptState->context(), index,

value).ToChecked();↪→

95 ...

96 }

The ToChecked call on line 94 will hard crash if its receiver

is Nothing. In other words, if array->Set() returns Nothing,

the method call ToChecked() on it will result in a crash. Getting

array->Set(...index, value) to return Nothing is trivial.

The Set function normally sets the index property of array to

value (e.g., array[0] = 0). JavaScript, however, allows users

to instead define custom a setter function to be called whenever

the property is accessed. Hence, if we re-define array’s index

property to be an exception-throwing setter, array->Set() will

return Nothing—and the tab hard crashes.

Triggering this error is a bit more subtle, though—array

is not a value that comes directly from attacker-controlled

JavaScript (e.g., from a web site). Instead, array is freshly

created in the C++ binding code that calls keepAlive:

/* chrome/third_party/WebKit/Source/bindings/

core/v8/ScriptCustomElementDefinition.cpp */

124 v8::Local<v8::Array> array =

v8::Array::New(scriptState->isolate(), 5);↪→

125 keepAlive(array, 0, connectedCallback,

definition->m_connectedCallback,

scriptState);

↪→

↪→

On line 124, the programmer uses the New constructor to cre-

ate a new array in C++. Luckily, attackers can affect the

Set function even on freshly-created object. JavaScript al-

lows developers to define properties on global prototypes (e.g.,

Array.prototype or Object.prototype) that are inherited

by all newly created objects in the same context; attacks that

take advantage of prototypes are called prototype poisoning
attacks [2]. The following malicious JavaScript defines an

exception-throwing setter function for property 0 of the Array

prototype:

1 Object.defineProperty(Array.prototype, 0, {

2 set: newValue => { throw "die!"; },

3 enumerable: true

4 });

If we include this JavaScript in a malicious web page, all

JavaScript arrays in the context will contain an exception-

throwing setter as their property 0—including arrays in

bindings. Therefore, when the binding code tries to ac-

cess the 0 property of a freshly created array by calling

array->Set(0, ...).ToLocalChecked(), the tab will crash.

The checker is implemented as a forward, intra-procedural,

flow-sensitive traversal of the parse tree. Its main computed

data structure is the NothingSet, which contains variables that

may be Nothing; it flags an error when it sees a hard-crashing

conversion call (e.g., ToLocalChecked) on a variable in the

NothingSet. For each binding code function, the checker:

1. Initializes AlterSet to the empty set. The AlterSet is the

set of variables whose upcalls malicious JavaScript may

control; any time a user-controlled JavaScript object can

override a method (e.g., js->Set()), we add that object

to the AlterSet.

2. Adds user-controlled JavaScript Object or Value argu-

ments to the AlterSet.

3. Initializes NothingSet to the empty set. NothingSet is

the set of variables initialized to the result of upcalls

on user-controlled JavaScript. On encountering the line

x = array->Set(...), if array is in the AlterSet, the

checker adds x to the NothingSet: a malicious array

could override its Set function to throw an exception, leav-

ing x as a Nothing value.

4. Removes variables from the AlterSet when they are type

checked and from the NothingSet when they are com-

pared with Nothing.

5. Flags an error any time a hard-crashing conversion

(ToChecked, ToLocalChecked, and FromJust) is called

on an item in the NothingSet. We can force items in the

NothingSet to be Nothing, triggering a hard crash when

execution hits the ToChecked.

This checker flags 27 errors, 6 of which we confirmed by writing

crashing exploits—2 for Node.js, 3 for PDFium and 1 for Blink.

As with our previous checker, we mark internal, hard-to-get-to

functions as suspicious—in total, 7. Of the 27, 13 are false

positives. Again, most false positives arise because some bugs

are on impossible paths; for example, the three Blink false

positives for this checker were due to series of checks performed

in the functions calling the seemingly unsafe binding code. We

believe that adding inter-procedural analysis to these checkers

can address most of the false positives.

After looking at the initial reports for this checker, we found

that it flagged hard crashes deep in PDFium’s V8 wrapper li-

brary. The library wraps typical V8 functions like Uint32Value

to accept PDFium JavaScript type arguments (e.g., CJS_Values)

instead of V8 type arguments. We used this information to write

a new 40-line, PDFium-specific twist on the original checker.

The new checker identifies cases where wrapper functions are

called on un-type-checked user CJS_Value arguments—usually

something along the lines of “params[0].ToInt().” We identi-

fied 39 such cases, 29 of which we have triggered by embedding

565

JavaScript in PDFs. For example, embedding the following line

of code in a single PDF crashes all open PDF tabs:

1 app.beep({ [Symbol.toPrimitive]() { throw 0; } })

As a final experiment, we gathered all of our Node.js crash-

ing exploits and ran them on a different Node.js version, one

that uses Microsoft’s ChakraCore JavaScript engine (instead

of V8) [12, 70]. Out of 37 crashing exploits, all still crash on

Node.js ChakraCore. This gives us confidence that we will be

able to adapt our checkers from one JavaScript engine to another

relatively easily.

3.2 Type-Safety Violations

Casts without type checking. This checker flags violations of

JavaScript’s weaker notion of type-safety: it looks for cases

where C++ code casts binding-layer JavaScript values to C++

V8 types without checking if values are of those types. For

example, the checker detects the following Node.js binding bug,

which attackers can use to carry out a type confusion attack:

/* node/src/node_buffer.cc */

816 template <typename T, enum Endianness endianness>

817 void WriteFloatGeneric(const

FunctionCallbackInfo<Value>& args) {↪→

818 Environment* env = Environment::GetCurrent(args);

819 bool should_assert = args.Length() < 4;

820 if (should_assert) {

821 THROW_AND_RETURN_UNLESS_BUFFER(env, args[0]);

822 }

823 Local<Uint8Array> ts_obj =

args[0].As<Uint8Array>();↪→

824 ArrayBuffer::Contents ts_obj_c =

ts_obj->Buffer()->GetContents();↪→

825 ...

826 }

On lines 819–822, the code conditionally checks the type

of the first argument (args[0]). Unfortunately, the condition

should_assert depends on the user—should_assert is de-

fined based on the number of arguments the user provides—so

attackers can bypass the type check. On line 823, the un-type-

checked args[0] is cast to a Uint8Array. Finally, from line

824 forward, WriteFloatGeneric calls methods on the cast

object—so a well-chosen argument can amount to arbitrary

code execution.

We trigger this bug using the public buffer API, which

attempts to apply JavaScript-layer checks before calling into

the buggy binding function:

/* node/lib/buffer.js */

1244 Buffer.prototype.writeFloatLE = function

writeFloatLE(val, offset, noAssert) {↪→

1245 val = +val;

1246 offset = offset >>> 0;

1247 if (!noAssert)

1248 binding.writeFloatLE(this, val, offset);

1249 else

1250 binding.writeFloatLE(this, val, offset, true);

1251 return offset + 4;

1252 };

This JavaScript-layer code converts val and offset to num-

ber values in lines 1245 and 1246, but does nothing to type

check the receiver this, which should be a Buffer. Then, de-

pending on the user-supplied noAssert, it calls the binding

layer writeFloatLE (which calls the buggy binding function

WriteFloatGeneric) with either three or four arguments. In

the latter case, the binding layer’s should_assert argument

is false, disabling type checking and triggering the incorrect

cast. The following exploit triggers this bug:

1 Buffer.prototype.writeFloatLE.call(0xdeadbeef, 0,

0, true);↪→

This code snippet triggers a call to WriteFloatGeneric with

0xdeadbeef as args[0], 0 as args[1], etc. The exploit will

cause a type confusion attack: it almost always hard crashes,

but a well-crafted argument (in place of 0xdeadbeef) can cause

the Buffer method call on ts_obj to execute meaningful code.

Attackers could embed this seemingly benign code deep in

the dependency tree of publicly available, anonymous, and

unsigned Node.js packages and go unnoticed [83, 91].

The type-casting checker is implemented as another intra-

procedural forward code traversal. Its main computed data struc-

ture is the set of un-type-checked user arguments; whenever it

sees a cast of an un-type-checked argument, it flags an error.

For each binding layer function, the checker:

1. Initializes the set of UncheckedTypes to the empty set.

2. Adds any user-controlled JavaScript arguments to the set

of UncheckedTypes.

3. Removes any argument that is type checked from the

UncheckedTypes set.

4. Flags an error when a variable in UncheckedTypes is cast

using V8’s As<T>() function.

The checker flags 13 bugs; we confirm 4 by crafting exploits for

them. Most false positives—especially in the Chrome systems—

occur because of impossible paths into our flagged reports; inter-

procedural checking and checking between JavaScript-layer and

C++-layer functions would make our reports far cleaner.

3.3 Memory-Safety Violations

The checkers in this section identify memory-safety violations.

They look for instances where user JavaScript can alter values

used in memory operations and instances where user JavaScript

can force the deallocation of objects still used by C++ code.

Attackers could leverage these sorts of bugs to, for example,

read the TLS keys of a Node.js web application.

Memory operations dependent on implicit casts. V8

provides built-in functions that return C++ representa-

tions of JavaScript values. For example, the statement

566

“uint32_t y = x->Uint32Value()” assigns y to the C++ un-

signed integer value of x. Programmers occasionally depend on

the results of these functions for sensitive operations such as

memory allocations (e.g., malloc(y)). If the JavaScript receiver

is a primitive type (e.g., x is a Number), this is fine; if the receiver

is a non-primitive type, calls like x->Uint32Value() can be

dangerous. In particular, when x is an Object, the JavaScript en-

gine upcalls the x[Symbol.toPrimitive] function (if defined)

within the Uint32Value function. Attackers can leverage this

function in order to, say, evade bounds checks. We will call

functions like Uint32Value—functions that implicitly cast a

value by calling Symbol.toPrimitive—implicitly casting.

This checker flags instances where the binding layer does

not perform type checking before depending on the result of an

implicitly casting function for a memory operation. It identifies

an out-of-bounds write error in Node.js’s buffer fill function,

which fills in a user-provided buffer buf with a single value

starting at a start index and going to an end index [92]. fill

must ensure that both start and end are within the bounds of

buf. Bounds checking, though, is not as straightforward as it

seems: fill tries to implement some checking in the JavaScript

layer and some in the C++ binding layer. We give the JavaScript

checks below:

/* node/lib/buffer.js */

662 function fill(val, start, end, encoding) {

663 ...

664 // bounds checks

665 if (start < 0 || end > this.length)

666 throw new RangeError('Out of range index');

667 if (end <= start)

668 return this;

669

670 // calls binding code

671 binding.fill(this, val, start, end, encoding);

672 }

The checks that start on line 664 are supposed to ensure that

the start and end values are within the bounds of the buffer.

After these checks, on line 671, the JavaScript code calls the

C++ binding layer implementation of binding.fill [92]:

/* node/src/node_buffer.cc */

604 void Fill(const FunctionCallbackInfo<Value>& args) {

605 size_t start = args[2]->Uint32Value();

606 size_t end = args[3]->Uint32Value();

607 size_t fill_length = end - start;

608 ...

609 CHECK(fill_length + start <= ts_obj_length);

610

611 if (Buffer::HasInstance(args[1])) {

612 SPREAD_ARG(args[1], fill_obj);

613 str_length = fill_obj_length;

614 memcpy(ts_obj_data + start, fill_obj_data,

MIN(str_length, fill_length));↪→

615 ...

616 }

617 }

Lines 605 and 606 get the unsigned integer values of arguments

two and three, the start and end index of the fill operation. If the

start and end indices are unsigned 32-bit integers like 0 and 5,

everything is fine; if an attacker passes in an object, though, they

can take advantage of implicit casting to call their malicious

Symbol.toPrimitive function. In doing so, they can return

values that evade the single bounds check on line 609, a check

that tries to ensure that the length of the write is less than the

length of the buffer object.

In the next paragraphs, we will explain how a malicious

Symbol.toPrimitive function returns a negative value; in this

one, we will explain what happens when Symbol.toPrimitive

returns such a value for start (though end can be abused the

same way). Since start (line 605) is an unsigned size_t, a

negative value will cause it to overflow. When start is very

large, the addition in the bounds check (line 609) wraps around:

fill_length + start becomes less than ts_obj_length.

Since the bounds check passes, the memcpy starting at location

ts_obj_data + start executes; the negative value passed in

for start clearly controls the location of the write.

The following exploit code carries out this attack:

1 var buff = Buffer.alloc(1);

2 var ctr = 0

3 var start = {

4 [Symbol.toPrimitive](hint) {

5 if (ctr == 0) {

6 // evade the check in lib/buffer.js

7 ctr = ctr + 1;

8 return 0;

9 } else {

10 // in the C++ implementation of fill:

11 return -1;

12 }

13 }

14 };

15 buff.fill(victim, start, 1);

Line 3 defines an object start to be passed in as the start

value of the write (line 15). Since there is no type checking

in either the JavaScript or C++ fill functions, our start

is a legal argument value. On line 4, we define the mali-

cious Symbol.toPrimitive function. Now, whenever some-

one tries to get the number value of start, our function will

be called. This function uses the counter ctr, defined on line

2, to evade bounds checking in the JavaScript code. It returns

a benign value of 0 the first time it is called. The next time

start[Symbol.toPrimitive] is called, however—in the C++

binding code—the function returns a negative value.

To identify such errors, our checker does a forward traversal

of each function. Its main computed data structure is the set

of DangerousValues, values that are the results of upcalls into

user JavaScript. We flag a bug if a memory operation depends

on a dangerous value. The checker:

1. Initializes the UncheckedTypes, the set of variables whose

types have not been checked, to the empty set.

2. Adds any user-controlled JavaScript arguments to the

UncheckedTypes set.

567

3. Removes any argument that is actually type checked

from the UncheckedTypes set. For example, the fol-

lowing line of code would cause the checker to re-

move argument arg from the set of UncheckedTypes:

if (!arg->IsUint32()) return.

4. Adds the results of any implicitly casting calls on

UncheckedTypes to the DangerousValues set.

5. Adds any values that are assigned using values in

DangerousValues to DangerousValues: if x is in

DangerousValues, the line y = x + 5 will cause y to

be added to DangerousValues.

6. Flags an error if any value in DangerousValues appears

in an expression that is used as an argument to a memory

operation (e.g., malloc or memcpy).

The checker flags 5 errors, of which 4 are true and 1

is false. All of these reports are in Node.js. Two of our

true bugs appear in template code—WriteFloatGeneric

and ReadFloatGeneric—that is actually used by four ex-

posed binding layer functions: WriteFloatLE, WriteFloatBE,

ReadFloatLE, and ReadFloatBE. We write exploits that resem-

ble the Fill exploit in this section for all 4 errors. The false pos-

itive, in Node.js’s crypto bindings, arises because these bindings

do careful invariant re-checking that accounts for wraparound.

PDFium use-after-frees. This checker flags potential use-after-

free errors, instances in PDFium bindings where malicious user

JavaScript can force an object to be freed while C++ maintains

a live reference to that object. Consider the following bug [24]:

src/third_party/pdfium/fpdfsdk/javascript/Annot.cpp

72 bool Annot::name(IJS_Context* cc, CJS_PropValue& vp,

CFX_WideString& sError) {↪→

73 CPDFSDK_BAAnnot* baAnnot =

ToBAAnnot(m_pAnnot.Get());↪→

74 if (!baAnnot) return false;

75 ...

76 CFX_WideString annotName;

77

78 vp >> annotName;

79 baAnnot->SetAnnotName(annotName);

80 }

This bug appears in the binding layer of PDFium’s JavaScript

API, an API that allows JavaScript embedded in PDFs to make

changes to the underlying PDF representation. The name func-

tion above, for example, is supposed to set the name of a PDF

annotation. name’s CJS_PropValue& argument, vp, is a user-

supplied JavaScript value; we can craft a JavaScript vp argu-

ment that causes pointer baAnnot to be used (line 79) after it is

freed (line 78).

The function initializes baAnnot and checks that it is non-

null. The next two lines are supposed to assign annotName, a

special type of PDFium String, to the value of baAnnot, the

annotation name. This assignment uses the overloaded “>>”

operator; when annotName is a CFX_WideString, the operator

calls the function ToCFXWideString with vp as the receiver.

ToCFXWideString is part of PDFium’s layer which wraps the

V8 API: internally, this function just calls V8’s ToString on the

vp object. Naturally, an attacker can provide their own definition

of ToString function to delete baAnnot and trigger the UAF.

For example, the following exploit is embedded as JavaScript

code into a PDF with radio-button widgets:

1 const annots = this.getAnnots();

2 annots[0].name = {

3 toString: () => {

4 this.removeField("myRadio");

5 gc();

6 return false;

7 }

8 }

In this snippet, annots[0] corresponds to vp in the bind-

ing layer. We override name’s toString function to remove

the "myRadio" field, which corresponds to baAnnot in the

binding layer. Now, there are no more JavaScript references

to "myRadio"; when we call gc and force garbage collec-

tion on line 5, the GC frees the memory associated with

"myRadio". This memory, however, is also associated with

baAnnot in the binding layer. Unfortunately, when control re-

turns to the bindings, baAnnot is used without any checks

(baAnnot->SetAnnotName(annotName))—even though the

JavaScript call already caused it to be freed.

Our UAF checker does a forward traversal of each

PDFium function parse tree. Its main computed data set is

FreeablePointers, pointers that may have been freed in user

JavaScript; it flags a bug whenever a freeable pointer is used.

For each function, it:

1. Initializes the set of all pointers that have been initialized,

InitPointers, to empty.

2. Initializes FreeablePointers, the set of pointers that may

be altered by user JavaScript, to empty.

3. Adds newly initialized pointers to InitPointers (e.g., af-

ter the line BAAnnot* x = foo(), x is in InitPointers).

4. Adds all InitPointers to FreeablePointers when it

encounters a PDFium function that can upcall into user

JavaScript. For example, it adds x to FreeablePointers

after the line jsval.ToInt().

5. Flags an error when FreeablePointers are used (e.g., at

the line *x).

This checker moves x in InitPointers to FreeablePointers

when x’s initialization is followed by an upcall into JavaScript.

The checker does so because the JavaScript upcall may remove

the JavaScript object associated with x and then force garbage

collection, thereby making any subsequent uses of x in C++

a use-after-free violation. In our checker implementation, we

consider any potential upcall (e.g., x.ToInt()) to be a feasible

upcall since PDFium does not perform any binding layer type

checking. Therefore, we know we can almost always pass an

Object with maliciously overridden methods to the function.

We do not add obvious unique pointers to the InitPointers or

FreeablePointers sets, since we cannot trigger a UAF attack

on a unique pointer.

568

This checker flags 9 errors. We wrote exploits for 3 of them

and mark the remaining 6 suspicious. All the suspicious bugs

are easy to reach, but we are not sure which PDF fields can be

removed from user JavaScript. We are in contact with PDFium

developers about how to remove certain elements (such as an-

notations, above) from PDFs.

4 Runtime System Design and Attacker Models
In the previous sections, we outlined several classes of binding

layer bugs; in this section, we contextualize the real-world

impact of our results in the systems that we analyze—Blink,

the Chrome extension system, Node.js, and PDFium. We also

outline the attacker models that the systems assume and efforts

they make to mitigate the effects of binding layer bugs. In some

cases, we propose changes to their efforts and attacker models.

4.1 Blink

Chrome’s rendering engine, Blink, relies on V8 to expose APIs

(e.g., the DOM) to JavaScript web applications. Blink assumes

that JavaScript application code may be malicious [14]—that it

may, for example, try to leak or corrupt data of different origins

by exploiting a bug in the binding layer. As a result, Blink treats

type- and memory-safety violations as security concerns. Blink

does not consider crashing bugs and denial-of-service attacks

to be security errors because malicious JavaScript can always

hang the event loop and deny service. Nevertheless, Blink tries

to mitigate the risk and likelihood of all three categories of

bug: they use automatically generated bindings, a C++ garbage

collector, and out-of-process iframes (Figure 2a).

Blink addresses most type- and crash-safety binding bugs

by automatically generating most of its bindings from We-

bIDL specifications of web platform APIs (e.g., the DOM,

XMLHttpRequest, etc.). Once the generating templates are cor-

rect, generated code can perform type checking in a consistent,

crash safe way, avoiding type confusion and hard-crashing bugs.

Templates and WebIDL compilers may still be buggy [15], but

they are more reliable than manual type checking.

Blink avoids memory leaks and use-after-free vulnerabilities

with a garbage collector, called Oilpan, for C++ binding ob-

jects. Oilpan prevents memory errors that arise when binding

layer functions call back into JavaScript, altering or removing

pointers on which C++ code still relies [39].

Blink is also protected by Chrome’s new out-of-process

iframes (OOPIFs). OOPIFs isolate iframes with different ori-

gins in separate processes [22], reducing the severity of some

attacks (e.g., by making it more difficult to leak cross-origin

data)—even attacks that exploit binding bugs.

Unfortunately, neither OOPIFs nor the combination of code

generation and garbage collection protect all binding layer Blink

code. Some Blink bindings are still handwritten (since they need

to manipulate or allocate JavaScript objects directly); these

bindings are still vulnerable to programmer error. For example,

we identified a crashing bug in the Custom Elements DOM

APIs that we can trigger with crafted JavaScript.

OOPIFs are not a comprehensive defense either: Chrome only

deploys them for high-profile websites [22], leaving the rest of

the web unprotected. Moreover, OOPIFs only defend at coarse

granularity, and many client-side, language-level mechanisms

rely on JavaScript memory- and type-safety for fine-grained

security [50, 60, 63, 94, 109]. As a result, a JavaScript attacker

who can exploit binding bugs to break safety assumptions may

violate these systems’ language-level guarantees—even though

the attacker cannot break Chrome’s isolation guarantees.

4.2 Chrome Extension System

The Chrome extension system uses V8 to expose privileged

APIs to JavaScript extension code (e.g., to allow extensions

to create new tabs or read page contents on certain origins).

Chrome assumes that extensions are “benign-but-buggy” [4]—

that they may contain errors but are not intentionally malicious.

The pages that extensions interact with, however, may be mali-

cious; they may even try to exploit vulnerabilities in extension

code. To address attacks from malicious pages, the runtime iso-

lates the core part of the extension—the code that has access to

privileged APIs—from the content scripts that directly interact

with the page: Chrome runs the core extension in an isolated

process. Though, for performance reasons, multiple extensions

are placed in the same process [32].

Even with the extension system’s isolation and privilege

separation mechanisms in place, attackers have exploited ex-

tension system vulnerabilities and managed to abuse privileged

APIs [20, 21, 60]. Unfortunately, binding-layer bugs can fur-

ther amplify these exploit strategies. Type- and memory-safety

vulnerabilities are particularly serious, since these classes of

binding bugs may allow JavaScript code to use the privileged

APIs of co-located extensions, otherwise not requested by the

vulnerable extension nor approved by the user (for this exten-

sion). Crash-safety bugs, on the other hand, do not have security

implications—they can only be used to crash the isolated exten-

sion process.2

The Chrome extension system uses binding layer defenses

to reduce the risk of crash-, type-, and memory-safety bugs:

it relies on a trusted JavaScript layer to do crash-safe type

checking before calling into binding code (Figure 2b). Attackers

may bypass the trusted JavaScript layer, though [20, 21]; a bug

in the trusted JavaScript layer and a bug in the bindings combine

to form a security vulnerability. Moreover, Chrome extension

system does not use C++ garbage collection or code generation

to eliminate binding bugs by construction.

We believe that Chrome extension system should assume a

stronger attacker and treat extensions as potentially malicious

code. Numerous extensions—used by millions of people—have

turned out to be malicious [46, 48, 94, 103], while other pop-

ular extensions such as AdBlock Plus [51] have been sold to

untrustworthy parties. Chrome currently does not assume ma-

licious extensions in their threat model and, to make matters

worse, automatically downloads extension updates as long as

those updates do not request new privileges. Thus, if an attacker

maintains a least-privileged extension, they can update that ex-

2Since Chrome notifies the user when an extension crashes, however, a mali-

cious page may exploit hard-crashing bugs to annoy the user into disabling or

uninstalling a targeted extension such as HTTPS Everywhere [33].

569

Web application code

Generated binding code

Blink runtime system

W
eb

ID
L

 +
 C

+
+

Ja
va

Sc
ri

pt

Sandboxed per-tab process

(a) Chrome’s Blink relies on

process isolation and automatic

binding code generation to ad-

dress binding-layer vulnerabili-

ties.

Type-checking, wrapper code

Manual binding code

Extension runtime system

C
+

+
Ja

va
Sc

ri
pt

Sandboxed per-extension process

Extension-core code

(b) The Chrome extension sys-

tem relies on a small, isolated,

and trusted JavaScript layer to

type check arguments before

calling into hand-written bind-

ing code.

Type-checking code

Manual binding code

Node.js runtime system

C
+

+
Ja

va
Sc

ri
pt

Server application code

(c) Node.js implements most of

its core libraries in JavaScript,

atop a small hand-written bind-

ing layer. However, the bind-

ing layer is accessible to user

JavaScript and the JavaScript

layer is not isolated from appli-

cation code.

Manual FPDF binding code

FPDF implementation in V8

PDFium runtime system

C
+

+
Ja

va
Sc

ri
pt

Single sandboxed process

PDF-embedded code

(d) PDFium wraps the V8 API

with a small, but less safe, C++

API that it then uses to expose

APIs to JavaScript.

Figure 2—The binding layers and their defenses across JavaScript runtime systems. The trustworthiness of code decreases with color—white is

the most trustworthy, while dark blue is the often untrusted JavaScript application code.

tension with code that leverages a binding layer bug to, perhaps,

escalate the malicious extension’s privileges. Chrome will au-

tomatically download this malicious update, and the extension

will operate with unauthorized access to user information.

4.3 Node.js

Node.js is a JavaScript runtime system for building servers

and desktop applications. The runtime uses V8 to ex-

pose APIs for filesystem, networking, and crypto utilities.

Node.js (Figure 2c) exposes low-level binding APIs (e.g.,

process.binding('fs')) which JavaScript code, in turn, uses

to implement the core standard libraries (e.g., fs). By imple-

menting most code in a high-level, memory- and type-safe

language instead of C++, Node.js makes it easier for developers

to safely create new features.

Despite only implementing minimal machinery in C++,

Node.js still struggles with binding layer bugs (§3). Node.js

does not consider binding bugs to be security risks; to the

best of our understanding, the Node.js attacker model assumes

that JavaScript application code is benign.3 However, discor-

dantly, Node.js recently added support for zero-filling buffers.

Zero-filled buffers make it more difficult for remote attack-

ers to exploit benign but buggy application code that relies on

the buffer library to disclose memory (in the style of Heart-

bleed) [1]. Binding layer vulnerabilities reintroduce the problem

that zero-filling buffers are designed to fix; attackers can use

binding bugs (e.g., in buffer) to read and write arbitrary parts

of Node.js processes (§3).

3Personal communication with the Node.js security list, unfortunately, did not

lead to a clear explanation of Node.js’s attacker model. For example, our

arbitrary memory write exploit was not considered a security bug, while our

less severe out-of-bounds write was flagged as a security issue. In this paper,

we conservatively assume a relatively weak attacker. We, however, remark that

since our original reports, the Node.js team has established a security working

group to, among other things, address some of concerns raised by this work.

We are actively working within the scope of this group to refine Node.js’s

attacker model [73].

Furthermore, we believe that the buggy but benign model is

not generally appropriate: the node package manager (NPM)

and Node.js workflow make it easy to download and execute

untrusted code [76, 83]. Members of the Node.js team and

NPM recommend that developers “not execute any software

. . . [that they] do not trust [75].” Binding bugs make it hard to

follow this advice. Most binding bugs are reachable from core

Node.js libraries, so developers cannot easily audit and there-

fore trust NPM packages. Even if a program does not require

any module—a first indication that it may be trying to do some-

thing sensitive—that code can nevertheless leverage a binding

bug to be extremely damaging. For example, a malicious NPM

package could exploit one of the out-of-bounds vulnerabili-

ties that we found in the core buffer library, which is always

loaded, to read and write arbitrary parts of the Node.js process

(e.g., users’ secret keys). Even our crashing bugs may be useful:

since Node.js is popular for implementing web-servers, attack-

ers could use hard crashing binding errors to take down a server

that otherwise handles crashes gracefully.

Finally, attackers may use binding bugs against language-

level security mechanisms for Node.js, including [8, 27, 50].

The security systems defend against language-level attacks but

assume JavaScript’s memory- and type-safety. Bugs in the bind-

ing layer can violate these assumptions (as we show in §bugs),

therefore violating the security guarantees of the language-level

mechanisms. Neither the language-level systems nor more gen-

eral JavaScript mechanisms (e.g., [26]) can safely expose sub-

sets of the Node.js API without giving up on their guarantees.

4.4 PDFium

PDFium, Chrome’s PDF rendering engine, parses and renders

PDF documents. PDFs may contains JavaScript that customizes

the document at runtime (e.g., by drawing new widgets or filling

in a form); embedded JavaScript may even submit forms to

remote servers. PDFium exposes an API for customizing PDFs

as such using V8 bindings [96].

570

Chrome assumes that PDF documents may be malicious, and

treats type- and memory-safety violations as security concerns.

Chrome is especially concerned about binding layer attacks,

since, for example, “a PDFium UAF will usually lead to re-

mote code execution, particularly when it is triggered from

[JavaScript] where the adversary has substantial control over

what happens between the free and the subsequent re-use” [85].

Despite their attacker model, PDFium does not use any se-

rious binding layer defenses: their bindings are hand-written

using a crash-unsafe library that minimally wraps V8’s APIs

(Figure 2d). Chrome still runs the PDFium renderer in an iso-

lated, sandboxed process, though, which limits the damage of

binding errors. This is because Chrome’s OS-sandbox restricts

PDFium to communicating with other Chrome processes by

using message passing. Unfortunately, PDF documents of dif-

ferent origins are rendered in the same process. As a result,

binding layer memory-read exploits may, say, violate the same-

origin policy by reading the contents of a different-origin PDF.

The Chrome team is working on a more robust architecture

that will isolate origins, making cross-origin attacks extremely

difficult [85].

5 Preventing Errors By Construction
This section presents a new V8-based binding-layer API, one

that makes it easier for developers to preserve JavaScript’s

crash-, type-, and memory-safety. We describe the API’s design,

implementation, and evaluation: it is backwards compatible and

imposes little overhead and little porting burden. The API helps

developers avoid bindings bugs by automatically type-checking

JavaScript values and by forcing developers to more gracefully

handle errors.

5.1 Safe API Design

A safe binding-layer API should:

1. Force developers to handle failures (e.g., exception-

throwing upcalls) in a crash-safe way, by propagating

errors back to JavaScript instead of hard crashing.

2. Disallow developers from using JavaScript values before

checking their types.

3. Make the concurrent programming model explicit by mak-

ing clear which C++ functions can trigger JavaScript up-

calls that may change invariants (§3).

Our API achieves these goals by forcing functions that in-

teract with JavaScript to use a special type, JS<T>, that encap-

sulates either a JavaScript value of type T (e.g., v8::String)

or a JavaScript exception of type v8::Error. Our API satisfies

the first goal because a JS<T> forces the developer to han-

dle a v8::Error explicitly instead of triggering a hard crash;

it satisfies the second goal by only providing functions that

automatically type-check values before casting them; and it

satisfies the third goal by forcing each potentially upcalling

function to return a JS<T>, explicitly signalling that these func-

tions may throw errors or have other side effects. Table 5 out-

lines the interface that our API exposes to C++ binding code.

The API includes three kinds of functions that interact with

JS<T> accessor methods

onVal: JS<T0 x ... x Tn> -> ((T0, ..., Tn) -> JS<T>) -> JS<T>

onFail: JS<T> -> (Error -> JS<Error>|void) -> JS<Error>|void

Value-marshaling functions

marshal: Value v0 -> ... -> Value vN -> JS<T>

implicitCast: Value v0 -> ... -> Value vN -> JS<T>

toString: Value val -> JS<String>

Object methods

getProp: Object obj -> Value key -> JS<T>

getOwnPropDesc: Object obj -> String key -> JS<Value>

setProp: Object obj -> Value key -> Value newVal -> JS<bool>

defineOwnProp: Object obj -> Name key -> Value v -> JS<Value>

delProp: Object obj -> Value key -> JS<bool>

hasProp: Object obj -> Value key -> JS<bool>

hasOwnProp: Object obj -> Value key -> JS<bool>

getPropNames: Object obj -> JS<Array>

getOwnPropNames: Object obj -> JS<Array>

Table 5—The interface that our JavaScript engine API exposes. We

use ML-style types to describe the function types: T0 x ... x Tn

denotes a product type; T0|T1 denotes a sum type; T0 -> T1 denotes

a function type. Like V8, all calls take an Isolate* as a first argument,

and Values and Objects are wrapped in Local<> handles; we have

omitted these for brevity.

JavaScript: JS<T> accessor methods, Value-marshaling func-

tions, and Object methods.4

JS<T> accessor methods. JS<T> is the only type that describes

JavaScript values in our API. We force programmers to prop-

erly handle JavaScript values by only allowing them to access

JS<T>s using two safe accessor methods, onVal and onFail

(see Table 5). The programmer interacts with JS<T>s by regis-

tering callbacks using these methods; the API invokes the call-

backs after type checking and casting. onFail handles a JS<T>

encapsulating a v8::Error by registering an error handler that

the API calls when type checking fails or when JavaScript up-

calls throw an error. The programmer must register an error

handler: failing to do so causes a compile-time warning. This

means that all functions that return a JS<T> are guaranteed to

have associated error-handling code.

onVal registers a callback that accepts one or more values;

the callback’s type signature indicates which values the pro-

grammer expects. For convenience, the programmer can im-

plement overloading by chaining multiple onVal calls. In that

case, the API invokes the first callback with a matching type

signature, or the error handler if no signature matches.

Value-marshaling functions. The API provides three func-

4Our API is inspired by Haskell’s monads and JavaScript’s promises. It differs

from V8’s usage of Maybe<T> types (§3.1) in two ways: (1) JS<T> keeps track

of exceptions raised by JavaScript code and (2) the methods on JS<T> are

crash- and type-safe.

571

tions for converting JavaScript Values to JS<T>s. Value is

V8’s base “unknown” type for all JavaScript values. Value-

marshaling functions convert Values either to a specific type

(e.g., v8::String) or to v8::Error in case of failure. To en-

force type- and crash-safety, these functions always check the

type of their Value val arguments before casting. Internally,

this amounts to calling val->IsString(), say, to check that

val is truly of type v8::String. If so, the marshaling func-

tion returns a JS<v8::String>; if not, it returns a v8::Error.

Because the marshaling functions return a JS<T>, they require

the programmer to explicitly handle errors; recall that, to ac-

cess JS<T> values, the programmer must register callbacks with

onVal and onFail.

Object methods. The API also provides methods for safely ma-

nipulating Objects. These methods are similar to V8’s object

methods—e.g., Get, which gets the value of a property—but

they make side effects explicit. As an example, V8’s Get may

silently upcall into a user-defined JavaScript getter, leading to

an unexpected exception. Like Get, our API’s getProp method

gets the value of a property—but it returns a JS<T> instead

of a Value.5 This return value makes it clear that an upcall is

possible and forces the programmer to handle the potential side

effects of that upcall by registering an onFail error handler.

Example: blobConstr. We re-implement blobConstr from

§2 using our safe API:

1 void

2 blobConstr(const FunctionCallbackInfo<Value>& args)

3 {

4 // marshal arg[0] v8::Value from JavaScript

5 marshal(args.GetIsolate(), args[0])

6 // if marshaling to Array succeeded:

7 .onVal([&](Local<Array> blobParts) {

8 // Add each string part of the array to the blob

9 uint32_t n = blobParts -> Length();

10 for (uint32_t i = 0; i < n; i++) {

11 // Get the ith element from array argument

12 getProp(context, blobParts, i)

13 // Getting succeeded and returned a string:

14 .onVal([&](Local<String> part) {

15 // Add already-casted string part to the blob

16 blobImpl->AddV8StringPart(part);

17 })

18 // if above failed or element is not a string:

19 .onFail([&](Local<Error> err) {

20 // handle unexpected field

21 })

22 }

23 })

24 // if arg[0] is not an Array or onVal failed:

25 .onFail([&](Local<Error> err) {

26 // handle error

27 });

28 }

This function creates a new JavaScript Blob object out of an

array of JavaScript strings. First, it uses the marshal function

5Or a Maybe<T> values that can be converted to a Value with hard-crashing

conversion functions.

to safely convert the JavaScript value args[0] to a C++ value

(line 4).6 In order to use the result of the marshal call, the

programmer must register callbacks via onVal and onFail.

onVal and onFail each take one argument, a C++ lambda, that

the API invokes after executing marshal. The formal argument

to the onVal lambda (blobParts on line 6) specifies the type

that the programmer expects marshal to return (Array). At

runtime, the API checks the type of args[0] before casting it

and executing the callback. If args[0] is an Array, the onVal

callback executes; if not, the onFail one runs instead, allowing

the programmer to pass an exception back to JavaScript code.

In this way, casting and type checking are always coupled,

eliminating a range of type-safety bugs.

blobConstr’s top-level onVal callback uses the safe API

to extract the String values at each index in the blobParts

JavaScript array (line 11). Since blobConstr uses getProp to

access these values, the API type checks and casts the values be-

fore invoking the correct callback, preserving JavaScript’s crash-

and type-safety. Since failing to register onVal and onFail call-

backs results in a compile-time warning, the programmer is

forced to account for both success and failure.

5.2 Implementation

We implement our API as a C++ library on top of the existing

public V8 API. The API implementation comprises 1100 lines

of C++. The library-based approach introduces little perfor-

mance overhead (§5.3) and, more importantly, allows binding

code developers to incrementally migrate their existing sys-

tems from V8 proper. Furthermore, this approach lets security-

critical modules (e.g., the Node.js password-hashing library

bcrypt [86]) use our safe API without waiting for the Node.js

runtime or V8 engine to incorporate our changes.

The C++ class JS<T> is a templated class that implements

onVal and onFail. Programmers use onVal and onFail to

register success and failure callbacks. For example, any time a

programmer wants to use a specific V8 type, they must marshal

a Value to that type, registering their callbacks along the way.

Our API makes JS<T> values easier and safer to use by at-

taching the warn_unused_result compiler attribute [36] to

the return value of the onVal method. This strongly encourages

binding code developers to register onFail handlers: if onVal’s

result is unused (i.e., the call to onVal is not chained to a call

to onFail), the compiler emits a warning.

Our API also uses restrictions on method arguments to

enforce type-safety. Developers must declare the concrete

expected type (e.g., v8::Array or v8::String) of every

JavaScript argument in an onVal lambda. The API uses recent

C++ features like decltype and std::declval to introspect

the type of the lambda; it uses this information to generate spe-

cialized versions of each function accepting JS<T> arguments

(e.g., marshal). These specialized versions perform runtime

type checking and casting according to the types specified in

the programmer’s registered lambda. Other than onVal and

onFail, our API does not provide any way to directly manipu-

6marshal takes an Isolate* as a first argument; we discuss these further in

§2, “Detailed overview of V8-based bindings.”

572

late (e.g., check or cast) v8::Values.

5.3 Evaluation

We evaluate our API design and implementation by answering

three questions:

1. Is the API backwards compatible?

2. Is the API’s performance overhead acceptable?

3. How hard is it to port existing code to the API?

To answer these questions, we rewrote the Node.js binding-

layer libraries for buffer and http. We chose these libraries

both because they are representative of Node.js bindings

and because they are widely used: http and buffer are es-

sential for building web applications, Node.js’s most promi-

nent use case. In particular, we rewrote the buffer bind-

ing library node_buffer.cc, HTTP parsing binding library

node_http_parser.cc, and several smaller support libraries’

bindings (e.g., uv and util) in Node.js version 7.0.0. In the

rest of this section we answer the three evaluation questions

by comparing vanilla Node.js against SaferNode.js, our safer

version of Node.js.

Compatibility

Porting binding-layer functions to our safe API should pre-

serve their semantics—except their crashing semantics. We

specifically want to eliminate hard crashes.7 To measure

SaferNode.js’s backward compatibility, we used Node.js’s ex-

isting compatibility-checking test suite. We ran Node.js’s built-

in test suite [66], which consists of 1,265 tests; SaferNode.js

passed all of them. We also used the Canary in the Gold Mine

(CITGM) tool [67] to run the test suites of 74 popular Node.js

packages with SaferNode.js [72]; this is the same setup that

Node.js developers use to find regression bugs in candidate re-

leases [71]. Once again, we found no difference between vanilla

Node.js and SaferNode.js in terms of compatibility.

Performance

We ran Node.js’s performance benchmarks, two micro-

benchmarks, and a macro-benchmark to measure

SaferNode.js’s overhead. In the worst case, SaferNode.js

is 11% slower than Node.js when the latter uses V8 APIs in an

unsafe (hard-crashing) way. On the other hand, when Node.js

uses V8 APIs safely, SaferNode.js imposes no significant

additional overhead. Finally, for real-world applications,

SaferNode.js imposes less than 1% overhead. We describe

these results and benchmarks in more detail below.

All measurements were conducted on a single machine with

an Intel i7-6700K (4 GHz) with 64 GiB of RAM, running

Ubuntu 16.10. We disabled dynamic frequency scaling and

hyper-threading, and pinned each benchmark to a single core.

Node.js benchmarks. To measure the performance difference

between Node.js and SaferNode.js, we used Node.js’s bench-

marking suite [69]. This suite is designed to find performance

regressions. It works by benchmarking a set of Node.js modules

7There is one exception to this: we do not rewrite code that hard-crashes for

legitimate reasons, e.g., because it can no longer allocate memory.

on two different versions of the Node.js runtime and comparing

their performance; our tests compare Node.js and SaferNode.js.

We ran the buffer and http benchmark suites 50 and 10 times,

respectively. (We chose these numbers in order to complete the

benchmarking in reasonable time, roughly 10 hours.)

Each benchmark runs hundreds of tests on both Node.js and

SaferNode.js, where each test invokes an operation a fixed num-

ber of times, depending on how long the operation takes to run.

For example, the buffer benchmark for indexOf, a relatively

slow operation, measures the time to execute 100,000 calls to

buff.indexOf. It times these calls for different combinations

of search strings, encodings, and buffer types, reporting total

execution time in operations per second for each combination.

Figures 3a and 3b plot the speed of SaferNode.js normalized

to Node.js for each test in the buffer and http benchmark

suites, respectively. Each dot represents one test from the suite;

results are sorted from slowest to fastest. The average overhead

for buffer is 1%, with a maximum of 11%. http shows essen-

tially no overhead on average; in the worst case, it is 5% slower.

Below we use micro-benchmarks to show that SaferNode.js’s

overhead is the result of the API’s added type checking; Node.js

is faster because it does not perform these checks.

A few tests in both benchmark suites show modest speed-

ups; these are spurious. To confirm this, we built Node.js

and SaferNode.js using two different compilers, GCC 6.2 and

Clang 3.8.1, and ran both test suites (Figure 3 shows results for

GCC). We found that compiler-to-compiler performance varia-

tion on individual tests was on the order of 1–2%, comparable to

the measured speed-ups. Moreover, tests that showed speed-ups

for GCC often showed slow-downs for Clang, and vice-versa.

A few tests show >2% average speed-ups. In these tests, how-

ever, individual runs showed widely varying results, with both

speed-ups and slow-downs. We expect further benchmarking

would show that SaferNode.js and Node.js have essentially the

same performance on these tests.

Micro-benchmarks. To test our hypothesis that SaferNode.js’s

overhead is due to extra checking in the safe API, we created

three micro-benchmarks, each of which marshals a Number

from JavaScript to C++ and back. We compare our safe API’s

version of this function with two normal V8 API versions, one

that does type checking and one that does not. echo_nocheck

uses the normal V8 API and performs no type checking:
1 void echo_nocheck(const FunctionCallbackInfo<Value>&

args) {↪→

2 Local<Number> ret = args[0].As<Number>();

3 args.GetReturnValue().Set(ret);

4 }

echo_check uses the same V8 API calls as above, but adds

explicit type checking:
1 void echo_check(const FunctionCallbackInfo<Value>&

args) {↪→

2 if (args[0]->IsNumber()) {

3 Local<Number> ret = args[0].As<Number>();

4 args.GetReturnValue().Set(ret);

5 } else { // handle error

6 }

7 }

573

0.85

0.90

0.95

1.00

1.05

S
p
ee
d
of

S
af
er
N
od
e.
js
,
no
rm

al
iz
ed

to
N
od
e.
js
(h
ig
he
r
is
b
et
te
r)

(a) buffer benchmark suite: 304 tests, 50 runs each

0.85

0.90

0.95

1.00

1.05

S
p
ee
d
of

S
af
er
N
od
e.
js
,
no
rm

al
iz
ed

to
N
od
e.
js
(h
ig
he
r
is
b
et
te
r)

(b) http benchmark suite: 182 tests, 10 runs each

Figure 3—Speed of SaferNode.js normalized to Node.js on a subset of the Node.js benchmarking suite [69] (§5.3). Each dot represents one

benchmark from the suite; results are sorted slowest to fastest. SaferNode.js’s speed ranges from ≈89% to ≈105% of Node.js’s.

Finally, echo_safeAPI uses the safe API:
1 void echo_safeAPI(const FunctionCallbackInfo<Value>&

args) {↪→

2 return safeV8::With(args->GetIsolate(), args[0])

3 .onVal([&](Local<Number> ret) {

4 args.GetReturnValue().Set(ret);

5 })

6 .onFail([&](Local<Error> exception) {

7 // handle error

8 });

9 }

We benchmark these functions by calling each one in a 107-

iteration loop and measuring execution time. We call all three

functions with an argument of the correct type; still, note that

echo_nocheck would crash if given a non-numeric argument.

echo_safeAPI executes 12% more slowly than

echo_nocheck, close to SaferNode.js’s worst-case over-

head on the benchmarks in the previous section. On the other

hand, since both echo_safeAPI and echo_check check the

type of their argument, they show no significant performance

difference (less than 1%). As a result, we conclude that most of

the overhead in the SaferNode.js benchmarks comes from the

safe API’s extra checking.

Macro-benchmark. Finally, to measure the performance of

our safe API in a real-world setting, we measured the per-

formance of the popular express.js web framework [95] by

comparing the performance of Node.js and SaferNode.js using

express.js’s speed benchmark [31]. This benchmark uses the

wrk web server stress testing tool, running 8 concurrent threads

and 50 open connections to measure the throughput of the web

server. Node.js and SaferNode.js performance was within 1%,

each serving about 15,000 requests/second.

Porting burden

Porting Node.js’s buffer module to our safe API required

adding about 1000 lines of code to node_buffer.cc, originally

a 1300-line file. For http, we added about 150 lines of code to

node_http_parser.cc, which was originally about 800 lines.

While porting, we realized that we were repeatedly rewrit-

ing similar code, so we built a prototype tool that assists

the programmer by flagging binding functions and automat-

ically rewriting common unsafe patterns. Specifically, the

tool identifies top-level binding functions that are exposed to

JavaScript (i.e., Node.js functions that accept one argument of

type const v8::FunctionCallbackInfo<v8::Value>&).

For these functions, the tool rewrites (1) hard-crashing CHECK

calls, (2) casts using As<Type> with no preceding IsType

check, and (3) calls to Get, Set, and ToString. Our tool is

conservative in that it only rewrites code that is easy to reason

about. For example, it does not rewrite functions that include

gotos. The tool comprises about 7,500 lines of Java.

Despite being a prototype, this tool was useful in porting

Node.js to our API. In Node.js 7.0.0, we manually counted 378

functions with the required type signature; our tool flagged 371

of them. Of these, 201 did not need to be rewritten. Another

35 used gotos or similar patterns that the tool cannot handle.

The tool rewrote the remaining 135 functions, but required

manual intervention in two cases, about 30 lines of code total.

As a sanity check, we ran CITGM (the regression suite from

above) and the full Node.js benchmarks on the rewritten code.

We found that it was fully functional and paid a performance

overhead roughly commensurate with the results in Figure 3.

From the above, we surmise that porting to our API is rea-

sonable, even in complicated code bases. We regard further

automation of this porting effort as future work.

6 Related Work
We discuss our contributions with respect to related work on se-

curing binding code in multi-language systems. Specifically, we

consider the literature on finding bugs in binding code, avoiding
bugs by construction, and tolerating bugs using isolation.

6.1 Finding Binding Bugs

The first line of work looks at finding errors that arise at

the boundaries of multi-language systems, either via dynamic

checking, property-independent translation to a common IR, or

property-specific static checking.

Dynamic checking. Jinn [55] generates dynamic bug check-

574

ers for arbitrary languages from state machine descriptions of

foreign function interface (FFI) rules. In doing so, Jinn finds

bugs in both the Java Native Interface (JNI) and Python/C code.

While running similar checkers in production is probably pro-

hibitively expensive, this kind of system would complement

existing browser debug-runtime checks.

Translation to common IR. Several groups have looked into

translating multi-language programs into a common interme-

diate language, and then applying off-the-shelf analysis tools

to their translation [9, 54, 58, 100]. For large code bases like

Chrome, this approach is as feasible as the analysis approach

is scalable; consequently, an alternative approach is to develop

custom checks for particular classes of bugs.

Crash-safety bugs. Kondoh, Tan, and Li present different static

analysis techniques for finding bugs caused by mishandled ex-

ceptions in Java JNI code [52, 56, 99]. Safer binding-layer

APIs would address some of the issues these works tackle. For

example, both our API the recent V8 API addresses similar

memory management and exception-catching concerns by con-

struction [30, 37]. Still, their approach can address a concern

that neither our API nor existing JavaScript engine APIs handle:

finding bugs in binding code where exceptions are raised by

native code.

Type-safety bugs. Tan and Croft find type safety bugs that re-

sult when developers expose C pointers to Java as integers [99].

Their work also illustrates that static checkers can find type

safety bugs in practice, as we suggest in §3. Exposed pointer

errors, however, are unlikely in JavaScript binding code, since

JavaScript engines provide hidden fields for C code to save

raw pointers across contexts. Still, since these errors would

be catastrophic, it may be worthwhile to implement Tan and

Croft’s technique for browser binding code. More broadly, Furr

and Foster [34, 35] present a multi-language type inference

systems for the OCaml and Java FFIs. Since JavaScript is dy-

namically typed, using type-inference approaches like these is

difficult, but a similar analysis could help ensure that binding

layer dynamic type checks are correct. Moreover, they would be

applicable to runtime systems like Node.js where type checks

are not generated but implemented manually.

Memory-safety bugs. Li and Tan present a static analysis

tool that detects reference counting bugs in Python/C inter-

face code [57]. Their results also show that static checkers can

help secure cross-language code. A tool like this one would

assist binding code in which the C++ side performs reference

counting (e.g., Blink before Oilpan).

6.2 Avoiding Binding Bugs by Construction

Another line of work looks at avoiding binding bugs by construc-

tion, either with formal models of inter-language interaction to

verify safety, or with new languages that restrict interactions to

ensure safety.

Formal models. Several projects develop formal models for

JavaScript, multi-language systems, and FFIs [53, 59, 61, 98,

104]. These works not only help developers understand multi-

language interaction but also allow developers to formally rea-

son about tools for multi-language systems (tools like static

checkers or new APIs). We envision developing a similar for-

malization for JavaScript, perhaps based on [59, 80], or by ex-

tending and combining the formal models for C and JavaScript

developed in the K-framework [29, 77].

Language design. Janet [7] and Jeannie [44] are language de-

signs that allow users to combine Java and C code in a single file,

therefore building multi-language systems more safely. Safe-

JNI [101] provides a safe Java/C interface by using CCured [65]

to retrofit C code to a subset that abides by Java’s memory and

type safety. While these language designs are well-suited for

isolated browser features, it is unclear how these approaches

would apply to existing large JavaScript runtime system. By

refactoring existing FFI code to use domain-specific languages

such as our safe API, our approach provides a way to gradually

increase security across different components. Specifically, it

strongly encourages the programmer to put in suitable checks

and handle all possible errors, one module at a time, thereby

providing greater safety while remaining in the original host

language (e.g., C++).

Safe linking. A recent line of work by Ahmed et al. [3, 78] aims

to address the problem of (safely) composing multi-language

programs by separately compiling the components into a grad-
ually typed [88, 89] target language and then linking the results.

The gradually typed target language would have support for

more, less, or completely untyped sub-components, and would

automatically insert run-time checks to ensure that typing invari-

ants are preserved as values move across the different parts [65].

In the context of binding code, this approach has the benefit of

shifting the burden of placing suitable checks from programmer

to the compiler and could provide formal safety guarantees.

On the other hand, gradual typing implementations still have

non-trivial run-time overheads [97] and it remains to be seen

whether the above approach can be made practical for complex

systems like Node.js and Chrome.

6.3 Tolerating Binding Bugs

One last approach, orthogonal to finding and preventing binding

bugs, is to design systems to tolerate such bugs by isolating

components at the language or browser level.

Language-level isolation. Running different languages’ run-

times in isolated environments addresses many security bugs in

FFI code. Klinkoff et al. [49] present an isolation approach for

the .NET framework. They run native, unmanaged code in a sep-

arate sandboxed process mediated according to the high-level

.NET security policy. Robusta [87] takes a similar approach for

Java, but, to improve performance, uses software fault isolation

(SFI) [108].

Browser-level isolation. Redesigning the browser to run

iframes in separate processes would address many of the vul-

nerabilities that lead to same-origin policy bypasses. Unfor-

tunately, as illustrated by Chrome’s ongoing efforts [22] and

several research browsers (e.g., Gazelle [107], IBOS [102], and

Quark [47]) this is not an easy task. Redesigns often break com-

patibility and have huge performance costs. Moreover, applying

such techniques beyond the browser to runtime systems such as

Node.js and PDFium is not easily achievable—in these systems

575

we do not have the security policies that allow browsers to more

easily decide where to draw isolation boundaries.

Acknowledgements
We thank the anonymous reviewers and our shepherd, Nikhil

Swamy, for many insightful comments and for pointing out

a bug in an early version of this paper. Úlfar Erlingsson and

Bryan Parno for their accomodations. Thomas Sepez for help-

ing us understand the PDFium attacker model and confirming

and fixing some of our bugs. Bryan Eglish, Colin Ihrig, Devon

Rifkin, Sam Roberts, Rod Vagg, and Brian White for useful dis-

cussions of Node.js’s attacker model and for incorporating our

feedback on how to improve the runtime’s safety and security.

Colin Ihrig and Timothy Gu for promptly fixing many of our

Node.js bugs. Adrienne Porter Felt, Joel Weinberger, Lei Zhang,

Nasko Oskov, and Devlin Cronin for helping to explain the se-

curity model for Chrome extensions. Hovav Shacham, David

Kohlbrenner, and Joe Politz for fruitful discussions. Sergio Ben-

itez and Andres Nötzli for help, comments, and formatting

magic. Mary Jane Swenson for making everything easier. This

work was supported by NSF Grant CNS-1514435 and an NSF

Fellowship.

References
[1] F. Aboukhadijeh. Buffer(number) is unsafe. https:

//github.com/nodejs/node/issues/4660.

[2] B. Adida, A. Barth, and C. Jackson. Rootkits for

JavaScript environments. In WOOT, Aug. 2009.

[3] A. Ahmed. Verified compilers for a multi-language

world. In Summit on Advances in Programming Lan-
guages, SNAPL 2015, May 2015.

[4] A. Barth, A. P. Felt, P. Saxena, and A. Boodman. Protect-

ing browsers from extension vulnerabilities. In NDSS,

Feb. 2010.

[5] F. Brown, S. Narayan, R. S. Wahby, D. Engler, R. Jhala,

and D. Stefan. Finding and preventing bugs in

JavaScript bindings: Extended version. https://

bindings.programming.systems.

[6] F. Brown, A. Nötzli, and D. Engler. How to build static

checking systems using orders of magnitude less code.

In ASPLOS, Apr. 2016.

[7] M. Bubak, D. Kurzyniec, and P. Luszczek. Creating

Java to native code interfaces with Janet extension. In

Worldwide SGI UsersâĂŹ Conference, Oct. 2000.

[8] E. Budianto, R. Chow, J. Ding, and M. McCool.

Language-based hypervisors. In CANS, Nov. 2016.

[9] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unas-

sisted and automatic generation of high-coverage tests

for complex systems programs. In OSDI, Dec. 2008.

[10] caja. Caja. https://developers.google.com/caja/.

[11] P. Carbonnelle. PopularitY of Programming Language.

http://pypl.github.io/PYPL.html.

[12] chakraCore. Microsoft chakracore. https://github.

com/Microsoft/ChakraCore.

[13] checkerChromeVersion. Chromium version 56.0.2915.0.

https://chromium.googlesource.com/chromium/

src.git/+/56.0.2915.0.

[14] Chromium. Security faq. https://www.chromium.

org/Home/chromium-security/security-faq.

[15] Chromium. Side by side diff for issue 196343011.

https://codereview.chromium.org/196343011/

diff/20001/Source/bindings/templates/

attributes.cpp, 2016.

[16] Chromium. Issue 395411 and CVE-2014-3199.

https://bugs.chromium.org/p/chromium/issues/

detail?id=395411, 2016.

[17] Chromium. Issue 456192 and CVE-2015-1217.

https://bugs.chromium.org/p/chromium/issues/

detail?id=456192, 2016.

[18] Chromium. Issue 449610 and CVE-2015-1230.

https://bugs.chromium.org/p/chromium/issues/

detail?id=449610, 2016.

[19] Chromium. Issue 497632 and CVE-2016-1612.

https://bugs.chromium.org/p/chromium/issues/

detail?id=497632, 2016.

[20] Chromium. Issue 603748. https://bugs.chromium.

org/p/chromium/issues/detail?id=603748, 2016.

[21] Chromium. Issue 603725. https://bugs.chromium.

org/p/chromium/issues/detail?id=603725, 2016.

[22] Chromium. Out-of-process iframes. https:

//www.chromium.org/developers/design-

documents/oop-iframes, 2016.

[23] Chromium. Issue 671488: Hard crash in webkit cus-

tomelement bindings. https://bugs.chromium.org/

p/chromium/issues/detail?id=671488, 2016.

[24] Chromium. Issue 679643: Security: Use after free in

pdfium’s annot::name. https://bugs.chromium.org/

p/chromium/issues/detail?id=679643, 2017.

[25] Chromium. Issue 679642: Security: Use after free in

pdfium’s field::page. https://bugs.chromium.org/p/

chromium/issues/detail?id=679642, 2017.

[26] D. Crockford. ADsafe: Making JavaScript safe for ad-

vertising. http://www.adsafe.org, 2008.

[27] W. De Groef, F. Massacci, and F. Piessens. Node-

sentry: least-privilege library integration for server-side

javascript. In ACSAC, Dec. 2014.

[28] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman,

M. Bailey, F. Li, N. Weaver, J. Amann, J. Beekman,

M. Payer, et al. The matter of Heartbleed. In IMC, Nov.

2014.

[29] C. Ellison and G. Rosu. An executable formal semantics

of C with applications. In POPL, Jan. 2012.

[30] B. English. <=v4: process.hrtime() segfaults on ar-

rays with error-throwing accessors. https://github.

com/nodejs/node/issues/7902.

[31] Express. Benchmarks run. https://github.com/

expressjs/express/blob/master/benchmarks/

run.

[32] A. P. Felt, J. Weinberger, L. Zhang, N. Oskov, and

D. Cronin. Private communication, March 2017.

[33] E. F. Foundation. HTTPS everywhere. https://www.

576

eff.org/https-everywhere, 2017.

[34] M. Furr and J. S. Foster. Checking type safety of foreign

function calls. In PLDI, June 2005.

[35] M. Furr and J. S. Foster. Polymorphic type inference for

the JNI. In ESOP, Mar. 2006.

[36] gcc. Declaring attributes of functions. https:

//gcc.gnu.org/onlinedocs/gcc/Function-

Attributes.html.

[37] M. Hablich. API changes upcoming to make writing ex-

ception safe code more easy. https://groups.google.

com/forum/#!topic/v8-users/gQVpp1HmbqM.

[38] I. Haller, Y. Jeon, H. Peng, M. Payer, C. Giuffrida,

H. Bos, and E. van der Kouwe. TypeSan: Practical type

confusion detection. In ACM CCS, Oct. 2016.

[39] K. Hara. Oilpan: GC for Blink. https:

//docs.google.com/presentation/d/

1YtfurcyKFS0hxPOnC3U6JJroM8aRP49Yf0QWznZ9jrk,

2016.

[40] J. Harrell. Node.js at PayPal. https://www.paypal-

engineering.com/2013/11/22/node-js-at-

paypal/, November 22 2013.

[41] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JS-

Flow: Tracking information flow in JavaScript and its

APIs. In ACM SAC, Apr. 2014.

[42] S. Heule, D. Stefan, E. Z. Yang, J. C. Mitchell, and

A. Russo. IFC inside: Retrofitting languages with dy-

namic information flow control. In POST, Apr. 2015.

[43] M. Hicks. What is memory safety? http://www.pl-

enthusiast.net/2014/07/21/memory-safety/,

2014.

[44] M. Hirzel and R. Grimm. Jeannie: Granting Java native

interface developers their wishes. In ACM SIGPLAN
Notices, volume 42:10, 2007.

[45] C. Hritcu, M. Greenberg, B. Karel, B. C. Pierce, and

G. Morrisett. All your IFCException are belong to us.

In IEEE S&P, May 2013.

[46] N. Jagpal, E. Dingle, J.-P. Gravel, P. Mavrommatis,

N. Provos, M. A. Rajab, and K. Thomas. Trends and

lessons from three years fighting malicious extensions.

In USENIX Security, Aug. 2015.

[47] D. Jang, Z. Tatlock, and S. Lerner. Establishing browser

security guarantees through formal shim verification. In

USENIX Security, Aug. 2012.

[48] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vi-

gna, and V. Paxson. Hulk: Eliciting malicious behavior

in browser extensions. In USENIX Security, Aug. 2014.

[49] P. Klinkoff, E. Kirda, C. Kruegel, and G. Vigna. Ex-

tending .NET security to unmanaged code. Journal of
Information Security, 6(6):417–428, 2007.

[50] N. Kobeissi, K. Bhargavan, and B. Blanchet. Automated

verification for secure messaging protocols and their im-

plementations: A symbolic and computational approach.

In IEEE EuroS&P, Apr. 2017.

[51] J. Koetsier. Ad Block Plus is now...an ad network.

https://www.forbes.com/sites/johnkoetsier/

2016/09/13/adblock-plus-is-now-an-ad-

network/#697cbff41bca.

[52] G. Kondoh and T. Onodera. Finding bugs in Java native

interface programs. In Symposium on Software Testing
and Analysis, Apr. 2008.

[53] A. Larmuseau and D. Clarke. Formalizing a secure for-

eign function interface. In SEFM, Sept. 2015.

[54] C. Lattner and V. Adve. LLVM: A compilation frame-

work for lifelong program analysis & transformation. In

CGO, Mar. 2004.

[55] B. Lee, B. Wiedermann, M. Hirzel, R. Grimm, and K. S.

McKinley. Jinn: synthesizing dynamic bug detectors for

foreign language interfaces. In ACM SIGPLAN Notices,

volume 45:6, 2016.

[56] S. Li and G. Tan. Finding bugs in exceptional situations

of JNI programs. In ACM CCS, Nov. 2009.

[57] S. Li and G. Tan. Finding reference-counting errors in

Python/C programs with affine analysis. In ECOOP, July

2014.

[58] P. Linos, W. Lucas, S. Myers, and E. Maier. A metrics

tool for multi-language software. In SEA, Nov. 2007.

[59] S. Maffeis, J. C. Mitchell, and A. Taly. An operational

semantics for javascript. In APLAS, Dec. 2008.

[60] P. Marchenko, Ú. Erlingsson, and B. Karp. Keeping sen-

sitive data in browsers safe with ScriptPolice. Technical

report, UCL, 2013.

[61] J. Matthews and R. B. Findler. Operational semantics for

multi-language programs. TOPLAS, 31(3):1–44, 2009.

[62] C. McCormack. Web IDL. World Wide Web Consortium,

2012.

[63] L. A. Meyerovich and B. Livshits. ConScript: Speci-

fying and enforcing fine-grained security policies for

JavaScript in the browser. In IEEE S&P, May 2010.

[64] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.

Softbound: Highly compatible and complete spatial

memory safety for c. In ACM SIGPLAN Notices, volume

44:6, 2009.

[65] G. C. Necula, S. McPeak, and W. Weimer. CCured:

Type-safe retrofitting of legacy code. In ACM SIGPLAN
Notices, volume 37:1, 2002.

[66] nodeBenchmarks. Node.js core benchmarks.

https://github.com/nodejs/node/tree/master/

benchmark.

[67] Node.js. Canary in the Gold Mine. https://

developers.google.com/v8/embed, .

[68] Node.js. Node.js helps NASA keep astronauts safe

and data accessible. https://nodejs.org/static/

documents/casestudies/Node_CaseStudy_Nasa_

FNL.pdf, .

[69] Node.js. Node.js benchmarking branch. https://

github.com/nodejs/node/tree/master/benchmark,

.

[70] Node.js. Node.js on ChakraCore. https://github.

com/nodejs/node-chakracore.

[71] Node.js. Node.js CITGM lookup list. https://github.

com/nodejs/citgm/blob/master/lib/lookup.json,

.

577

[72] Node.js. Canary in the Gold Mine – node.js

7.0.0. https://github.com/nodejs/citgm/blob/

2434cceb09f2e7966cfdf70b523e0bea57be9598/

lib/lookup.json, .

[73] Node.js security working group. What is/is not a “vul-

nerability”/“security issue”? https://github.com/

nodejs/security-wg/issues/18.

[74] B. Noordhuis. src: remove unneeded

environment error methods. https:

//github.com/nodejs/node/commit/

0e6c3360317ea7c5c7cc242dfb5c61c359493f34.

[75] NPM. Package install scripts vulnerability. https:

//blog.npmjs.org/post/141702881055/package-

install-scripts-vulnerability.

[76] T. npm Blog. kik, left-pad, and npm. https:

//blog.npmjs.org/post/141577284765/kik-left-

pad-and-npm.

[77] D. Park, A. Stefanescu, and G. Rosu. KJS: a complete

formal semantics of JavaScript. In PLDI, June 2015.

[78] J. T. Perconti and A. Ahmed. Verifying an open compiler

using multi-language semantics. In ESOP, Apr. 2014.

[79] B. C. Pierce. Types and programming languages. MIT

Press, 2002.

[80] J. G. Politz, M. J. Carroll, B. S. Lerner, J. Pombrio, and

S. Krishnamurthi. A tested semantics for getters, setters,

and eval in javascript. In ACM SIGPLAN Notices, volume

48:2, 2013.

[81] A. Ranganathan, J. Sicking, and M. Kruisselbrink. File

API. World Wide Web Consortium, 2015.

[82] R. Rogowski, M. Morton, F. Li, K. Z. Snow, F. Monrose,

and M. Polychronakis. Revisiting browser security in

the modern era: New data-only attacks and defenses. In

IEEE EuroS&P, Apr. 2017.

[83] S. Saccone. npm hydra worm disclosure. https:

//www.kb.cert.org/CERT_WEB/services/vul-

notes.nsf/6eacfaeab94596f5852569290066a50b/

018dbb99def6980185257f820013f175/$FILE/

npmwormdisclosure.pdf.

[84] G. A. Security. Severity guidelines for security is-

sues. https://sites.google.com/a/chromium.org/

dev/developers/severity-guidelines.

[85] T. Sepez. Private communication, March 2017.

[86] R. Shtylman. bcrypt. https://www.npmjs.com/

package/bcrypt.

[87] J. Siefers, G. Tan, and G. Morrisett. Robusta: Taming

the native beast of the JVM. In ACM CCS, Oct. 2010.

[88] J. G. Siek and W. Taha. Gradual typing for functional

languages. In Scheme and Functional Programming
Workshop, Sept. 2006.

[89] J. G. Siek and W. Taha. Gradual typing for objects. In

ECOOP, July 2007.

[90] D. Stefan. spawnSync’s SyncProcessRunner::

CopyJsStringArray segfaults with bad getter.

https://github.com/nodejs/node/issues/9821, .

[91] D. Stefan. npm shrinkwrap allows remote code

execution. https://hackernoon.com/npm-

shrinkwrap-allows-remote-code-execution-

63e6e0a566a7#.e7an55fo2, .

[92] D. Stefan. Buffer.fill has an out of bounds (arbitrary)

memory write. https://github.com/nodejs/node/

issues/9149, 2016.

[93] D. Stefan. Buffer::Length hard crashes. https://

github.com/nodejs/node/issues/11954, 2017.

[94] D. Stefan, E. Z. Yang, P. Marchenko, A. Russo, D. Her-

man, B. Karp, and D. Mazieres. Protecting users by

confining JavaScript with COWL. In OSDI, Oct. 2014.

[95] StrongLoop/IBM. Express—Node.js web application

framework. https://expressjs.com.

[96] A. Systems. JavaScript for Acrobat api reference. http:

//wwwimages.adobe.com/content/dam/Adobe/en/

devnet/acrobat/pdfs/js_api_reference.pdf.

[97] A. Takikawa, D. Feltey, B. Greenman, M. S. New,

J. Vitek, and M. Felleisen. Is sound gradual typing dead?

In POPL, Jan. 2016.

[98] G. Tan. JNI Light: An operational model for the core

JNI. In APLAS, Nov. 2010.

[99] G. Tan and J. Croft. An empirical security study of the

native code in the JDK. In USENIX Security, July 2008.

[100] G. Tan and G. Morrisett. ILEA: Inter-language analysis

across Java and C. In ACM SIGPLAN Notices, volume

42:10, 2007.

[101] G. Tan, A. W. Appel, S. Chakradhar, A. Raghunathan,

S. Ravi, and D. Wang. Safe Java native interface. In

Secure Software Engineering, volume 97, 2006.

[102] S. Tang, H. Mai, and S. T. King. Trust and protection

in the illinois browser operating system. In OSDI, Oct.

2010.

[103] K. Thomas, E. Bursztein, C. Grier, G. Ho, N. Jag-

pal, A. Kapravelos, D. McCoy, A. Nappa, V. Paxson,

P. Pearce, et al. Ad injection at scale: Assessing decep-

tive advertisement modifications. In IEEE S&P, May

2015.

[104] V. Trifonov and Z. Shao. Safe and principled language

interoperation. In ESOP, Mar. 1999.

[105] V8. Getting started with embedding. https:

//github.com/v8/v8/wiki/Getting%20Started%

20with%20Embedding.

[106] walmart. Walmart. https://www.walmart.com, 2016.

[107] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choud-

hury, and H. Venter. The multi-principal OS construction

of the Gazelle Web Browser. In USENIX Security, Aug.

2009.

[108] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Or-

mandy, S. Okasaka, N. Narula, and N. Fullagar. Native

Client: A sandbox for portable, untrusted x86 native code.

In IEEE S&P, May 2009.

[109] A. Yip, N. Narula, M. Krohn, and R. Morris. Privacy-

preserving browser-side scripting with BFlow. In Eu-
roSys. ACM, Apr. 2009.

[110] C. Zapponi. Programming languages and GitHub. http:

//githut.info/.

578

