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Abstract—Anecdotes, news reports, and policy briefings col-
lectively suggest that Internet censorship practices are pervasive.
The scale and diversity of Internet censorship practices makes it
difficult to precisely monitor where, when, and how censorship
occurs, as well as what is censored. The potential risks in
performing the measurements make this problem even more
challenging. As a result, many accounts of censorship begin—and
end—with anecdotes or short-term studies from only a handful
of vantage points.

We seek to instead continuously monitor information about
Internet reachability, to capture the onset or termination of
censorship across regions and ISPs. To achieve this goal, we
introduce Augur, a method and accompanying system that utilizes
TCP/IP side channels to measure reachability between two
Internet locations without directly controlling a measurement
vantage point at either location. Using these side channels,
coupled with techniques to ensure safety by not implicating
individual users, we develop scalable, statistically robust methods
to infer network-layer filtering, and implement a corresponding
system capable of performing continuous monitoring of global
censorship. We validate our measurements of Internet-wide
disruption in nearly 180 countries over 17 days against sites
known to be frequently blocked; we also identify the countries
where connectivity disruption is most prevalent.

I. INTRODUCTION

Anecdotes, news reports, and policy briefings collectively

suggest that Internet censorship practices are pervasive. Many

countries employ a variety of techniques to prevent their

citizenry from accessing a wide spectrum of information and

services, spanning the range from content sensitive for political

or religious reasons, to microblogging, gambling, pornography,

and suicide, to the use of censorship circumvention systems

themselves. Unfortunately, despite the fact that censorship

affects billions of people, our understanding of its practices

and techniques remains for the most part pointwise. Studies

and accounts heavily focus on the state of censorship in a

single country, often as seen at a single point in time. We

lack global views that comprehensively span the worldwide

Internet, and we lack continual views that flag the onset of

new censorship and relaxation of existing censorship.

To date, efforts to obtain global visibility into censorship

practices have required some sort of network presence in each

country to monitor. This might mean the use of network

proxies, such as ICLab’s use of VPN exits [28], or the

deployment of dedicated systems, such as by OONI [48].

These approaches remain difficult to deploy in practice: for
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example, some countries might not have globally available

VPN exits within them, or may have censors that block

the network access required for the measurements (such as

OONI’s use of Tor). Another approach is to opportunistically

leverage a network presence in a given country using browser-

based remote measurement of potential censorship [45]. This

method can have difficulties in obtaining fully global views,

though, because it is driven by end-user browsing choices.

Due to its potential for implicating end users in attempting to

access prohibited Internet sites, it can only be used broadly

to measure reachability to sites that would pose minimal

additional risk to users, which limits its utility for measuring

reachability to a broad range of sites.

Fortunately, advances in TCP/IP side-channel measurement

techniques offer a new paradigm for obtaining global-scale

visibility into Internet connectivity. Ensafi et al. recently

developed Hybrid-Idle Scan, a method whereby a third vantage

point can determine the state of network-layer reachability

between two other endpoints [22]. In other words, an off-path

measurement system can infer whether two remote systems

can communicate with one another, regardless of where these

two remote systems are located. To perform these measure-

ments, the off-path system must be able to spoof packets

(i.e., it must reside in a network that does not perform

egress filtering), and one of the two endpoints must use a

single shared counter for generating the IP identifier value

for packets that it generates. This technique provides the

possibility of measuring network-layer reachability around the

world by locating endpoints within each country that use a

shared IP ID counter. By measuring the progression of this

counter over time, as well as whether our attempts to perturb

it from other locations on the Internet, we can determine

the reachability status between pairs of Internet endpoints.

This technique makes it possible to conduct measurements

continuously, across a large number of vantage points.

Despite the conceptual appeal of this approach, realizing

the method poses many challenges. One challenge concerns

ethics: Using this method can make it appear as though a

user in some country is attempting to communicate with a

potentially censored destination, which could imperil users.

To abide by the ethical guidelines set out by the Menlo [19]

and Belmont [9] reports, we exercise great care to ensure

that we perform our measurements from Internet infrastructure

(e.g., routers, middleboxes), as opposed to user machines. A

second challenge concerns statistical robustness in the face
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of unrelated network activity that could interfere with the

measurements, as well as other systematic errors concerning

the behavior of TCP/IP side channels that sometimes only

become apparent at scale. To address these challenges we

introduce Augur. To perform detection in the face of uncer-

tainty, we model the IP ID increment over a time interval

as a random variable that we can condition on two different

priors: with and without responses to our attempts to perturb

the counter from another remote Internet endpoint. Given these

two distributions, we can then apply statistical hypothesis

testing based on maximum likelihood ratios.

We validate our Augur measurements of Internet-wide dis-

ruption in nearly 180 countries over 17 days against both block

lists from other organizations as well as known IP addresses

for Tor bridges. We find that our results are consistent with the

expected filtering behavior from these sites. We also identify

the top countries that experience connectivity disruption; our

results highlight many of the world’s most infamous censors.

We begin in Section II with a discussion of related work.

In Section III, we provide an overview of our method. We

present Augur in Section IV, introducing the principles behind

using IP ID side channels for third-party measurement of cen-

sorship; discussing how to identify remote systems that enable

us to conduct our measurements in an ethically responsible

manner; and delving into the extensive considerations required

for robust inference. In Section V, we present a concrete

implementation of Augur. In Section VI, we validate Augur’s

accuracy and provide an accompanying analysis of global

censorship practices observed during our measurement run.

We offer thoughts related to further developing our approach

in Section VII and conclude in Section VIII.

II. RELATED WORK

Previous work spans several related areas. We begin with

a discussion of closely related work on connectivity mea-

surements using side channels. We then discuss previous

research which has performed pointwise studies of censorship

in various countries, as well as tools that researchers have

developed to facilitate these direct measurements. Finally, we

discuss previous studies that have highlighted the variability

and volatility of censorship measurements over time and across

regions, which motivates our work.

Measuring connectivity disruptions with side channels.
Previous work has employed side channels to infer network

properties such as topology, traffic usage, or firewall rules

between two remote hosts. Some of these techniques rely

on the fact that the IP identifier (IP ID) field can reveal

network interfaces that belong to the same Internet router, the

number of packets that a device generates [13], or the blocking

direction of mail server ports for anti-spam purposes [43].

The SYN backlog also provides another signal that helps

with the discovery of machines behind firewalls [23], [55].

Ensafi et al. [22] observed that combining information from

the TCP SYN backlog (which initiates retransmissions of SYN

ACK packets) with IP ID changes can reveal packet loss

between two remote hosts, including the direction along the

path where packet drops occurred; the authors demonstrated

the utility of their technique by measuring the reachability

of Tor relays from China [24]. Our work builds on this

technique by developing robust statistical detection methods to

disambiguate connectivity disruptions from other effects that

induce signals in these side channels.

Direct measurements from in-country vantage points. Re-

searchers have performed many pointwise measurement stud-

ies that directly measure connectivity disruptions in countries

including China [5], [16], [56], Iran [7], Pakistan [33], [38],

and Syria [12]. These studies have typically relied on obtaining

vantage points in target countries, often by renting virtual

private servers (VPSs) and performing measurements from

that vantage point. These direct measurements have served

to reveal censorship mechanisms, including country-wide In-

ternet outages [17], the injection of fake DNS replies [6],

[34], the blocking of TCP/IP connections [53], HTTP-level

blocking [18], [30], [42], and traffic throttling [3]. In general,

studies involving direct measurements can shed more light on

specific mechanisms that a censor might employ. By contrast,

the techniques we develop rely on indirect side channels,

which limits the types of measurements that we can perform.

On the other hand, our approach permits a much larger scale

than any of these previous studies, as well as the ability to

conduct measurements continuously. Although these studies

provide valuable insights, their scale often involves a single

vantage point for a limited amount of time (typically no more

than a few weeks). Our aim is to shed light on a much broader

array of Internet vantage points, continuously over time.

Tools to facilitate direct measurements. OONI performs

an ongoing set of censorship measurement tests from the

vantage points of volunteer participants. It runs on both

personal machines and embedded devices such as Raspberry

Pis [26]. Although OONI performs a more comprehensive

set of tests than we can with our indirect measurement, the

tool has deployment at a limited number of vantage points.

CensMon [46] only runs on PlanetLab nodes, limiting its

visibility to academic networks that can experience different

filtering practices than residential or commercial networks

within a country. UBICA [1] aimed to increase vantage

points by running censorship measurement software on home

gateway devices and user desktops. These systems require

points of contact within a country to establish and maintain

the infrastructure. The OpenNet Initiative [41] leverages social

connections to people around the world to perform one-off

censorship measurements from home networks. As these mea-

surements are collected opportunistically with no systematic

baseline, it can be difficult to draw consistent, repeatable

conclusions.

Studies that highlight the temporal and spatial variability
of connectivity disruptions. If patterns of censorship and

connectivity disruptions hold relatively static, then existing

one-off measurement studies would suffice to over time build
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up a global picture of conditions. Previous work, however,

has demonstrated that censorship practices vary across time;

across different applications; and across regions and Internet

service providers, even within a single country. For example,

previous research found that governments target a variety of

services such as video portals (e.g., YouTube) [51], news sites

(e.g., bbc.com) [8], and anonymity tools (e.g., Tor) [53].

For example, Ensafi [21] showed that China’s Great Fire-

wall (GFW) actively probes—and blocks upon confirmation—

servers suspected to abet circumvention. Many studies show

that different countries employ different censorship mecha-

nisms beyond IP address blocking to censor similar content

or applications, such as Tor [50]. Occasionally, countries also

deploy new censorship technology shortly before significant

political events. For example Aryan [7] studied censorship

in Iran before and after the June 2013 presidential election.

The observations of variable and volatile filtering practices

underscore the need for our work, since none of the existing

techniques capture such variations.

III. METHOD OVERVIEW

In this section, we provide an overview of the measurement

method that we developed to detect filtering. We frame the

design goals that we aim to achieve and the core technique

underlying our approach. Then in Section IV we provide a

detailed explanation of the system’s operations.

A. Design Goals
We first present a high-level overview of the strategy under-

lying our method, which we base on inducing and observing

potential increments in an Internet host’s IP ID field. The

technique relies on causing one host on the Internet to send

traffic to another (potentially blocked) Internet destination;

thus, we also consider the ethics of the approach. Finally, we

discuss the details of the method, including how we select the

specific Internet endpoints used to conduct the measurements.
Ultimately, the measurement system that we design should

achieve the following properties:

• Scalable. Because filtering can vary across regions or

ISPs within a single country, the system must be able

to assess the state of filtering from a large number of

vantage points. Filtering will also vary across different

destinations, so the system must also be able to measure

filtering to many potential endpoints.
• Efficient. Because filtering practices change over time, es-

tablishing regular baseline measurements is important, to

expose transient, short-term changes in filtering practices,

such as those that might occur around political events.
• Sound. The technique should avoid false positives and en-

sure that repeated measurements of the same phenomenon

produce the same outcome.
• Ethical. The system design must satisfy the ethical prin-

ciples from the Belmont [9] and Menlo [19] Reports:

respect for people, beneficence, justice, and respect for

law and public interest.

We present a brief overview of the scanning method before

explaining how the approach satisfies the design goals above.

B. Approach

The strategy behind our method is to leverage the fact

that when an Internet host generates and sends IP packets,

each generated packet contains a 16-bit IP identifier (“IP ID”)

value that is intended to assist endpoints in re-assembling

fragmented IPv4 packets. Although path MTU discovery now

largely obviates the need for IP fragmentation, senders still

generate packets with IP ID values. There are only 216 unique

IP ID values, but the intent is that subsequent packets from

the same host should have different IP ID values.

When an Internet host generates a packet, it must determine

an IP ID to use for that packet. Although different hosts on the

Internet use a variety of mechanisms to determine the IP ID

for each packet (e.g., random, counter-based increment per-

connection or per-interface), many hosts use a single global

counter to increment the IP ID value for all packets that

originate from that host, regardless of whether the packets

it generates bear a relationship to one another. In these cases

where the host uses a single IP ID counter, the value of the

counter at any time reflects how many packets the host has

generated. Thus, the ability to observe this counter over time

gives an indication of whether a host is generating IP packets,

and how many.

The basic method involves two mechanisms:

• Probing: A mechanism to observe the IP ID value of a

host at any time.

• Perturbation: A mechanism to send traffic to that same

host from different Internet destinations, which has the

property of inducing the initial host to respond, thus

incrementing its IP ID counter.

We now describe the basic design for probing and perturbation,

in the absence of various complicating factors such as cross-

traffic or packet loss. Figure 1 illustrates the process.

To probe the IP ID value of some host over time, a mea-

surement machine sends unsolicited TCP SYN-ACK packets

to the host and monitors the responses—TCP RST packets—

to track the evolution of the host’s IP ID. We monitor the

IP ID values at the host on one end of the path. We call this

host the reflector, to denote that the host reflects RST packets

from both our measurement machine and the endpoint that a

censor may be trying to filter. This reflector is a machine in

a network that may experience IP filtering. We call the other

endpoint of this connection the site, as for our purposes we

will commonly use for it a website operating on port 80.

To perturb the IP ID values on either end of the path, a

measurement machine sends a TCP SYN packet to one host,

the site; the TCP SYN packet carries the (spoofed) source

IP address of a second machine, the reflector. We term this

injection. If no filtering is taking place, the SYN packet from

the measurement machine to the site will elicit a SYN-ACK

from the site to the reflector, which will in turn elicit a RST

from the reflector to the site (since the reflector had not

previously sent a TCP SYN packet for this connection). When

the reflector sends a RST packet to the site, it uses a new IP ID.

If the reflector generates IP ID values for packets based on a
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Fig. 1: Overview of the basic method of probing and perturbing the IP ID side channel to identify filtering. Reflectors are

hosts on the Internet with a global IP ID. Sites are potentially filtered hosts that respond to SYN packets on port 80. (In the

right hand figure, we omit subsequent measuring of the reflector’s IP ID by the measurement machine at time t6). Spoofed

SYN packets have a source field set to the reflector.

single counter, the measurement machine can observe whether

the reflector generated a RST packet with subsequent probes,

because the IP ID counter will have incremented by two (one

for the RST to the site, one for the RST to our measurement

machine). Figure 1 shows this process in the “no direction

blocked” scenario.

Suppose that filtering takes place on the path between the

site and the reflector (i.e., one of the other two cases shown in

Figure 1). We term blocking that manifests on the path from

the site to the reflector as inbound blocking. In the case of

inbound blocking, the site’s SYN-ACK packet will not reach

the origin, thus preventing the expected IP ID increment at

the reflector. In the absence of other traffic, the IP ID counter

will increment by one. We show this in the second section of

Figure 1.

Conversely, we call blocking on the path from the reflector

to the site outbound blocking; in the case of outbound block-

ing, SYN-ACK packets from the site reach the reflector, but the

RST packets from the reflector to the site never reach the site.

At this point, the site should continue to retransmit SYN-ACK

packets [49], inducing further increments in the IP ID value

at the reflector at various intervals, though whether and how it

actually does so depends on the configuration and specifics of

the site’s operating system. The final section of Figure 1 shows

the retransmission of SYN-ACK packets and the increment of

the global IP ID at two different times. If our measurements

reveal a site as inbound-blocked, filtering may actually be

bidirectional. We cannot differentiating between the two using

this technique because there is no way to remotely induce the

reflector to send packets to the site.

C. Ethics

The measurement method we develop generates spoofed

traffic between the reflector and the site which might cause

an inexperienced observer of these measurements to (wrongly)

conclude that the person who operates or owns the reflector

was willfully accessing the site. The risks of this type of

activity are unknown, but are likely to vary by country.

Although the spoofed nature of the traffic is similar to common

large-scale denial-of-service backscatter [37] and results in no

data packets being exchanged between reflector and site, we

nonetheless use extreme caution when selecting each reflector.

In this type of measurement, we must first consider respect
for humans, by limiting the potential harm to any person

as a result of this experiment. One mechanism for demon-

strating respect for humans is to obtain informed consent;

unfortunately, obtaining informed consent is difficult, due to

the scope, scale, and expanse of the infrastructure that we

employ.

Salganik explains that the inability to obtain informed

consent does not by itself reflect a disregard of respect for

humans [44]. Rather, we must take other appropriate measures

to ensure that we are abiding by the ethical principles from

the Belmont [9] and Menlo [19] reports. To do so, we develop

a method that reduces the likelihood that we are directly

involving any humans in our experiments in the first place, by

focusing our measurements on infrastructure. Specifically, our

method works to limit the endpoints that we use as reflectors

to likely Internet infrastructure (e.g., routers in the access

or transit networks, middleboxes), as opposed to hosts that

belong to individual citizens (e.g., laptops, desktops, home

routers, consumer devices). To do so, we use the CAIDA

Ark dataset [11], which contains traceroute measurements

to all routed /24 networks. We include a reflector in our

experiments only if it appears in an Ark traceroute at least

two hops away from the traceroute endpoint. The Ark dataset

is not comprehensive, as the traceroute measurements are

conducted to a randomly selected IP address in each /24 prefix.

Restricting the set of infrastructure devices to those that appear

in Ark restricts the IP addresses we might be able to discover

with a more comprehensive scan.

Although this approach increases the likelihood that the

reflector IP addresses are routers or middleboxes as opposed

to endpoints, the method is not fool-proof. For example,

devices that are attributable to individuals might still be two

hops from the network edge, or a network operator might

430



be held accountable for the perceived actions performed by

the machines. Our techniques do not eliminate risk. Rather,

in accordance with the ethical guideline of beneficence, they

reduce it to the point where the benefits of collecting these

measurements may outweigh the risks of collecting them. In

keeping with Salganik’s recommendations [44], we aim to

conduct measurements that pose a minimal additional risk,

given both the nature of the spoofed packets and the potential

benefits of the research.

The Internet-wide scans we conduct using ZMap [20] to

detect possible reflectors introduce concerns related to respect
for law and public interest. Part of the respect of law and

public interest is to reduce the network load we induce on

reflectors and sites, to the extent possible, as unnecessary

network load could drive costs higher for the operators of

reflectors and sites; if excessive, the probing traffic could

also impede network performance. To mitigate these possible

effects, we follow the approach for ethical scanning behavior

as outlined by Durumeric et al. [20]: we signal the benign

intent of our scans in the WHOIS entries and DNS records

for our scanning IPs, and provide project details on a website

hosted on each scanning machine. We extensively tested our

scanning methods prior to their deployment; we also respect

opt-out requests.

The measurement probes and perturbations raise similar

concerns pertaining to respect for law and public interest. We

defer the details of the measurement approach to Section IV

but note that reflectors and sites receive an average of one

packet per second, with a maximum rate of ten SYN packets

in a one-second interval. This load should be reasonable, given

that reflectors represent Internet infrastructure that should be

able to sustain modest traffic rates directed to them, and sites

are major websites that see much higher traffic rates than those

we are sending. To ensure that our TCP connection attempts do

not use excessive resources on sites or reflectors, we promptly

reset any half-open TCP connections that we establish.

The ethical principle of justice states that the parties bearing

the risk should be the same as those reaping the benefits; the

parties who would bear the risk (users in the countries where

censorship is taking place) may ultimately reap some benefit

from the knowledge about filtering that our tools provide

through improved circumvention tools and better information

about what is blocked.

IV. AUGUR: PUTTING THE METHOD TO PRACTICE

In this section, we present our approach for identifying

reflectors and sites, and then develop in detail how we perform

the measurements described in Section III.

A. Reflector Requirements

Suitable reflectors must satisfy four requirements:

1) Infrastructure machine. To satisfy the ethical guide-

lines that we outlined in Section III-C, the reflector

should be Internet infrastructure, as opposed to a user

machine.

2) RST packet generation. Reflectors must generate TCP

RST packets when receiving SYN-ACKs for unestab-

lished connections. The RST packets increment the

reflector’s IP ID counter while ensuring that the site

terminates the connection.

3) Shared, monotonically incrementing IP ID. If a re-

flector uses a shared, monotonic strictly increasing per-

machine counter to generate IP ID values for packets

that it sends, the evolution of the IP ID value—which

the measurement machine can observe—will reflect any

communication between the reflector and any other

Internet endpoints.

4) Measurable IP ID perturbations. Because the IP ID

field is only 16 bits, the reflector must not generate so

much traffic so as to cause the counter value to fre-

quently wrap around between successive measurement

machine probes. The natural variations of the IP ID

counter must also be small compared to the magnitude

of the perturbations that we induce.

Section V describes how we identify reflectors that meet these

requirements.

B. Site Requirements

Our method also requires that sites exhibit certain network

properties, allowing for robust measurements at reflectors

across the Internet. Unlike reflectors, site requirements are not

absolute. In some circumstances, failure to meet a requirement

requires discarding of a result, or limits possible outcomes, but

we can still use the site for some measurements.

1) SYN-ACK retransmission (SAR). SYN-ACK retries

by sites can signal outbound blocking due to a re-

flector’s RST packets not reaching the site. If a site

does not retransmit SYN-ACKs, we can still detect

inbound blocking, but we cannot distinguish instances

of outbound blocking from cases where there is no

blocking.

2) No anycast. If a site’s IP address is anycast, the mea-

surement machine and reflector may be communicating

with different sites; in this case, RSTs from the reflector

will not reach the site that our measurement machine

communicates with, which would result in successive

SYN-ACK retransmissions from the site and thus falsely

indicate outbound blocking.

3) No ingress filtering. If a site’s network performs ingress

filtering, spoofed SYN packets from the measurement

machine may be filtered if they arrive from an unex-

pected ingress, falsely indicating inbound blocking.

4) No stateful firewalls or network-specific blocking. If

a site host or its network deploys a distributed state-

ful firewall, the measurement machine’s SYN packet

may establish state at a different firewall than the one

encountered by a reflector’s RSTs, thus causing the

firewall to drop the RSTs. This effect would falsely

indicate outbound blocking. Additionally, if a site or its

firewall drops traffic from some IP address ranges but not
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others (e.g., from non-local reflectors), the measurement

machine may falsely detect blocking.

Section V-E describes how we identify sites that satisfy these

requirements.

C. Detecting Disruptions

As discussed in Section III, we detect connectivity dis-

ruptions by perturbing the IP ID counter at the reflector

and observing how this value evolves with and without our

perturbation.

Approach: Statistical detection. We measure the natural

evolution of a reflector’s counter periodically in the absence

of perturbation as a control that we can compare against the

evolution of the IP ID under perturbation. We then perturb the

IP ID counter by injecting SYN packets and subsequently mea-

sure the evolution of this counter. We take care not to involve

any site or reflector in multiple simultaneous measurements,

since doing so could conflate two distinct results.

Ultimately, we are interested in detecting whether the IP ID

evolution for a reflector changes as a result of the perturbations

we introduce. We can represent this question as a classical

problem in statistical detection, which attempts to detect

the presence or absence of a prior (i.e., perturbation or no

perturbation), based on the separation of the distributions

under different values of the prior. In designing this detection

method, we must determine the random variable whose distri-

bution we wish to measure, as well as the specific detection

approach that allows us to distinguish the two values of the

prior with confidence. We choose IP ID acceleration (i.e., the

second derivative of IP ID between successive measurements)

as ideally this value has a zero mean, regardless of reflector.

With a zero mean, the distribution of the random variable

should be stationary and the distribution should be similar

across reflectors. Conceptually, this can be thought of as a

reflector, at a random time, being as likely to experience traffic

“picking up” as not. However, subtle Internet complexities

such as TCP slow start bias this measure slightly. We discuss

empirical measures of these priors and their impact on our

method in Section V-D.

In contrast, the first derivative (IP ID velocity) is not sta-

tionary. Additionally, each reflector would exhibit a different

mean velocity value, requiring extensive per-reflector baseline

measurements to capture velocity behavior.

Detection framework: Sequential hypothesis testing (SHT).
We use sequential hypothesis testing (SHT) [31] for the

detection algorithm. SHT is a statistical framework that uses

repeated trials and known outcome probabilities (priors) to

distinguish between multiple hypotheses. The technique takes

probabilities for each prior and tolerable false positive and

negative rates as input and performs repeated online trials until

it can determine the value of the prior with the specified false

positive and negative rates. SHT’s ability to perform online

detection subject to tunable false positive/negative rates, and

its tolerance to noise, make it well-suited to our detection task.

Additionally, it is possible to compute an expectation for the

number of trials required to produce a detection, thus enabling

efficient measurement.

We begin with the SHT formulation developed by Jung

et al. [31], modifying it to accommodate our application.

For this application to hold, the IP ID acceleration must be

stationary (discussed more in Section V-D), and the trials must

be independent and identically distributed (i.i.d.). To achieve

i.i.d., we randomize our trial order and mapping between sites

and reflectors and run experiments over the course of weeks.

For a given site Si and reflector Rj , we perform a series

of N trials, where we inject spoofed SYN packets to Si and

observe IP ID perturbations at Rj . We let Yn(Si, Rj) be a

random variable for the nth trial, such that:

Yn(Si, Rj) =

{
0 if no IP ID acceleration occurs

1 if IP ID acceleration occurs

during the measurement window following injection. We iden-

tify two hypotheses: H0 is the hypothesis that no inbound

blocking is occurring (the second derivative of IP ID values

between successive measurements should be observed to be

positive, which we define as IP ID acceleration), and H1 is

the hypothesis that blocking is occurring (no IP ID accelera-

tion). Following constructions from previous work, we must

identify the prior conditional probabilities of each hypothesis,

specifically:

Pr[Yn = 0|H0] = θ0, Pr[Yn = 1|H0] = 1− θ0

Pr[Yn = 0|H1] = θ1, Pr[Yn = 1|H1] = 1− θ1

The prior θ1 is the probability of no observed IP ID acceler-

ation in the case of inbound blocking. We can experimentally

measure this prior as the probability of IP ID acceleration

during our reflector control measurements, since the IP ID

acceleration likelihood during control measurements is the

same as during inbound blocking (as no additional packets

reach the reflector in both cases). Intuitively, we can think of

this value as 0.5 given the prior discussion of second-order

value being thought of as zero mean (i.e., in aggregate traffic,

with no induced behavior, acceleration is as likely to occur as

deceleration).

The prior 1 − θ0 is the probability of observed IP ID

acceleration during injection. It can be measured as the prob-

ability of IP ID acceleration during an injection period across

all reflector injection measurements. Assuming no blockage

and perfect reflectors with no other traffic, this value can be

thought of as approaching 1. The prior can be estimated from

all reflector measurements under the assumption that blocking

is uncommon for a reflector. However, even if the assumption

does not hold and blocking is common, the prior estimation

is still conservative in that it drives the prior closer to the θ1,

making detection more difficult, increasing false negatives.

From the construction above, we define a likelihood ratio

Λ(Y ), such that:

Λ(Y ) ≡ Pr[Y |H1]

Pr[Y |H0]
= ΠN

n=1

Pr[Yn|H1]

Pr[Yn|H0]
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Fig. 2: Flow chart of our algorithm to identify both inbound

and outbound blocking using a series of sequential hypothesis

tests. Detailed descriptions of the notation and terminology are

given in Section IV-C.

where Y is the sequence of trials observed at any point. We

derive an upper bound threshold η1 such that:

Pr[Y1, . . . YN |H1]

Pr[Y1, . . . YN |H0]
≥ η1

and a similar lower bound threshold η0. Both η0 and η1 are

bounded by functions of the tolerable probability of false

positives and negatives. We elaborate on these bounds and the

impact of false positives and negatives later in this section.

Figure 2 illustrates our detection algorithm, which performs

a series of sequential hypothesis tests; the rest of this section

describes this construction in detail. The Inbound Blocking

portion of Figure 2 shows how SHT uses this construction to

make decisions. This is extended to include outbound blocking

subsequently.

As each trial is observed, we update the likelihood ratio

function Λ(Y ) based on the prior probabilities. Once updated,

we compare the value of Λ(Y ) against the thresholds η0
and η1. If Λ(Y ) ≤ η0, we accept H1 and output Input or

Bidirectional Blocking.

If Λ(Y ) ≥ η1, we accept H0, which is that IP ID acceler-

ation occurred as a result of no inbound blocking. This does

not give us a result, as we still must decide between outbound

blocking and no blocking. To make this decision, we proceed

to the second SHT phase,“Outbound Test,” which is discussed

subsequently.
A third output of the system is that Λ(Y ) did not meet either

threshold. If there are more trials we restart the algorithm. If

we have exhausted our trials, we output the result blockage

that of Si at Rj is undetermined.

Outbound blocking detection with SHT. Given IP ID ac-

celeration at the reflector, we must distinguish outbound-only

blocking from a lack of blocking whatsoever. To do so, we

develop a key new insight that relies on a secondary IP ID

acceleration that should occur due to subsequent SYN-ACK

retries by the site.
To determine a site’s eligibility for outbound blocking

detection, we must identify whether it retries SYN-ACKs,

and that the retries have reliable timing. Section V discusses

these criteria further. We abstract this behavior as a function

SAR(Si) (for SYN-ACK Retry) that indicates whether a

site is suitable for outbound blocking detection. We define

Xn(Si, Rj) such that:

Xn(Si, Rj) =

{
0 if no IP ID accel. during SAR

1 if IP ID accel. during SAR

We now formulate two new hypotheses, K0 such that outbound

blocking is occurring (IP ID acceleration occurs during the

SAR time window), and K1 such that there is no connection

blocking (IP ID acceleration does not occur during the SAR

window). From this:

Pr[Xn = 0|K0] = θ0, Pr[Xn = 1|K0] = 1− θ0

Pr[Xn = 0|K1] = θ1, Pr[Xn = 1|K1] = 1− θ1

In this construction 1 − θ0 is the measurable probability of

observing IP ID acceleration during injection, and θ1 is the

measurable prior probability of seeing no IP ID acceleration

during the SAR window across all of the reflector’s measure-

ments. Similar arguments hold as above to why these provide

conservative estimations of the prior values. (We also discuss

the measurable IP ID acceleration during the SAR window in

Section V-D.) Figure 2 shows how this construction is used to

label Si, Rj as either outbound-blocked or not blocked. If the

thresholds are not met and there are no more trials, we output

that we know Si is not inbound-blocked, but we do not know

the outbound-block status.

Expected number of trials. The SHT construction from Jung

et al. also provides a framework for calculating the expected

number of trials needed to arrive at a decision for H0 and H1.

The expected values are defined as:

E[N |H0] =
α ln β

α + (1− α) ln 1−β
1−α

θ0 ln
θ1
θ0

+ (1− θ0) ln
1−θ1
1−θ0

,

E[N |H1] =
β ln β

α + (1− β) ln 1−β
1−α

θ1 ln
θ1
θ0

+ (1− θ1) ln
1−θ1
1−θ0

. (1)

where α and β are also bounded by functions of the tolera-

ble false positive and negative rates, discussed subsequently.
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Similar constructions hold for K0 and K1. We investigate

the expected number of trials for both inbound and outbound

blocking further in Section V-D.

False positives and negatives. Following the construction

from Jung et al., α and β are both tunable parameters which

are bounded by our tolerance to both false positives and false

negatives. PF is defined as the false positive probability, and

PD as the detection probability. The complement of PD,

1 − PD is the probability of false negatives. These values

express the probability of a false result for a single SHT

experiment. However, for our method, we perform numerous

SHT experiments across sites and reflectors. To account for

these repeated trials we set both PF and 1−PD = 10−5. Given

that as PF and 1−PD decrease, the expected number of trials

to reach a decision increases, our selection of a small value

negatively impacts our ability to make decisions. This effect

is somewhat mitigated by the distance between experimentally

observed priors, and is explored in more detail in Section V-D

and Figure 4.

V. AUGUR IMPLEMENTATION AND EXPERIMENT DATA

In this section, we discuss the deployment of our approach

to measure connectivity disruptions across the Internet, as well

as the setup that we use to validate the detection method from

Section IV.

A. Selecting Reflectors and Sites

Reflector selection. To find reflectors that satisfy the criteria

from Section IV, we created a new ZMap [20] probe module

that sends SYN-ACK packets and looks for well-formed RST

responses. Our module is now part of the open-source ZMap

distribution. Using this module, we scan the entire IPv4

address space on port 80 to identify possible reflectors.

We then perform a second set of probes against this list of

candidate reflectors to identify a subset that conforms to the

desired IP ID behavior. Our tool runs from the measurement

machine and sends ten SYN-ACK packets to port 80 of each

host precisely one second apart, recording the IP ID of each

RST response. We identify reflectors whose IP ID behaviors

satisfy the previously outlined requirements: no IP ID wrap-

ping, variable accelerations observed (indicating our packets

do induce perturbations in the IP ID dynamics), and a response

to all probes. Because the measurement machine induces

packet generation at the reflector at a constant rate, any

additional IP ID acceleration must be due to traffic from

other connections. We further ensure that the measurement

machine receives a response for each probe packet that it

sends, ensuring that the reflector is stable and reliable enough

to support continuous measurements.

This selection method identifies viable reflectors, those that

are responsive and exhibit the desired IP ID behavior. We

finally filter the viable reflectors that do not correspond to in-

frastructure, as described in Section III-C, which significantly

Reflector
Datasets

Total
Reflectors

Num.
Countries

Median /
Country

All Viable 22,680,577 234 1,667
Ethically Usable 53,130 179 15
Experiment Sample 2,050 179 15

TABLE I: Summary of our reflector datasets. All viable

reflectors are identified across the IPv4 address space. Those

ethically usable are routers at least two hops away from

traceroute endpoints in the Ark data, and we select a random

subset as our experiment set.

Reflector Dataset AF AS EU NA SA OC ME

All Viable 55 50 52 39 23 14 20
Ethically Usable 36 47 46 30 14 6 18
Experiment Sample 36 47 46 30 14 6 18

TABLE II: The distribution of countries containing reflec-

tors across continents. Note the continent coverage of our

experiment sample is identical to that of the ethically us-

able dataset, as we sampled at least one ethically usable

reflector per country in that dataset. The continent labels

are as follows: AF=Africa, AS=Asia, EU=Europe, NA=North

America, SA=South America, OC=Oceana/Australia. We also

label ME=Middle East, as a region with frequent censorship.

reduces the number of available reflectors, as described in

Section V-E.

Site selection. We begin with a list of sites, some of which

are expected to be disrupted by network filtering or censorship

from a variety of vantage points. We seed our candidate sites

with the Citizen Lab list of potentially censored URLs [15],

which we call the CLBL. This list contains potentially blocked

URLs, broken down by category. To further identify sensitive

URLs, we use Khattak et al.’s dataset [32] that probed these

URLs using the OONI [40] measurement platform looking

for active censorship. After filtering the list, we distill the

URLs down to domain names and resolve all domains to

the corresponding IP addresses using the local recursive DNS

resolver on a network in the United States. If a domain name

resolves to more than one IP, we randomly select one A

record from the answers. To augment this list of sites, we

randomly select domains from the Alexa top 10,000 [2]. As

with the CLBL, if a host resolves to multiple IPs, we select

one at random. Section V-B provides a breakdown of the site

population. Section V-E explains how we dynamically enforce

site requirements.

B. Measurement Dataset

In this section, we describe the characteristics of the dataset

that we use for our experiments.

Reflector dataset. The geographic distribution of reflectors

illuminates the degree to which we can investigate censor-

ship or connectivity disruption within each country. Table I

summarizes the geographic diversity of our reflector datasets.
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The Internet-wide ZMap scan found 140 million reachable

hosts. Approximately 22.7 million of these demonstrated use

of a shared, monotonically increasing IP ID. These reflectors

were geographically distributed across 234 countries around

the world, with a median of 1,667 reflectors per country. This

initial dataset provides a massive worldwide set of reflectors to

potentially measure, yet many may be home routers, servers,

or user machines that we cannot use for experimentation due

to ethical considerations.

Merging with the Ark to ensure that the reflectors only con-

tain network infrastructure reduces the 22.7 million potential

reflectors to only about 53,000. Despite this significant reduc-

tion, the resulting dataset contains reflectors in 179 countries,

with a median of 15 reflectors per country. Table II gives a

breakdown of reflector coverage by continent.

We select a subset of these reflectors as our final exper-

iment dataset, randomly choosing up to 16 reflectors in all

179 countries, yielding 1,947 reflectors (not all countries had

16 infrastructure reflectors). In addition to these reflectors,

we added 103 high-reliability (stable, good priors) reflectors

primarily from China and the US to ensure good coverage

with a stable set of reflectors, resulting in 2,050 reflectors

in the final dataset. These reflectors also exhibit widespread

AS diversity, with the resulting set of reflectors representing

31,188 ASes. Using the Ark dataset to eliminate reflectors that

are not infrastructure endpoints reduces this set to 4,214 ASes,

with our final experiment sample comprising 817 ASes.

Site dataset. Merging the CLBL with Khattak et al.’s

dataset [32] yields 1,210 distinct IP addresses. We added to

this set an additional 1,000 randomly selected sites from the

Alexa top 10,000. To this set of sites we also added several

known Tor bridges, as discussed in Section VI-C. While this

set consists of 2,213 sites, some sites appeared in both the

CLBL and Alexa lists. Thus, our site list contains a total of

2,134 unique sites, with a CLBL composition of 56.7%.

C. Experiment Setup

The selection process above left us able to measure connec-

tivity between 2,134 sites and 2,050 reflectors. We collected

connectivity disruption network measurements over 17 days,

using the method described in Section IV. We call one

measurement of a reflector-site pair a run, involving IP ID

monitoring and one instance of blocking detection. Related,

we define an experiment trial as the complete measurement

of one run for all reflector-site pairs. Over our 17-day window,

we collected a total of 207.6 million runs across 47 total trials,

meaning we tested each reflector-site pair 47 times.

Each run comprises of a collection of one-second time

intervals. For each time interval, we measure the IP ID state

of the reflector independent of all other tasks. We begin each

run by sending a non-spoofed SYN to the site from the

measurement machine. Doing so performs several functions.

First, it allows us to ensure that the site is up and responding

to SYNs at the time of the measurement. Second, it allows

us to precisely measure if the site sends SYN-ACK retries,

Fig. 3: CDF of probability of IP ID acceleration per reflector

across the experiment.

and to characterize the timing of the retries. We record this

behavior for each run and incorporate this initial data point

into the subsequent SHT analysis. We then wait four seconds

before injecting spoofed SYN packets towards the site. The

reflector measurements during that window serve as control
measurements. During the injection window, we inject 10

spoofed SYN packets towards the site.

For each run, we denote the SYN-ACK retry behavior and

at what subsequent window we expect SYN-ACK retries to

arrive at the reflector, and use this information to identify

which window to look for follow-on IP ID acceleration. At

the end of the run, we send corresponding RST packets for

all SYNs we generated, to induce tear-down of all host state.

We then cool down for 1 second before starting a new run.

We randomize the order of the sites and reflectors for testing

per trial. We test all reflector-site pairs before moving on

to a new trial. For reasons discussed earlier, we never involve

the same reflector and site in two independent simultaneous

measurements between endpoints.

After each run, we ensure that (1) the reflector’s IP ID

appeared to remain monotonically increasing; (2) no packet

loss occurred between the measurement machine and the

reflector, and (3) the site is up and responding to SYN packets.

Additionally, we ensure that the IP ID does not wrap during

either the injection window or the SAR window. We discard

the measurements if any of these conditions fails to hold.

After these validity checks, our dataset contains 182.5 million

runs across 1,960 reflectors and 2,089 sites. The reduction

in number of sites and reflectors corresponds to unstable or

down hosts. We then apply SHT (Section IV) to analyze the

reachability between these site-reflector pairs.

D. Measured Priors and Expectations

A critical piece in the construction of our SHT framework is

formulating the prior probabilities for each of our hypotheses.
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Figure 3 shows CDFs of the measured prior probabilities of

IP ID acceleration for three different scenarios.

The IP ID acceleration of reflectors matches our intuition,

where the acceleration decreasing as frequently as it increases

across the dataset. We show this with the “No Injection”

CDF, with nearly all reflectors having a probability of IP ID

acceleration without injection of less than 0.5. Many reflectors

have a probability of acceleration far lower, corresponding to

reflectors with low or stable traffic patterns. We then use this

per-reflector prior for θ1 in our SHT construction for detecting

inbound blocking. While we could instead estimate the value

as 0.5, the expected number of trials depends on the separation

between the injection and non-injection priors, so if we are

able to use a smaller θ1 (per reflector), this greatly speeds up

detection time.

Figure 3 also shows the probability of IP ID acceleration

under injection. This value approaches 1 for many reflectors

and is above 0.8 more than 90% of reflectors. Noticeably, it

is, however, quite low, and even 0 for a handful of reflectors.

These correspond to degenerate or broken reflectors that we

can easily identify due to their low priors, removing them

from our experiment (discussed more in Section V-E). We

use this experimentally measured prior as 1 − θ0 in both of

our sequential hypothesis tests. This distribution provides a

lower bound for the actual probability of IP ID acceleration, as

the experimentally measured value includes inbound blocking

(i.e., if some sites experience blocking, those values would

lower the measured value). Inbound-blocked runs lower the

overall probability of acceleration. This still reflects a conser-
vative measurement, as a prior closer to control increases the

likelihood of false negatives, not false positives.

Lastly, we also measure the probability of IP ID acceleration

at the SYN-ACK retry point of each run. We dynamically

determine where this falls in each run using the properties the

site manifests during that run.1 As expected, the distribution

closely matches the control distribution. The differences in

the curve are explained by the dataset containing outbound

blocking. Such blocking raises the probability of acceleration

at that point, pulling the distribution slightly closer to the

injection case. We use this prior as θ1 during the outbound

SHT test.

Once we have computed the priors, we can compute the

expected number of trials to reach each of our output states

(on a per-reflector basis) using Equation 1. Figure 4 presents

CDFs of these results. More than 90% of reflectors have

40 or fewer expected trials needed to reach one of the states.

The remaining reflectors have a large tail and correspond to

unstable or degenerate reflectors. We do not need to explicitly

remove these reflectors from the dataset, but must refrain from

making decisions based on them in some cases.

1If a SYN-ACK retry occurs in the window adjacent to injection, we discard
that and look for the next retry. If we did not discard that measurement, the
retry would correspond to non-acceleration rather than acceleration.

Fig. 4: CDF of expected number of trials at false positive and

negative probability of 10−5 to accept one of the four SHT

hypothesis outcomes, per reflector. “No Inbound/Bidirectional

Blocking” means we passed our first SHT and did not detect

inbound blocking, but have not yet attempted to differentiate

between no blocking and outbound blocking.

E. Identifying and Removing Systematic Effects

Our initial selection of sites did not address some of our site

requirements from IV, such as network filtering or anycast IP

addresses. Failure to identify these sites generates systematic
effects within our results dataset. Recall that we only wish to

filter these sites when necessary. For example, in the case of

anycast sites, we can still classify them as inbound-blocked or

not blocked, but we cannot detect scenarios where the site is

outbound-blocked.

Problematic sites. We identify sites that fail to meet these

requirements by conducting a set of experiments with nine

geographically diverse vantage points. These hosts reside in

cloud service providers and universities, all of which have

limited to no network blocking as vantage points. We perform

these measurements concurrently with our primary blockage

measurements. For each site, we perform two measurements

for each vantage point. The diversity of the vantage points

enables us to identify these network effects rather than identify

censorship or blockage. These tests do not need to be globally

complete as the network effects manifest readily.

The first measurement ensures that a vantage point can have

bidirectional communication with a site. From a vantage point,

we send five SYN packets to a site, evenly distributed over

the experiment run (approximately an hour). We monitor for

SYN-ACK replies, which demonstrate two-way communica-

tion. If a vantage point cannot reliably establish bidirectional

communication with a site, we exclude it from our further

vantage-point measurements.

In the second measurement, the measurement machine sends

a spoofed SYN packet to the site with the IP address of
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a vantage point. Since we previously confirmed the vantage

point can communicate with the site, any missing SYN-ACKs

or retransmissions are the result of sites not conforming to

our requirements, rather than blockage. If the vantage point

does not receive a SYN-ACK response from the site, ingress

filtering or network origin discrimination may be occurring.

If the vantage point does receive a SYN-ACK, it responds

with a RST packet. If the vantage point continues to receive

multiple SYN-ACKs, the site is not correctly receiving the

vantage point’s RST packets, suggesting the site host (or its

network provider) may be anycast, employing a distributed

stateful firewall, or discriminating by traffic origin. We repeat

this experiment three times to counter measurement errors

introduced by random packet loss. If a vantage point never

receives a SYN-ACK, or only ever receives multiple SYN-

ACK retries, we conservatively conclude the site exhibits

one of the unacceptable network properties from that vantage

point. Thus, we disregard its blockage results, except if the

observed measurement results cannot be a false signal due

to the site’s properties. For example, if vantages observe

only multiple SYN-ACK retries for a site (indicating our

measurements with that site may falsely identify outbound

blocking), but our measurements detect no blocking or only

inbound blocking, we can still consider these results.

We find that this relatively small number of vantage points

suffices to characterize sites, as experiment results typically

remained consistent across all vantage points. All online sites

that we tested were reachable from at least three vantage

points, with 98.4% reachable at five or more. This reachability

affords us with multiple geographic vantage points to assess

each site. For 98.6% of sites, all reachable vantage points

consistently assessed the site requirement status, indicating

that we can detect site network properties widely from a few

geographically distinct locations. This approach is ultimately

best effort, as we may fail to detect sites whose behavior is

more restricted (e.g., filtering only a few networks).

Through our site assessment measurements, we identified

229 sites as invalid for inbound blocking detection due to

ingress filtering or network traffic discrimination. These sites

were widely distributed amongst 135 ASes, each of which may

employ such filtering individually or may experience filtering

occurring at an upstream ISP.

We also flagged 431 sites as invalid for outbound blocking

detection as they either lacked a necessary site property

(discussed in in Section IV-B) or did not respect RST pack-

ets (perhaps filtering them). To distinguish between the two

behaviors, we probed these sites with non-spoofed SYN and

RST packets using vantage points, similar to the experiments

described earlier in this section. For each site, we sent a SYN

packet from a well-connected vantage, and responded with a

RST for any received SYN-ACK. If we continued receiving

multiple SYN-ACK retries, the site did not respect our RST

packets. Otherwise, the site does properly respond to RST

packets in the non-spoofing setup, and might be exhibiting

an undesirable site property (as listed in Section IV-B) in our

spoof-based connectivity disruption experiments. We iterate

this measurement three times for robustness against sporadic

packet loss, concluding that a site ignores RST packets if any

vantage point observes multiple SYN-ACK retransmissions in

all trials.

Using this approach, we identified that 64 sites (14.8% of

sites invalid for outbound blocking detection) exhibited a non-

standard SYN-ACK retransmission behavior, and conclude

that the remaining 367 sites (85.2%) are either anycast, de-

ploying stateful firewalls, or discriminating by network origin.

These sites were distributed amongst 62 ASes. The majority

are known anycast sites, with 75% hosted by CloudFlare and

7% by Fastly, both known anycast networks.

We additionally checked all sites against the Anycast dataset

produced by Cicalese et al. [14]. Our technique identified all

but 3 IP addresses. We excluded those 3 sites from our

results.

Problematic reflectors. A reflector could be subject to filter-

ing practices that differ based on the sender of the traffic,

or the port on which the traffic arrives. This systematic

effect can manifest as a reflector with significant inbound or

outbound blocking. From manual investigation, we identify

several reflectors that demonstrate this property independent

of spoofed or non-spoofed traffic. In all cases, such reflectors

were outliers within their country. To remove these systematic

effects, we ignore reflectors in the 99th percentile of blockage

for their country. Sites blocked by these reflectors do not show

a bias to the CLBL list (discussed more in Section VI). This

process removed 91 reflectors from our dataset.

VI. VALIDATION AND ANALYSIS

The value of the method we develop ultimately rests on the

ability to accurately measure connectivity disruption from a

large number of measurement vantage points. Validating its

findings presents challenges, as we lack widespread ground

truth, presenting a chicken-and-egg scenario. One approach,

presented in Sections VI-A and VI-B, is to analyze the

aggregate results produced and confirm they accord with

reasonable assumptions about the employment of connectivity

disruption. While doing so does not guarantee correctness, it

increases confidence in the observations. The other approach

is to corroborate our findings against existing ground truth

about censored Internet traffic. In Section VI-C, we perform

one such analysis, providing a limited degree of more concrete

validation.

A. Disruption Bias

Conceptually, one would expect the set of sites disrupted

by a network censor to be biased towards sites that are known

to be commonly censored. From this notion, we can examine

the set of sites blocked by each reflector and ask how that

population compares to the input population.

Figure 5 shows, in aggregate, the bias of connectivity

disruption towards commonly censored websites. 56.7% of

websites in the input site dataset are from the CLBL, demar-

cated in the plot with a vertical dotted line (which we call the
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Fig. 5: Bias of blocked sites towards CLBL sites. CLBL sites

consist of 56.7% of our sites, demarcated at the dotted vertical

line. To reduce small value effects, we remove reflectors with

fewer than 5 blocked websites in curves labeled with “No

small refs”.

CLBL bias line). If the detection we observed was unrelated

to censorship, we would expect to find roughly 56.7% of

that reflector’s blocked sites listed in the CLBL. The results,

however, show a considerable bias towards CLBL sites for

both inbound and outbound filtering. We see this with the

bulk of the graph volume lying to the right of the vertical

dotted CLBL bias line. Excluding reflectors with fewer than

5 blocked sites to avoid small number effects, we observe that

for 99% of reflectors, more than 56.7% of inbound filtering

is towards CLBL sites. Similarly, we find 95% of outbound

filtering biased towards the CLBL. This observed bias agrees

with our prior expectations that we should find CLBL sites

more widely censored.

B. Aggregate Results

Site and reflector results. We first explore the extent of

connectivity disruption from both the site and reflector per-

spective. We might naturally assume that filtering will not

manifest ubiquitously. We do not expect to find a site blocked

across the majority of reflectors; similarly, we should find

most sites not blocked for any given reflector. This should

particularly hold since approximately half of our investigated

sites come from the Alexa top 10K most visited websites.

Although some popular Alexa websites contain potentially

sensitive content (e.g., adult or social media sites), many

provide rather benign content and are unexpected targets of

disruption.

We observe the degree of filtering from the reflector per-

spective in Figure 6. Approximately 99% of reflectors en-

counter connectivity impediments in either direction for 20 or

fewer sites, with no reflector blocked for more than 60 sites.

This finding concurs with the assumption that site filtering

at reflectors is not ubiquitous. On the other hand, connection

Fig. 6: CDF of site filtering per reflector, separated by in-

bound/bidirectional and outbound filtering.

Fig. 7: CDF of site filtering across reflectors, separated by

inbound/bidirectional and outbound filtering. Note the log-

scaled x-axis.

disruption appears widespread, as 60% of reflectors experience

some degree of interference, corroborating anecdotal observa-

tions of pervasive censorship.

We find inbound/bidirectional disruption occurs more com-

monly compared to outbound-only filtering. In total, fewer

than 30% of reflectors experience any outbound-only filtering,

while over 50% of reflectors have blocked inbound packets

from at least one site. This contrast is unsurprising, because

bidirectional filtering of a blacklisted IP address is a simple

and natural censorship policy; as a result, most results will

appear as either inbound or bidirectional filtering.

Figure 7 depicts a similar outlook on connectivity disruption

from the site viewpoint. We again witness that inbound or bidi-

rectional filtering affects more sites than outbound filtering.

Over 15% of sites are inbound-blocked along the path to at

least one reflector, while only 7% of sites are ever outbound-

blocked. In total, connections to 79% of websites never appear

disrupted, and over 99% of sites exhibit inaccessibility by
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No. Site Class % Refs % Cnt.

1. hrcr.org HUMR 41.7 83.0
2. alstrangers.[LJ].com MILX 37.9 78.8
3. varlamov.ru ALEXA 37.7 78.0

nordrus-norna.[LJ].com HATE
4. www.stratcom.mil FREL 37.5 78.6
5. www.demonoid.me P2P 21.7 58.5
6. amateurpages.com PORN 21.2 57.9

voice.yahoo.jajah.com VOIP
amtrak.com ALEXA

7. desishock.net P2P 10.8 32.7
8. wzo.org.il REL 7.9 17.6
9. hateit.ru HATE 7.3 14.5

10. anonymouse.org ANON 5.3 16.4

TABLE III: Summary of the top 10 sites by the percent

of reflectors experiencing inbound blocking. Rows sharing

rank reflect domains that share an IP address. [LJ] denotes

livejournal. We list a categorization of each website

using the definitions provided in Appendix A. We additionally

report the percent of countries for which we find a site

inbound-blocked by at least one reflector.

No. Site Class % Refs % Cnt.

1. nsa.gov USMIL 7.4 23.3
2. scientology.org MINF 2.2 6.9
3. goarch.org MINF 1.9 4.4
4. yandex.ru FEXP 1.8 3.8
5. hushmail.com EMAIL 1.8 4.4
6. carnegieendowment.org POLR 1.6 4.4
7. economist.com FEXP 1.6 2.5
8. purevpn.com ANON 1.4 1.9
9. freedominfo.org FEXP 1.3 3.1

10. wix.com HOST 1.3 0.6

TABLE IV: Summary of the top 10 sites by the percent

of reflectors experiencing outbound blocking. We provide a

categorization of each website using definitions provided in

Appendix A. We additionally report the percent of countries

for which we find a site inbound-blocked by at least one

reflector.

100 reflectors (5%) or less. As before, these results agree with

our expectation that sites are typically not blocked across the

bulk of reflectors.

Several sites show extensive filtering, as listed in Tables III

and IV. Here, we have determined reflector country-level

geolocation using MaxMind [35]. We found six sites inbound-

blocked for over 20% of reflectors across at least half the

countries, with the human rights website hrcr.org inaccessible

by 41.7% of reflectors across 83% of countries. The top 10

inbound-blocked sites correspond closely with anticipated cen-

sorship, with 9 found in the Citizen Lab Block List (CLBL). A

surprisingly widely blocked Alexa-listed site is varlamov.ru,

ranked third; in fact, it actually redirects to LiveJournal, a

frequent target of censorship [39], [52]. On a related note,

the IP address for amtrak.com is the sixth most inbound-

blocked site—but it is co-located with two CLBL websites,

underscoring the potential for collateral damage that IP-based

blacklisting can induce.

The top outbound-blocked sites tell a similar tale, although

with less pervasive filtering. The most outbound disrupted site

is nsa.gov, unreachable by 7.4% of reflectors across 23.3%

of countries. Given the nature of this site, perhaps the site

performs the filtering itself, rather than through reflector-side

disruption. All top 10 sites are known frequently blocked

websites, listed in the CLBL.

This aggregate analysis of connectivity disruption from

both site and reflector perspective accords with our prior

understanding that while disruption is not ubiquitous, it may

be pervasive. It affects a large proportion of reflectors, and

can widely suppress access to particular sites. The sites for

which our method detects interference closely correspond

with known censored websites. This concordance bolsters

confidence in the accuracy of our method’s results.

Country-level connectivity disruption. Analysis of aggre-

gate connectivity disruption across countries provides another

perspective for validation. Using reflector country geolocation

provided by MaxMind [35], Table V ranks the top 10 countries

by percentage of blocked sites across any reflectors in the

country. Figure 8 portrays this at a global scale, illustrating

that some degree of connectivity disruption is experienced by

hosts in countries around the world.

We see that many of the most disruptive countries corre-

spond closely with countries known to heavily censor, such

as China, Iran, Sudan, Russia, and Turkey [41]. Of the top

10 countries, the OpenNet Initiative [41] has reported Internet

censorship of political or social material in every country

except Latvia and the United Kingdom.2 More recently, re-

ports have documented Latvia as heavily censoring gambling

websites and political content [4], [47]. Our results appear

plausible for the United Kingdom as well, which has a

history of filtering streaming and torrent sites [10] and adult

content [36].

While we are aggregating at a country granularity, these

disruptions may actually be implemented in different ways

within a single country. These differences result in non-

uniform filtering policies, as has been observed with the

Great Firewall of China [24], [54] and UK adult content

filtering [36]. In Figure 9, we plot the variation in the num-

ber of sites blocked for reflectors within each country. We

remove countries without any site filtering. We observe that

for most countries, there exists some variation in the disruption

experienced by reflectors within a country, suggesting that

interference indeed often differs across networks even within

a country. The extent of this behavior is widespread and

highlights the importance of connectivity measurements from

many vantage points, since findings may differ across nearby

networks and geolocations.

2We list Hong Kong separately from China, although traffic from Hong
Kong may traverse Chinese networks and experience disruption.
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Fig. 8: Global heat map showing the percentage of sites filtered for any reflector in countries around the world. China experiences

the highest average amount of filtering, at 5% of measurable sites filtered by a resolver within the country.

No. Country
Num.

Reflectors
Block

%
CLBL

%
Mean Blocked

In/Out
Med. Blocked

In/Out
Total Num.

Blocked In/Out

1. China 36 5.0 70.9 11.2 / 1.8 1.5 / 0.0 70 / 33
2. Iran 14 3.4 55.7 10.8 / 1.4 0.0 / 0.0 53 / 17
3. Sudan 12 2.2 54.3 6.5 / 0.0 1.0 / 0.0 46 / 0
4. Russia 17 1.8 78.9 4.8 / 1.4 0.0 / 0.0 18 / 20
5. Latvia 14 1.8 81.6 3.3 / 1.6 2.0 / 0.0 22 / 19
6. Turkey 15 1.8 83.8 2.1 / 1.5 0.0 / 0.0 23 / 14
7. Hong Kong 16 1.7 88.9 2.8 / 1.4 0.0 / 0.0 14 / 22
8. Columbia 16 1.7 85.7 4.2 / 1.2 6.0 / 0.0 17 / 18
9. Libya 10 1.5 77.4 8.4 / 3.2 9.5 / 3.0 16 / 15
10. United Kingdom 16 1.4 90.0 3.1 / 0.8 2.0 / 0.0 19 / 11

TABLE V: Summary of the top 10 countries ranked by the percentage of sites blocked at any reflectors within each country

(shown in the “Block %” column). Additionally, we list for each country the number of reflectors within that country, the

blockage bias towards CLBL sites, and statistics on inbound versus outbound blockage.

C. Tor Bridge Case Study

In the previous section, we analyzed our method’s results in

aggregate, finding them in line with reasonable assumptions

and existing reports of Internet censorship. Here, we use

several known Tor bridges as a case study providing an ad-

ditional (though limited) check of correctness. This validation

increases confidence in our method, as we are able to repli-

cate previous findings with regards to which sites experience

blocking, the country of censorship, and the directional nature

of disruption.

Our set of sites contains three Tor Obfuscation4 (obfs4)

Bridges open on port 80, for which we have some ground

truth on their censorship. A prior study [25] tested all three

bridges from vantage points in the U.S., China, and Iran, over

a five-month period. The first two bridges (TB1 and TB2)

were included in the Tor Browser releases. Fifield and Tsai

detected that only China frequently inbound-blocked these,

albeit inconsistently, likely due to the federated nature of the

Great Firewall of China. The third bridge (TB3) had been only

privately distributed, and remained unblocked throughout the

study.

Our findings are consistent with this ground truth. Both TB1

and TB2 experienced inbound filtering in China only, while

connectivity to TB3 was never disrupted. Of the 36 reflectors

in China, we detected inbound filtering of TB1 for 8 reflectors,

no filtering for 8 reflectors, and inconclusive evidence for

the remaining 20 (due to lack of a statistically significant

signal during our hypothesis testing). For TB2, 9 reflectors

were inbound-blocked, 11 were unblocked, and 16 were un-

decided. TB3, expected to be unblocked, was accessible by 22

reflectors, with the remaining 14 undetermined. These findings

accord with prior results regarding the distributed and disparate

nature of Chinese Tor filtering.
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Fig. 9: Plot of the variations in site filtering experienced

by reflectors within countries. We elide countries without any

disruption.

VII. DISCUSSION

In this section, we discuss various aspects concerning the

coverage, granularity, and accuracy of the current measure-

ments.

Coverage limitations. Ethical considerations when perform-

ing our measurements restricted the reflectors from which we

measure to a set of hosts that we can confidently conclude

represent Internet infrastructure in the interior of the network.

Recall that we do so by measuring the Internet topology and

only using reflectors at least two traceroute hops into the

network. This approach drastically reduces the number of hosts

that we can use as reflectors. In the future, more exhaustive

techniques to identify Internet infrastructure could increase the

set of IP addresses that we might use as reflectors.

Evasion Augur relies on the injection of spoofed SYN-ACK

packets. A natural evasion mechanism could use a stateful

firewall to drop SYN-ACKs that do not correspond to a

previously sent SYN. Implementing such firewalls at scale

poses significant challenges. Large networks frequently have

multiple transit links resulting in asymmetric routing; SYN

packets may traverse a different path than the SYN-ACKs.

The censor would need to coordinate state across these links.

Any errors in state management would lead to blocking benign

connections, resulting in collateral damage.

Alternatively, censors could switch to allowing through TCP

control packets and only disrupting data packets. Such an

approach might complicate the censor’s own monitoring of

their blocking efforts as it runs counter to assumptions com-

monly made by diagnostic tools. Similarly, it may introduce

management burdens because it does not accord with common

forms of packet filtering.

Ambiguity in location and granularity of filtering. The

current measurements only indicate whether packets became

filtered somewhere along the end-to-end path between a re-

flector and a site; they do not indicate the location where that

filtering might take place. As a result, our techniques cannot

disambiguate the scenario where a remote site blocks access

from all reflectors in an entire region from the scenario where

an in-country censor filters traffic along that path. For example,

financial and commerce sites may block access from entire

countries if they have no customers in those regions.

Additionally, the current measurements only employ TCP

packets using port 80. Thus, they do not disambiguate fil-

tering of IP addresses versus filtering of only port 80 traffic

associated with that IP address. An extension of our system

might perform follow-up measurements on different ports to

determine whether filtering applies across all ports. On a

related note, our techniques only measure TCP/IP-based fil-

tering; future work may involve correlating the measurements

that we observe with tools that measure global filtering at other

layers or applications (e.g., HTTP, DNS).

Other sources of inaccuracy. Existing IP geolocation tools

have known inaccuracies [27], particularly for Internet infras-

tructure (i.e., IP addresses that do not represent end hosts). As

a result, some of our results may not reflect precise characteri-

zations of country-level filtering. As IP geolocation techniques

improve, particularly for IP addresses that correspond to

Internet infrastructure, we can develop more confidence in the

country-level characterizations from Section VI. Additionally,

various network mechanisms, including anycast, rerouting,

traffic shaping, and transient network failures, may make it

difficult to disambiguate overt filtering actions from more

benign network management practices. Some of these effects

may even operate dynamically: for example, network firewalls

may observe our probes over time, come to view them as an

attack, and begin to block our probes; in this case, our own

measurements may give rise to filtering, rendering it difficult

to disambiguate reactive filtering of our measurements from

on-path filtering between a site and reflector, particularly since

the latter may also change over time.

VIII. CONCLUSION

Despite the pervasive practice of Internet censorship, obtain-

ing widespread, continuous measurements from a diversity of

vantage points has proved elusive; most studies of censorship

to-date have been limited both in scale (i.e., concerning only

a limited number of vantage points) and in time (i.e., covering

only a short time span, with no baseline measurements). The

lack of comprehensive measurements about Internet censor-

ship stems from the difficulty of recruiting vantage points

across a wide range of countries, regions, and ISPs, as most

previous techniques for measuring Internet censorship have

required some type of network presence in the network being

monitored.

In this paper, we tackle this problem with a fundamentally

different type of approach: instead of relying on in-country

monitoring points for which we have no direct access, we

exploit recent advances in TCP/IP side-channel measurement

techniques to collect measurements between pairs of endpoints
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that we do not control. This ability to conduct measurements

from “third-party” vantage points that we control allows us to

continuously monitor many more paths than was previously

possible. Previous work introduced the high-level concept of

these third-party side-channel measurements; in this work, we

transition the concept to practice through a working system

that abides by ethical norms and produces sound measure-

ments in the presence of the measurement artifacts and noise

that inevitably manifest in real-world deployments.

The continuous, widespread measurements that we can

collect with these techniques can ultimately complement anec-

dotes, news reports, and policy briefings to ensure that we

can back future assessments of Internet filtering with sound,

comprehensive data. Part of this transition to practice involves

further developing the system that we have developed to

facilitate ongoing operation, including automating the val-

idation of the measurements that we collect. We aim to

ultimately correlate this data with other datasets that pertain

to application-layer [45] and DNS-based [6], [29] filtering.
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APPENDIX

Below are the definitions for website classes as specified by

the CLBL [15]:

Class Definition

ANON Anonymizers and censorship circumvention
EMAIL Free email
FEXP Freedom of expression and media freedom
FREL Foreign relations and military
HATE Hate speech
HOST Web hosting services
HUMR Human rights
MILX Militants extremists and separatists
MINF Minority faiths
P2P Peer-to-peer file sharing
POLR Political reform
PORN Pornography
REL Religious conversion, commentary and criticism
USMIL US government-run military website
VOIP Voice over Internet Protocol (VoIP)
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