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Abstract—We present Catena, an efficiently-verifiable Bitcoin
witnessing scheme. Catena enables any number of thin clients,
such as mobile phones, to efficiently agree on a log of application-
specific statements managed by an adversarial server. Catena
implements a log as an OP_RETURN transaction chain and
prevents forks in the log by leveraging Bitcoin’s security against
double spends. Specifically, if a log server wants to equivocate it
has to double spend a Bitcoin transaction output. Thus, Catena
logs are as hard to fork as the Bitcoin blockchain: an adversary
without a large fraction of the network’s computational power
cannot fork Bitcoin and thus cannot fork a Catena log either.
However, different from previous Bitcoin-based work, Catena
decreases the bandwidth requirements of log auditors from 90
GB to only tens of megabytes. More precisely, our clients only
need to download all Bitcoin block headers (currently less than
35 MB) and a small, 600-byte proof for each statement in a block.
We implement Catena in Java using the bitcoinj library and use it
to extend CONIKS, a recent key transparency scheme, to witness
its public-key directory in the Bitcoin blockchain where it can be
efficiently verified by auditors. We show that Catena can secure
many systems today, such as public-key directories, Tor directory
servers and software transparency schemes.

I. INTRODUCTION

Security often depends on non-equivocation [1], [2]. For

example, when a Certificate Authority (CA) equivocates by

signing contradicting certificates for the same identity, it can

impersonate websites and compromise users’ privacy. In fact,

this has happened many times in the past [3]–[9]. To prevent

equivocation, Certificate Transparency (CT) [10] has been

introduced as a way of publicly logging all CA-issued cer-

tificates. However, a CT log server can still equivocate about

the log of issued certificates and, together with a colluding CA,

can launch impersonation attacks. While gossiping [11] about

the log can help detect equivocation, detection can be slow or

not happen at all, as gossip messages can be delayed indef-

initely. Another example is the Tor [12] anonymity network,

where malicious directory servers can equivocate about the

set of Tor relays and deanonymize users by tricking them to

use malicious relays [13]. Thus, we believe non-equivocation

is an important security requirement in many systems today,

such as public-key distribution, blockchain-based transparency

[14], [15] and software transparency (see §II-A).

Unfortunately, without online trusted parties, achieving non-

equivocation is impossible [16]. To deal with this impossibility

result, systems resort to enforcing a weaker property called

fork consistency [16]. Fork-consistent systems essentially

make equivocation “permanent” and thus easier to prove later

when clients are able to communicate or “gossip” out-of-band.

However, as illustrated above, for systems such as public-key

Fig. 1. A Catena log is a chain of Bitcoin transactions. Each Catena
transaction has two outputs: (1) a continuation output, which is spent by
the next Catena transaction, thus creating a chain and (2) an OP_RETURN
output, which commits some application-specific statement. The server pays
Bitcoin transaction fees for each issued statement. For applications that publish
statements often, batching can be used to keep the fee per statement low.

directories and Tor directory servers, undetected equivocation

attacks can seriously impact users’ security. Thus, we believe a

more proactive approach [17] to security is desirable for such

systems.

To prevent equivocation proactively, recent work [14], [15]

uses the Bitcoin blockchain [18], as a witness. We believe

this Bitcoin witnessing approach, though currently inefficient,

is promising for three reasons. First, this approach makes

equivocation as hard as forking the Bitcoin blockchain itself,

which has proven resistant to forking attacks. Second, this

approach only relies on a single global witness, namely the

Bitcoin blockchain, obviating the need for users to obtain

correct cryptographic identities of multiple trusted entities,

such as log providers and auditors as in CT [10], or witnesses

as in CoSi [17]. It also has the advantage of not requiring

the witness to keep any secrets, which if compromised would

result in equivocation. Third, the Bitcoin blockchain’s open,

decentralized and censorship-resistant nature makes deploy-

ment of witnessing schemes easy and interference with them

hard. Unfortunately, the main drawback of existing Bitcoin

witnessing schemes has been that auditors have to download

the entire Bitcoin blockchain, which, in November 2016, was

almost 90 GB [19] in size and growing by 52 GB every year.

This paper presents Catena, an efficient Bitcoin-based wit-

nessing scheme that dramatically reduces auditors’ bandwidth

overhead. At a high level, Catena is a tamper-evident log

[20] built on top of the Bitcoin blockchain. Catena prevents

adversarial log servers who cannot fork the Bitcoin block-
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chain from equivocating about a log of application-specific

statements. Importantly, auditors who run Catena clients can

check the log for non-equivocation efficiently via Simplified

Payment Verification (SPV) [18] (see §II-B6). This drastically

decreases auditing bandwidth from 90 GB [19] to only tens of

megabytes, as Catena clients only need to download Bitcoin

block headers and small Merkle proofs under some of those

headers. Furthermore, after all block headers are downloaded,

the bandwidth decreases to less than 1 KB of data every 10

minutes.

A. Efficient Non-equivocation via Bitcoin

Previous Bitcoin witnessing schemes [14], [15] cannot

efficiently prove non-membership of inconsistent statements

unless auditors download all the transactions in the Bitcoin

blockchain. Our design addresses this issue by allowing

Catena clients to skip downloading all irrelevant transactions

while still guaranteeing non-equivocation. The key idea behind
Catena is that Bitcoin’s mechanism for preventing double
spends can actually be regarded as a non-membership proof.
Specifically, Bitcoin proves that no transactions double spend-

ing a previous transaction’s output exist. That is, if a client

verifies blockchain membership for a transaction tx2 which

spends a previous transaction output tx1[0], that client has also

implicitly verified that no other transaction tx′2 which spends

tx1[0] exists in the blockchain. (tx1[0] refers to the first output

of transaction tx1; see §II-B4 for Bitcoin background.)

Catena turns this idea into a non-equivocation scheme.

Each Catena transaction stores exactly one statement and

spends the previous Catena transaction, creating a chain of

statements as shown in Figure 1. This implies that if an

auditor sees a statement si in the blockchain whose transaction

correctly spends the transaction for the previous statement

si−1, then that constitutes a non-membership proof that no
other inconsistent statement s′i exists. Looked at differently,

if an adversarial log server wants to equivocate about si, it

has to double spend the previous Catena transaction for si−1,

which can only be done by forking the Bitcoin blockchain.

1) Root-of-Trust: Catena guarantees that once a client cor-

rectly obtains a log’s genesis transaction, the server cannot

equivocate about that log unless it forks the Bitcoin block-

chain. The genesis transaction is the first transaction in the

log and acts as the root-of-trust or “public key” for a Catena

log (see §IV-A1). Once clients obtain the correct genesis trans-

action they can efficiently verify that every issued statement

comes from a transaction that spends coins originating from

the genesis transaction. In §IV, we explain how this implicitly

prevents equivocation in a Catena log. Our design is simple

and efficient and obviates the need for log servers and clients

to download the full Bitcoin blockchain while ensuring the

consistency of the log.

2) Bitcoin-friendly: To embed log statements in Bitcoin

transactions, Catena uses provably-unspendable OP_RETURN
transaction outputs [21], which, unlike previous work [15],

[22], does not harm Bitcoin by polluting the unspent transac-

tion output (UTXO) set on Bitcoin nodes. However, we em-

phasize that Catena’s novelty is not in leveraging OP_RETURN
(previous work already does that; see §VIII), but in chaining

together OP_RETURN transactions that contain log statements,

which makes it possible to check for non-equivocation effi-

ciently. Furthermore, Catena does not place unnecessary stress

on the Bitcoin P2P network. First, clients query the Catena log

server directly to discover statements instead of using disk-

intensive Bloom filtering on the Bitcoin P2P network (see

§II-B6). Second, to avoid depleting the small connection pool

of Bitcoin’s P2P network, clients query a header relay network
(HRN) to obtain the latest Bitcoin block headers (see §IV-B).

Put simply, the HRN can be thought of as an “extension” of

Bitcoin’s P2P network for handling additional block header

requests coming from Catena clients. We discuss potential

attacks on the HRN in §V-E.

3) Applications: Due to Bitcoin’s 10-minute block rate, the

Catena log server can only issue a statement every 10 minutes

while clients have to wait at least 60 minutes before accepting

an issued statement. Still, even with these delays, we believe

Catena can help secure applications such as key transparency

schemes, Tor directory servers and software transparency

schemes. We discuss these applications in more detail in §II-A
and discuss Catena’s application-agnostic nature in §VII-3.

4) Evaluation: To demonstrate the feasibility of Catena, we

implement a small-scale prototype in 3000 lines of Java using

the bitcoinj Simplified Payment Verification (SPV) library [23]

(see §VI). Our current prototype does not include a Header

Relay Network (HRN) so it will not scale to too many Catena

clients without stressing Bitcoin’s P2P network. We leave this

to future work. We also analyze the Bitcoin transaction fees

the server has to pay per issued statement and show they

could be anywhere between 7 to 12 US cents per statement.

Since existing systems like Keybase [14] already pay close to

7 US cents per transaction, we believe this cost is practical.

Finally, we use our prototype to add Bitcoin witnessing to

CONIKS [2], a recent key transparency scheme (see §VI-D),

to demonstrate the ease of using Catena.

B. Contributions and Organization

To summarize, this paper makes the following contributions:

• A new, efficient approach to transparency based on wit-

nessing in the Bitcoin blockchain.

• Catena, an append-only log built on top of Bitcoin that

is efficiently verifiable by thin clients, obviating the need

to download the full Bitcoin blockchain.

• A prototype implementation of Catena in Java that can

be used by applications today.

Organization. We motivate Catena and present the Bitcoin

background necessary to understand our design in §II. We

describe our system’s actors, threat model and goals in §III.
We present Catena’s design in §IV and we discuss attacks and

countermeasures in §V. We discuss our prototype implemen-

tation, its overheads and our extension of CONIKS in §VI.

We discuss remaining issues and future work in §VII. We go

over related work in §VIII and we conclude in §IX.
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II. BACKGROUND AND MOTIVATION

In this section, we discuss our motivation for designing

Catena and give the necessary background on Bitcoin needed

to understand Catena’s design.

A. Motivation

Our main motivation for designing Catena is to provide

proactive security to many applications that depend on it.

At the same time, we want to improve previous blockchain-

based transparency schemes [14], [24] whose shortcomings

we describe in §II-A2. Finally, we want a non-equivocation

scheme that does not require many trustworthy parties to come

into existence and that can be deployed today.

1) Key Transparency: Catena can prevent equivocation at-

tacks in current key transparency work [2], [10], [25]–[28] and,

as a result, thwart man-in-the-middle (MITM) attacks. Key

transparency schemes bundle public key bindings together into

a directory implemented using authenticated data structures

[29]. Users are presented with digests of the directory as

it evolves over time and can verify someone’s public key

against a digest of the directory, preventing equivocation

with respect to that digest. The remaining problem for key

transparency schemes is to prevent equivocation about the

digests themselves. For this, current schemes rely on federated

trust [2], any-trust assumptions [27], non-collusion between

actors [27], [28] or on users gossiping between themselves

[2], [11], [25], [26] or with trusted validators [28].

With Catena, we propose using the Bitcoin blockchain as a

hard-to-coerce, trustworthy witness that can vouch for direc-

tory digests. For example, in Certificate Transparency (CT), a

log server would directly witness signed tree heads (STHs) in

Bitcoin via a Catena log. Users can efficiently look up new

STHs in the Catena log and be certain that the log server has

not equivocated about them. We believe this approach could

be more resilient to attacks, as a compromised log server

cannot equivocate without forking the Bitcoin blockchain.

Also, because most transparency schemes publish digests of

the directory periodically, we believe they are amenable to

being secured by Catena.

2) Blockchain-based Transparency: Blockchain-based

transparency schemes [14], [15] are promising due to their

simplicity and resilience to forks, but the overhead of

downloading all blockchain data makes them unusable on

many devices. Catena can decrease the overhead of these

schemes from currently 90 GB [19] to around 35 MB.

For example, Catena can enable thin clients running on

mobile phones to efficiently audit the Bitcoin-witnessed

Keybase public-key directory [14]. Currently, Keybase

publishes digests of their public-key directory in Bitcoin

by creating transactions signed by a predetermined public

key [30]. Keybase clients recognize these transactions and

read directory digests from them (see §VIII for details). The

problem with this approach is that thin clients cannot securely

use Bloom filtering (see §II-B6) to avoid downloading

irrelevant transactions, as an adversary could selectively hide

Keybase transactions and equivocate about the directory (we

explain this attack in §IV-C). Catena prevents this attack and

also has the advantage of not polluting Bitcoin’s unspent

transaction output (UTXO) set [22].

Catena can also be used to improve Blockstack’s thin client

security [15]. Currently, to benefit from Bitcoin’s resilience

against forks, Blockstack clients need to download the entire

blockchain and compute their own consensus hash over all

Blockstack-related operations (see §VIII for details). Block-

stack clients could also choose to trust someone else’s con-

sensus hash and verify public key lookups against it efficiently

using Simplified Name Verification (SNV) [15]. However,

clients still have to download full Bitcoin blocks to update that

consensus hash or continue trusting someone else to update it.

As with Keybase, Bloom filtering cannot be used securely to

filter Blockstack transactions. To fix this problem, we propose

using a Catena log to keep track of Blockstack operations

rather than scattering them through the blockchain. In this

way, thin clients can efficiently download just the Blockstack

operations and quickly compute their own consensus hashes.

One disadvantage of this approach, according to one of the

Blockstack co-founders [31], is that it requires a secret key to

manage the Catena log and would thus “centralize” the system.

To address this, an alternative design would be to introduce

auditors who verify and publish Blockstack consensus hashes

in a jointly-signed Catena log. While this approach centralizes

trust for thin clients, such as mobile phones, it does so in

a more accountable and transparent manner. Specifically, the

auditors can’t equivocate about consensus hashes but can

still publish internally inconsistent [20] consensus hashes (see

§VII-3). However, such misbehavior would be evident in the

Bitcoin blockchain when audited by a full Blockstack client.

3) Software Transparency: Catena can prevent equivocation

in software transparency schemes [32] and thus thwart man-in-

the-middle attacks that try to inject malicious software binaries

on victims’ machines [32]. In fact, Bitcoin developers were

concerned in the past about these kinds of attacks on Bitcoin

binaries [33]. To prevent these attacks, software vendors can

publish digests of new versions of their software in a Catena

log. Customers can then verify any version downloaded from

a vendor’s website against the vendor’s log. Previous work

[17] already highlights the necessity of software transparency

in the face of insecure software update schemes [34], [35], key

loss or compromise [36] and black markets for code-signing

certificates [37].

4) Tor Directory Servers: Catena can be used to prevent Tor

directory servers [12] from equivocating about the directory of

Tor relays. Equivocation attacks are particularly concerning

for Tor because they enable an attacker to easily deanonymize

users by pointing them towards attacker-controlled Tor relays.

In fact, Tor Transparency [13] plans to address these attacks

by publicly logging the Tor directory consensus. In the same

spirit, we propose using Catena to increase the resilience of

Tor Transparency. With Catena, directory servers can publish

the consensus in a Catena log by jointly signing it using a

Bitcoin multisignature [38]. Since Tor does not try to conceal

who is connected to the network [12], we are not concerned
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about Catena’s header relay network learning who is using

Tor. Finally, because Tor consensus is updated every hour, we

believe it should be suitable for embedding in a Catena log.

5) Consensus Amongst n Servers: Catena can be used by

a set of n servers to reach consensus on a log of operations,

where each server manages its own secret key and does not

necessarily trust the other n− 1 servers. In this scheme, each

server submits an operation to the log by creating a Catena

transaction that is spendable by all n servers (see §III-A1).

To disincentivize the other servers from stealing the coins, the

log is funded with small amounts of bitcoins and is frequently

“re-funded” (see §IV-E). This scheme allows all servers to

reach consensus on the log and relies on Bitcoin miners to

decide which server’s operation gets included in the log. To

prevent adversarial servers from monopolizing the log with

their operations by paying higher transaction fees, the servers

can agree on an upper bound on fees.

B. Bitcoin Background

Bitcoin [18], [39]–[41] is a peer-to-peer digital currency that

allows users to mint digital coins called bitcoins and exchange

them without a trusted intermediary. Bitcoin uses a novel

permissionless Byzantine consensus protocol known as proof-
of-work consensus [42] which allows all participants to agree

on a log of transactions and prevent attacks such as double

spending coins. The log of transactions is called a blockchain
and is stored and managed by a peer-to-peer (P2P) network

[43]. A special set of users called miners run Bitcoin’s proof-

of-work consensus protocol, extending the blockchain with

new blocks made up of new transactions. This process, called

mining, is computationally difficult and secures Bitcoin by

allowing everyone to agree on the correct log of transactions

while preventing Sybil attacks [44]. To incentivize Bitcoin

miners to mine, a block reward consisting of newly minted

bitcoins is given to a miner if he mines or “finds” the next

block.

1) P2P Network: Bitcoin uses a peer-to-peer (P2P) network

of volunteer nodes to store the blockchain [43], listen for new

transactions or new blocks, and propagate this information

throughout the network. Users, such as merchants and their

customers, download the blockchain by becoming part of the

P2P network and can then receive or issue Bitcoin transactions.

Miners are also part of the P2P network where they listen for

new blocks and broadcast their own blocks.

2) Blockchain: Bitcoin’s “blockchain” is implemented as

a hash-chain of blocks (see Figure 2) and keeps track of all

transactions in the system, allowing anyone to verify that no

double spends have occurred. A Bitcoin block is made up of

a set of transactions (up to 1 MB) and a small block header
(80 bytes) that contains a hash pointer to the previous block.

The transactions in the block are hashed in a Merkle tree [45]

whose root hash is stored inside the block header. The Merkle

tree allows Bitcoin thin clients (see §II-B6) to obtain efficient

membership proofs that a transaction is part of a block.

3) Decentralized Consensus: To solve the consensus prob-

lem in the decentralized or permissionless setting, where

Fig. 2. The Bitcoin blockchain is a hash chain of blocks. Each block has a
Merkle tree of transactions. Efficient membership proofs of transactions can
be constructed with respect to the Merkle root. Here, tx1 transfers coins from
Alice, Bob and Carol to Dan and somebody else (miners receive a fee of 1
coin). Alice authorizes the transfer of her coins by signing tx1, which has an
input pointing to her coins locked in the 1st output of txa. Bob and Carol
do the same. Similarly, Dan later spends his coins locked in tx1’s 1st output
by signing a new transaction txd with an input pointing to tx1’s 1st output.

participants can enter and leave the protocol as they please,

Bitcoin introduces a novel Byzantine consensus protocol called

proof-of-work consensus [42], [46]–[48]. Though it does so at

a high computational cost, this protocol defeats Sybil attacks

[44] and achieves consensus on the blockchain if 51% of the

computational power amongst participants remains honest.

Participants called miners race to solve computationally-

difficult proof-of-work puzzles derived from the previous

Bitcoin block. If a miner finds a solution, the miner can

publish the next block by announcing it along with the solution

(in reality, the solution is part of the next block) over the

P2P network. Furthermore, this miner will receive a block
reward in bitcoins, an incentive for miners to participate in

the consensus protocol. The puzzle difficulty is adjusted every

2016 blocks based on the inferred computational power of the

miners, or network hashrate, so that a new block is found or

“mined” on average every 10 minutes.

When two miners find a solution at the same time, the Bit-

coin blockchain is said to accidentally fork into two chains. In

this case, Bitcoin peers use the heaviest chain rule and select

the heavier fork as the main chain that dictates consensus. The

weight of a fork is simply the amount of computational work

expended to create that fork. Assuming no difficulty changes,

the heaviest fork is the longest fork. However, across difficulty

changes, it could be that a fork with fewer blocks is heavier

than a longer fork (though this never happens in practice).

During an accidental fork, both forks have the same length

and weight (assuming the fork does not cross a difficulty

recomputation point), so Bitcoin peers adopt the fork they saw

first as their main chain. As more blocks are mined, one of

the forks becomes heavier than the other and is accepted as

the main chain by the whole network [42]. In this case, the

other abandoned fork and its blocks are said to be “orphaned.”

In practice, accidental forks are infrequent and short: no

more than one or two blocks get orphaned. To deal with

accidental but also with malicious forks, most Bitcoin nodes
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only consider a block and its transactions confirmed if 6 or

more blocks have been mined after it.

4) Transactions: Bitcoin transactions facilitate the transfer

of coins between users (see Figure 2). A Bitcoin transaction

has an arbitrary number of transaction inputs, which authorize

the transfer of coins, and transaction outputs (TXOs), which

specify who receives those coins and in what amounts. Natu-

rally, the number of coins locked in the outputs cannot exceed

the number of coins specified in the inputs (with the exception

of so-called “coinbase” transactions, which mint new coins and

have no inputs). A transaction output specifies an amount of

coins and their new owner, most commonly as a public key.

A transaction input refers to or “spends” a previously unspent

transaction output (UTXO) and contains a proof-of-ownership

from that UTXO’s owner, which authorizes the transfer of

those coins. For the purposes of this paper, we only make use

of the case where outputs specify owners using public keys

and inputs prove ownership using signatures.

Importantly, when assembling transactions into blocks, Bit-

coin miners prevent double spends by ensuring that, across

all transactions in the blockchain, for every TXO there exists

at most one transaction input that refers to or spends that

TXO. This invariant is known as the TXO invariant and Catena

leverages it to prevent forks. Finally, a transaction’s fee is the

difference between the coins spent in its inputs and the coins

transferred by its outputs. The fee is awarded to the miner

who mines a block containing that transaction. In theory, the

fee can be zero, but in practice recent contention for space in

the blockchain requires users to pay transaction fees.

5) Storing Data in Transactions: Bitcoin allows users to

store up to 80 bytes of data in transactions through provably-

unspendable OP_RETURN transaction outputs. Importantly,

any coins specified in the output are forever unspendable or

“burned”. For simplicity, Catena uses OP_RETURN outputs to

store application-specific statements in the Bitcoin blockchain

(see §IV). However, there are other ways to store data in

Bitcoin transactions: in the value of transferred coins [49],

in transaction inputs [50], in transaction sequence numbers

[49], or in an output’s public key (either via vanity public

keys [49], fake public keys [30], multisig public keys [38] or

“pay-to-contract” public keys [51]).

6) Thin Nodes vs. Full Nodes: Bitcoin’s P2P network is

made up of full nodes, which download the entire blockchain

and validate all the transactions (see §II-B1) and thin nodes,

which only download small 80 byte block headers and cannot

fully validate transactions. Since full nodes are more expensive

to run (higher bandwidth, computation and space), smaller

devices such as smartphones can run thin nodes instead, also

known as Simplified Payment Verification (SPV) nodes.

Thin nodes verify Bitcoin transactions more efficiently un-

der a slightly stronger assumption about the Bitcoin network.

A thin node considers a transaction valid if it sees a correct

Merkle proof of membership for that transaction in a block.

Furthermore, the more blocks are mined after a transaction’s

block (also known as confirmations), the more confident a thin

node can be that the transaction is indeed valid. Importantly,

thin nodes don’t even verify signatures on transactions: the

membership proof coupled with enough confirmations offers

enough assurance that the transaction was verified by miners

and is thus valid. As a result, thin nodes assume Bitcoin miners

follow their incentives and create correct blocks or otherwise

thin nodes could accept invalid transactions. This assumption

can be reasonable since miners would lose their block reward

if they create invalid blocks (see §II-B3).

Finally, the only way for thin nodes to avoid downloading

unnecessary data is to use a Bitcoin feature called Bloom

filtering [52]. This feature allows thin nodes to only receive

transactions of interest by asking remote peers to filter out ir-

relevant transactions using a Bloom filter [53]. Bloom filtering

is cheap for the requesting thin client but quite expensive for

the servicing full node, which has to load all requested blocks

from disk, pass them through the filter and send filtered blocks

to the thin client.

III. MODEL AND GOALS

In this section we describe our system actors, our threat

model and our design goals.

A. Actors

The main actors in our scheme are the log server, which

appends statements to the log, Catena clients, which verify

new statements and check for non-equivocation, and the header

relay network (HRN), which helps scale Catena to support a

large number of clients (see Figure 3).

1) Log server: A log server manages an append-only log

of application-specific statements. The log server appends

statements to the log by signing Bitcoin transactions with

statement data embedded in them and broadcasting them to

the Bitcoin P2P network. We call these transactions Catena
transactions and defer their discussion to §IV-A2. In this

paper, we will mostly talk about a single log server managing

the log, but by using Bitcoin multisignatures [38], Catena

can support multiple servers who either jointly or separately

append statements to the log. Also, although a log server can

manage many different logs, for simplicity we restrain our

discussion to a single server managing a single log.

2) Clients: Multiple clients connect to the log server and

keep up with new log statements. As depicted in Figure

3, clients fetch Catena transactions from the log server and

verify they have been included in the Bitcoin blockchain. This

verification is done against block headers obtained from the

header relay network (discussed next). Catena clients want

to prevent log server equivocation: a client who is shown a

statement si wants to ensure there is no other contradictory

statement s′i in the log at position i (see §III-D1).

3) Header Relay Network: Due to the low connection

capacity of the Bitcoin P2P network (see §IV-B), Catena

clients use a separate header relay network (HRN) to obtain

Bitcoin block headers (see §IV-B). Otherwise, Catena would

put unnecessary stress on Bitcoin’s P2P network and would

not scale well.
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B. Catena API

Our scheme can be succinctly described as a tuple

〈CreateLog,AppendStmt,VerifyStmt〉 of API calls. For

clarity, we prefix calls with S when they are made by the log

server and with C when they are made by clients.

S.CreateLog(d)→ (sk, pk). Creates an empty log. All future

log statements can be verified against the log’s public key

pk. Embeds some arbitrary data d in the log (e.g., the log’s

name).

S.AppendStmt(sk, si). Appends the statement si to the log,

signing it using sk.

C.VerifyStmt(pk, i, si) → {True,False}. Verifies that the

statement si is contained in the log with public key pk at

position i. Returns true if successful or false otherwise.

Before being called on si, VerifyStmt must first be called

on s1, s2, . . . , si−1, in that order.

To recap, a server creates a new log by calling CreateLog
and appends statements to this log using AppendStmt. Clients

verify each new statement si by calling VerifyStmt in order

for i = 1, 2, 3, · · · .
C. Threat Model

1) Adversarial Log Server: We assume the Catena log

server is compromised or coerced and wants to equivocate

about statements. We assume Catena clients can correctly

obtain the log’s genesis transaction which acts as the log’s

“public key” (see §IV-A1). We note that both Catena and

previous work [2], [10], [17], [25], [27], [28] all rely on

some sort of initial public-key distribution. However, unlike

previous work, Catena can prevent equivocation once a client

has the “public key” or genesis transaction. It’s important to

understand that, similarly to how a signature can only be

verified with respect to a public key, equivocation can only

be prevented with respect to a log identified by some kind of

information, in this case, the genesis transaction.

We stress that Catena’s goal is to prevent equivocation given

a log’s genesis transaction and orthogonal techniques can be

used for distributing the genesis transaction. For instance, the

log’s genesis transaction can be shipped with the application

software that audits that log, similar to how browsers are

shipped with public keys of Certificate Authorities (CAs).

In fact, we argue it might be easier for end-users to verify

the genesis transaction if they know the log’s creation date.

Specifically, users can download just the blocks around that

date and check that no other genesis transaction for the log

exists in those blocks.

2) Proof-of-Work Consensus: Similar to previous work

[14], [15], [24], [54]–[59], we assume that adversaries cannot

break Bitcoin’s proof-of-work consensus and fork the block-

chain. Specifically, we assume that a Catena transaction is

immutable once it has been confirmed by a sufficient number

of blocks, as configured by Catena clients individually (we

recommend at least 6 blocks). We believe it is reasonable

to assume that long malicious forks are unlikely to occur

Fig. 3. The log server broadcasts Catena transactions with statements
embedded in them to the Bitcoin P2P network. Catena clients query the header
relay network for block headers and the log server for statements with proofs
they were witnessed in the Bitcoin blockchain. The header relay network
maintains good connectivity to the Bitcoin P2P network without depleting
the P2P network’s connection pool.

due to the computational difficulty and financial burden of

such an attack. We also assume the Catena log server cannot

collude with large Bitcoin miners, who are not likely to benefit

financially from a forking attack. Finally, we have to assume

Bitcoin’s P2P network is reliable and miners hear about each

other’s blocks quickly, or else proof-of-work consensus could

be easily subverted [42], [60]. We discuss attacks on Bitcoin’s

consensus in more detail in §V.

3) SPV Assumption: Catena clients use thin nodes (see

§II-B6) to efficiently verify the log for non-equivocation. It’s

important to note that thin nodes are less secure than full

nodes against adversarial mining attacks (see §V-C). Also,

thin nodes have to assume miners verify their own blocks

and the blocks of other miners before mining, otherwise thin

nodes risk accepting invalid transactions. Fortunately, Bitcoin

miners have a strong incentive to verify blocks, as they would

lose the block reward if they extend an invalid blockchain.

However, recent work [61] shows that when block verification

is expensive miners have an incentive to skip it. We discuss

such an event that occurred in 2015 in §V-B.

4) Header Relay Network: We trust Catena’s header relay

network to serve Catena clients with the latest Bitcoin block

headers. Similar to a compromised Bitcoin P2P network, a

compromised HRN can eclipse [60] Catena clients and help

adversaries win mining races faster and thus equivocate (see

§V-C). However, such adversaries would need a significant

fraction of mining power to win races fast enough without

Catena clients noticing they are being eclipsed. We discuss

such attacks in §V-E.

D. Goals

Our goals are to prevent equivocation and to do so in

an efficiently-verifiable manner, enabling each user to audit

individually and thus minimizing trust in applications such as

public-key directories.
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1) Non-equivocation: A log server should have a hard time

equivocating about log statements. Catena makes equivocation

in the log as hard as forking the Bitcoin blockchain, which we

believe to be a reasonable amount of protection for many ap-

plications, including public-key directories. If our assumptions

are broken and the Bitcoin blockchain forks, Catena cannot

prevent equivocation but still makes equivocation detectable

once the forks are resolved, similar to previous gossip-based

approaches [2], [11], [25], [26].

It’s important to understand what non-equivocation actually

provides. Non-equivocation does not prevent the adversarial

log server from issuing incorrect statements that break seman-

tics at the application layer. Instead, non-equivocation simply

guarantees that all clients see all issued statements, including

incorrect ones. This allows clients to detect attacks at the

application layer, as we discuss later in §VII-3.

2) Publicly Verifiable: Given a log’s genesis transaction

txgenesis (i.e., its public key), anyone can verify the full

history of statements in that log. Specifically, a client can

obtain all statements 〈s1, s2, . . . , sn〉 in the log and verify

them with respect to txgenesis. Verification here means that

a statement is part of the log at some position i and no

other inconsistent statement at position i exists (i.e., non-

equivocation). In particular, for any statement si, the log server

gives the client a publicly verifiable proof p with respect to the

log’s txgenesis that proves that si is indeed the only statement

in the log at position i.

3) Efficiently Verifiable: Catena clients should be able to

audit logs efficiently without downloading the entire Bitcoin

blockchain. Recent blockchain-based transparency work [2],

[14], [15] is inefficient, requiring auditors to download the

entire blockchain to prevent equivocation (see §II-A2). This

raises the barrier to entry for log auditors, who might have

to outsource auditing or trust the log blindly. In contrast, the

barrier for Catena clients is very low: clients only download

80-byte block headers for each Bitcoin block and 600-byte

Merkle membership proofs for each statement (see §IV-C).

IV. CATENA DESIGN

At a high level, Catena makes equivocation about a log

statement as hard as double spending a Bitcoin transaction

output. The key idea behind Catena is to embed statements

in Bitcoin transactions and have each transaction spend the

previous one. This is a simple but powerful idea because it
forces the log server to double spend a transaction output if it
wants to equivocate, which is notoriously difficult in Bitcoin.

Thus, Catena can offer a strong guarantee to clients that they

have not been equivocated to.

Catena operates very simply, as illustrated in Figure 1.

The Catena log server creates a log by issuing an initial

transaction called the genesis transaction. The server issues

the first statement in the log by creating a new transaction that

spends the genesis transaction and commits that first statement

via an OP_RETURN transaction output (see §II-B5). Finally,

the server can append new statements to the log by creating a

Fig. 4. Equivocating in a Catena log is as hard as double spending in Bitcoin,
which requires forking the blockchain (see §II-B). This is because Catena’s
design requires a new Catena transaction to spend the previous one, which
linearizes the history of statements embedded in those transactions.

new transaction that spends the previously-created transaction

and commits a new statement.

Catena clients first obtain the log’s genesis transaction,

which can be shipped with the higher-level application that

Catena secures (see §III-C1). Then, clients obtain and verify

all Bitcoin block headers from the header relay network

(discussed in §IV-B). Finally, clients can ask the Catena

log server for the statements and verify them against the

genesis transaction and the Bitcoin block headers. Importantly,

because Catena transactions are “chained” (see Figure 4) and

Bitcoin prevents double spends, clients are assured the server

has not equivocated (see §III-D1).

Catena’s overhead is small. For each 32-byte statement, the

server sends over a 235-byte Catena transaction and a Merkle

path of up to 350 bytes proving that the statement is part of

the log. That amounts to around 600 bytes per statement plus

the overhead of downloading all block headers (currently 35

MB), making Catena very cheap in terms of bandwidth.

A. Transaction Format

1) Genesis transaction: Catena logs are identified by a

genesis transaction. This is the first transaction created by

the log server when it starts the log. The genesis transaction

effectively acts as the log’s “public key”: once a client has

the log’s genesis transaction, that client can verify log updates

against it and prevent equivocation. As discussed in §III-C1,

a “public key” such as the genesis transaction is a necessary

element of any system which aims to prevent equivocation.

2) Catena transactions: A Catena log is just a chain of

specially-crafted Bitcoin transactions called Catena transac-
tions (see Figure 1). Our transaction format is simple. First, a

Catena transaction has one input, which spends the previous

Catena transaction in the chain, and extra inputs for “re-

funding” the log (see §IV-E). Second, a Catena transaction has

two outputs. The first output is an unspendable OP_RETURN
output, which commits the log statement, and the second

output is a continuation output, which is spent by the next

Catena transaction’s input. The genesis transaction also has

the same Catena transaction format.

Our transaction format leverages the fact that Bitcoin miners

prevent double spends which, in turn, allows us to prevent
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equivocation about statements (see Figure 4). The key idea

is that a Catena transaction has a single spendable output,

which means Bitcoin miners will ensure only a single future
transaction spends that output (see TXO invariant in §II-B4).

Thus, a Catena transaction can only be followed by another

unique Catena transaction, which allows us to create a linear

history of statements that all Catena clients can agree on.

Catena transactions just transfer coins from the Catena log

server back to itself, committing log statements and paying

fees to Bitcoin miners in the process. Recall from §II-B4 that

a transaction output specifies a coin amount and a public key

that “locks” those coins (i.e., is authorized to spend them

later). In Catena, all transaction outputs are locked by the

same key called the statement key, which is managed by the

log server. This key signs all Catena transactions, including

the statements embedded in them, authorizing the transfer of

coins back to the server. Catena clients can easily obtain the

statement key from the genesis transaction since it is specified

in its continuation output. The server can change the statement

key in future transactions and clients can easily pick up the

new key, but for simplicity we assume it remains the same

across all Catena transactions.

As mentioned before, the log server has to pay fees to Bit-

coin miners to get its transactions included in the blockchain.

We describe how this works in §IV-E and we analyze the

server’s cost per Catena statement in §VI-C1.

B. Header Relay Network

We want to avoid stressing Bitcoin’s P2P network, which

has a limited connection capacity that would be quickly de-

pleted by Catena clients. There are currently around 5500 full

Bitcoin nodes, each by default capable of handling up to 117

incoming connections [43], [62]. Thus, Bitcoin’s P2P network

currently supports at most 643,500 incoming connections at

a single point in time, some of which are already used up

by Bitcoin thin clients for user wallets. Importantly, these

connections need to be long-lived so as to allow Catena clients

to discover and connect to a diverse set of Bitcoin peers. As

a result, if each Catena client were to maintain 8 outgoing

connections to Bitcoin’s P2P network, then Catena would

not scale beyond tens of thousands of clients without putting

significant stress on the Bitcoin network.

To provide scalability, we propose using a header relay

network (HRN) that is well connected to the Bitcoin P2P

network and can serve block headers to hundreds of thousands

of Catena clients. An HRN node operates as a full node

in the Bitcoin P2P network, contributing to its health while

providing an interface to Catena clients for obtaining block

headers fast. However, note that HRN nodes do not mine nor

attempt to reach consensus on block headers: they just gossip

and verify blocks like the rest of the Bitcoin P2P network.

Catena clients trust the HRN to serve them with the latest

Bitcoin block headers. Importantly, clients ask multiple HRN

nodes for block headers to ensure they are not being eclipsed

by a single malicious HRN node. We discuss attacks on the

HRN in §V-E.

A header relay network can be bootstrapped in various

ways. The simplest way is to have a set of volunteer HRN

nodes that act as an extension of the Bitcoin P2P network.

Another way is to rely on current blockchain explorers [63]–

[66] since they are well connected to the Bitcoin network

and already provide public APIs for fetching block headers.

A diverse HRN could be implemented by publishing block

headers across various websites, such as Twitter, Facebook

or GitHub, in a publicly-verifiable manner similar to how

Keybase [14] users publish identity proofs. A peer-to-peer

HRN can be bootstrapped amongst Catena clients themselves.

Catena clients can occasionally fetch block headers from the

Bitcoin P2P network and then distribute them amongst them-

selves. To avoid stressing Bitcoin P2P nodes, each client would

query the Bitcoin P2P network with probability inversely

proportional to the size of HRN (estimated using known

techniques [67]). Finally, Sybil attacks [44] in all these types

of HRNs can be addressed by requiring HRN nodes to “burn”

bitcoins in a publicly-verifiable manner (see §II-B5) and tie

their identity to those burned coins.

C. Auditing a Catena Log

To audit a log, clients download the Catena transaction

chain and verify that transactions are signed and spend each

other correctly using the statement key. Clients first download

and verify block headers from the header relay network

and then download and verify Catena transactions and their

Merkle proofs from the log server. This way, Catena clients

avoid Bloom filtering on Bitcoin’s P2P network, which causes

significant disk activity for full nodes (see §II-B6). Finally,

auditing is cheap for Catena clients as they only download

small transactions and Merkle proofs (600 bytes) and not full

Bitcoin blocks (1 MB).

To verify a new Catena transaction txi, a client checks that:

1) txi is in the correct Catena format.

2) txi is correctly included in a Bitcoin block with a Merkle

membership proof.

3) The first input of txi spends the continuation output of

the previous Catena transaction txi−1.

4) txi is signed correctly with the statement key of the log.

5) txi has a sufficient number of confirmations (we recom-

mend at least 6).

It’s important to understand that without clients verifying

transaction chaining (i.e., step 3 and 4 above), a malicious

log server can equivocate about statements in the log. For

example, consider two Catena clients c1 and c2 which correctly

obtain the genesis transaction txgenesis of the log but do not

verify transactions are chained. In this attack, the malicious

log server issues two Catena transactions that commit two

different statements s1 and s′1 respectively but, importantly,

do not spend the genesis transaction. Instead they spend some

other transactions and get included in the blockchain. The

attack is straightforward: the log server shows client c1 the

transaction for s1 but hides the one for s′1. Similarly, it shows

client c2 the transaction for s′1 and hides the one for s1. As a

result, the log server can easily equivocate to clients who don’t
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verify transaction chaining as they cannot ensure the server is

not hiding an inconsistent statement. To conclude, in Catena,

clients prevent this attack by checking that every statement

they accept is part of a transaction that spends the previous

transaction’s continuation output, chaining all the way back to

the genesis transaction.

D. Blockchain Reorganizations

Like Bitcoin, Catena also needs to deal with small day-

to-day accidental forks or blockchain reorganizations (see

§II-B3). These small forks are automatically resolved by the

Bitcoin network: as more blocks are found, eventually one of

the forks overtakes the other one and becomes the main chain

[42]. To be certain payments are not reversed by these small

reorganizations, Bitcoin merchants only consider a block and

its transactions confirmed if 6 or more blocks are built on top

of it.

Catena also allows clients to set their own application-

specific number of required confirmations before accepting a

statement (a minimum of 6 is recommended). As a result,

Catena makes a trade-off between resilience to forks and

latency of accepting statements. Additionally, as a security

measure against longer accidental forks, Catena clients re-

member recently-issued statements. This way, if a statement is

withdrawn due to a reorganization, Catena clients can ensure

the reissued statement matches the previously seen one.

E. Paying for a Catena Log

A Catena log server must pay Bitcoin transaction fees to

start a log and append statements to it. Initially, the Catena

log server must obtain some bitcoins (BTC), perhaps from a

Bitcoin exchange [68]. Then, the server can issue the log’s

genesis transaction and pay for its fee. The server locks

some coins in the genesis transaction’s continuation output

which can “fund” future log transactions. To issue the first

statement, the server signs a new Catena transaction with the

statement key. This transaction commits the statement (via

an OP_RETURN output), transfers the genesis transaction’s

coins back to the log server and leaves a small fee for the

miners. As before, the remaining coins are locked in this

new transaction’s continuation output. The server repeats this

process for every new statement, spending the coins locked

in the previous Catena transaction, until it runs out of funds.

We analyze the costs of running a Catena log in terms of

transaction fees in §VI-C1.

To “re-fund” the chain, Catena transactions can have ad-

ditional inputs that lock extra coins in that transaction’s

continuation output (see Figure 5). Importantly, these inputs

can only be used to add extra funds and cannot be used to

maliciously join two different logs. This is because we restrict

Catena transactions to only use their first input to spend a

previous Catena transaction. Thus, clients can easily detect

if a Catena transaction tries to point to two distinct previous

Catena transactions by using additional inputs.

Fig. 5. A Catena chain can be “re-funded” by allowing the next transaction
in the chain to have additional inputs that lock extra coins in that transaction’s
continuation output. In this example, Catena transactions pay .5 BTC as a fee
so to ensure tx8 does not run out of coins we “re-fund” it using extra inputs.

V. ATTACKS

In this section we describe attacks on Bitcoin that can

translate into attacks on Catena and explain what Catena

clients can do to protect themselves. We also describe attacks

launched by a compromised log server or a compromised

header relay network.

A. Log Server Attacks

An attacker might compromise the Catena log server and

steal its statement key. In this case, the attacker can issue

his own statements, but he cannot fork the log to equivocate

about statements. That is, all clients will see all attacker-issued

statements and can check their correctness at the application

layer (see §VII-3). The attacker can also steal the server’s

Bitcoin funds. However, we stress that Catena’s main goal is

to prevent equivocation in the face of stolen key attacks and

orthogonal techniques can be used to secure the Bitcoin wallet

of Catena servers [69].

Once the attacker has the statement key, he can also abruptly

“end” the log by issuing a transaction that is not in the correct

Catena format. To recover from such an attack, the Catena

log server has to abandon that log and start a new one with

a new genesis transaction. In this sense, Catena performs

no worse than previous systems, which would also have to

advertise a new public key to log clients if all log server

secrets were compromised. A compromised log server could

also hide away transactions from Catena clients. As a result,

Catena clients would lose freshness and not be aware of the

newest issued statements. However, as discussed above, the

log server cannot equivocate about statements as that would

require double spending a transaction in Bitcoin.

B. Accidental Forks

Accidental forks in the Bitcoin blockchain pose a threat to

Catena clients as adversaries can double spend Catena trans-

actions across forks and equivocate. In the past, Bitcoin has

had three major accidental forks. Two of them, in August 2010

and March 2013, were due to bugs in the bitcoind daemon

[70], [71] and one of them, in July 2015, was caused by at least

one irrational miner [72], which we expand on below. All of

these forks orphaned a significant number of blocks, enough

to unconfirm previously confirmed transactions. Moreover,

during the March 2013 fork [71], an honest-but-curious user
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attempted a double spend attack on a Bitcoin exchange which

succeeded. However, the attacker quickly returned the funds

to the exchange [73].

We stress that accidental forks have been rare and are thus

outside of our threat model. Furthermore, clients find out

about forks via the header relay network and refuse accepting

statements until forks are resolved, which gives them an extra

line of defense. Thus, an adversary who wants to exploit an

accidental fork has to compromise the header relay network

to hide one of the forks (or compromise the Bitcoin P2P

network instead). As a last line of defense, Catena clients can

wait for additional confirmations to protect themselves against

accidental forks at the cost of additional latency.

1) “SPV” Mining: The July 2015 fork was caused by at

least one irrational miner who mined for over an hour on top of

an unverified chain [74]. “SPV” normally stands for Simplified

Payment Verification as discussed in §II-B6, but here it is used

to indicate that miners are not verifying the block they are

mining on. SPV mining is used by some rational miners as a

way to lower their rate of orphaned blocks by starting to mine

earlier [61]. However, when performed without a timeout, this

strategy is actually irrational as it can leave miners mining on

an invalid fork indefinitely. As we explain below, this is what

happened in July 2015.

Instead of waiting to hear about a solved block on the P2P

network, SPV miners obtain a solved block hash directly from

other mining pools via their Stratum mining API [75]. Then,

they mine on top of that hash, assuming its corresponding

block is correct and expecting to eventually receive the full

block via the P2P network. Unfortunately, if the block is in-

valid, the P2P network will not waste bandwidth broadcasting

it. Thus, SPV miners will never hear about an invalid block,

which is why they need to time out after a while and switch to

mining on the correct chain. Otherwise, SPV miners could be

left mining on top of an invalid chain forever. This is exactly

what happened in July 2015, when several miners did not

implement timeout logic and went on to mine several invalid

blocks, losing over $50,000 in mining rewards [72].

SPV mining remains a concern for the Bitcoin network.

However, future Bitcoin improvements should further decrease

the orphan rate and steer miners away from this unhealthy

mining strategy. These could be improvements in block prop-

agation delay and block verification speed as well as new fast

block relay networks, such as Falcon [76] and FIBRE [77].

C. Adversarial Mining Attacks

A sufficiently powerful adversary can mine his own side

chain and fork the Bitcoin blockchain, enabling him to double

spend transactions across the two forks. Unfortunately, thin

clients are more vulnerable than full nodes to a generalized

“Vector76” attack where the attacker mines a 6-block long side

chain that is at least one block longer than the main chain

[78]. The side chain’s first block contains a transaction tx
with k confirmations which the attacker will later replace with

another transaction tx′ double-spending the same output(s)

as tx. When the attacker successfully mines the side chain,

he shows the side chain only to the victim, who will accept

tx. Then, the attacker ceases to mine, issues tx′ to the main

chain and lets the main chain win the race, confirming tx′ and

unconfirming tx.

Full nodes are more resilient to this attack because they can

relay the attacker’s side chain to the rest of the network, while

thin clients cannot. Thus, with full nodes, the attacker’s side

chain could be adopted by the network, which would prevent

the double spend. However, we stress that with proper timing,

the attacker can also trick full nodes if he is able to propagate

his side chain to the victim at the same time as the same-length

main chain is propagating to the rest of the network [78].

Similar to previous work [14], [15], [24], [54]–[59], we ex-

clude adversaries who can mine a 6-block long side chain from

our threat model because they are extremely powerful and so

far they have not been observed in practice. These adversaries

can break not only thin nodes but also full nodes with proper

attack timing. The main countermeasure against these attacks

is to simply wait for more confirmations, which makes the

attacker’s job more difficult. Another countermeasure is for

Catena clients to accept a block header only after hearing

about it from multiple sources, so as to ensure the attacker’s

side chain is seen by the whole Bitcoin P2P network.

D. Bitcoin P2P Network Attacks

An attacker can “eclipse” nodes on the P2P network and

withhold newly mined blocks from them via Sybil attacks [44]

and so-called eclipse attacks [60]. For example, an attacker

who eclipses a Catena client can increase their chances of

succeeding at an adversarial mining attack. Even worse, an

attacker who eclipses Bitcoin miners can double spend without
adversarially mining by simply preventing miners from seeing

each other’s blocks. Fortunately, eclipse attacks on miners have

not been observed yet in the wild and it is not clear that

they could remain undetected for long. First, countermeasures

against eclipse attacks have been already implemented in

Bitcoin’s P2P network code. Second, mining pool operators

would quickly notice the fork by an increase in their fraction

of mined blocks. Third, eclipse attacks could be detected faster

in the future if miners also broadcast “status reports:” block

headers that are below the difficulty target but are sufficiently

difficult to give information about how much mining power is

behind a fork [79]. Finally, block relay networks such as the

Bitcoin Fast Relay Network (FRN) [80], Falcon [76] or FIBRE

[77] are being deployed or are already deployed between

Bitcoin miners, making eclipsing miners much harder.

A more powerful attacker could simply Sybil-attack Bit-

coin’s P2P network, which would constitute a break of Bitcoin

itself and, if practical, would be a concern for both Bitcoin and

Catena. We plan on investigating to what extent a Sybil attack

can partition the Bitcoin P2P network in future work.

E. Header Relay Network Attacks

A sufficiently powerful attacker who can adversarially mine

and who controls the header relay network (HRN) could

equivocate to a Catena client. First, the attacker controlling
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the HRN eclipses the client from the Bitcoin network, hiding

all newly-mined blocks from the client. Second, the attacker

adversarially mines a sufficiently long side chain that confirms

some fake statement si. Depending on the attacker’s mining

power, this could take days or weeks, which means the victim

would become suspicious, as they are not seeing any mining

activity. When done, the attacker shows this side chain to the

victim who will accept si. Finally, the attacker stops eclipsing

the victim and shows them the main chain that confirms an

inconsistent statement s′i and unconfirms si. Importantly, even

without an HRN in our design, this attack would be possible

via an adversarial Bitcoin P2P network [60].

Fortunately, this attack can be easily detected by Catena

clients if they use their local time to compute the rate at

which blocks are mined and compare it to the normal Bitcoin

rate while accounting for variance in the time between blocks.

However, such heuristics for detecting attacks are beyond the

scope of our work, so we defer them to future work. Finally,

note that a more powerful attacker could leverage control of

the HRN network to make generalized “Vector76” attacks

more likely to succeed (see §V-C). Specifically, as he gets

closer to successfully mining the 6-block long side chain, the

attacker could eclipse the victim, which effectively buys him

some extra time to win the race against the Bitcoin network. As

before, such a powerful attacker could also pull off this attack

using Bitcoin’s P2P network should our design not require an

HRN. The same countermeasures as discussed above and in

§V-C could be used to prevent this attack.

VI. PROTOTYPE AND EVALUATION

We implemented a Catena prototype in Java using the

bitcoinj [23] library in 3000 lines of code, as measured with

the sloccount tool. Our code is available on GitHub:

https://github.com/non-equivocation/catena-java

Our prototype implements a Catena log server and a Catena

client, both operating as thin nodes on the Bitcoin network, but

does not implement a header relay network (HRN). Instead, in

our first implementation, Catena clients use only the Bitcoin

P2P network to fetch both block headers and fetch Catena

transactions with their associated Merkle proofs. In a future,

more scalable implementation, we plan on fetching transac-

tions and Merkle proofs from the log server and on using a

header relay network for downloading block headers. Next, we

discuss our implementation and its internal API, which can be

used to implement Catena’s API from §III-B.

A. Catena Log Server

The log server manages the statement key used to sign

new Catena statements (see §IV-A2) and a set of funding
keys used to “re-fund” a Catena log (see §IV-E). The server

provides an appendStatement(s) API for issuing a statement

s, which abstracts the Bitcoin layer away from applications.

Though currently not implemented, the server should “re-

fund” the chain automatically assuming there are sufficient

funds controlled by the funding keys.

B. Catena Log Client

The client connects to the Bitcoin P2P network and sets a

Bloom filter [53] on all its connections to filter out irrelevant

transactions. This way, Catena clients only receive server-

issued Catena transactions (see §II-B6) and save orders of

magnitude in bandwidth. Recall that Catena chains together

transactions and clients verify this, thereby preventing ma-

licious P2P nodes from equivocating about statements (see

§IV-C). While additional bandwidth will be consumed by

small blockchain reorganizations (see §IV-D), this amount

should be negligible.

Catena clients expose an onStatementAppended(s) API

that notifies the higher level application of newly issued

statements that have sufficient confirmations. Applications

are notified about statements in the order they were issued,

making it easy to verify each statement for application-

specific invariants (see §VII-3). If the Catena log is caught

equivocating, the Catena client notifies the application via an

onEquivocation(s, s′) API that includes signatures on the two

inconsistent statements s and s′ and thus offers a publicly-

verifiable non-repudiable proof of equivocation.

Certain applications might want to be made aware about

the stability of Bitcoin’s consensus. For this, we provide an

onReorganize() API that notifies applications about blockchain

reorganizations with information about forks and the number

of orphaned blocks. Applications can use this information to

infer whether the Bitcoin network is under attack, but we leave

this to future work.

If bigger accidental or malicious forks should occur, they

might unconfirm previously-confirmed Catena transactions.

Even though such events are outside of our threat model,

Catena still notifies applications about statements that were

unconfirmed via an onStatementWithdrawn(s) API so they

can decide how to proceed.

C. Costs and Overheads

In this subsection, we discuss the financial cost of running a

Catena server, the overheads involved for clients and servers,

and Catena’s scalability.

1) Transaction Fees: Transaction fees in Bitcoin vary with

contention for space in the blockchain (see Figure 6) and so

far have not been prohibitive for Bitcoin users. For instance,

Bitcoin transactions currently pay a fee of 70 satoshis per byte

to get included in the blockchain within the next block [82] (1

satoshi = 10−8 BTC). For a 235-byte Catena transaction that

commits a statement consisting of a 256-bit SHA-256 hash, the

fee would be 16,450 satoshis or 12 US cents per statement (on

November 2016, 1 BTC = $706.54). If a statement is issued

every 10 minutes, the cost per day would be less than 17.5

USD, which we believe is reasonable. For example, this cost

is not much higher than Keybase’s cost [14], which issues

statements less often (every 6 hours), paying a smaller fee of

10,000 satoshis or 7 US cents per transaction [83].

2) Overheads: Catena’s CPU overhead is insignificant. A

Catena log server can issue at most one statement per Bitcoin

block, so it only has to perform one signature every 10
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Fig. 6. This graphs shows the minimum transaction fee (in satoshi/kB) that guarantees a transaction will be included in the blockchain within k blocks (for
k = 1, 2, 3, 6) with 90% probability (modeled using Feesim [81]). Fees tend to increase with contention for space in the Bitcoin “mempool” of unconfirmed
transactions and transactions with higher fees get included in the blockchain faster. 1 satoshi = 0.00000001 BTC = 10−8 BTC and 1 kB = 103 bytes.

minutes. Similarly, Catena clients only verify a transaction

every 10 minutes for each log they audit, which adds virtually

no overhead. Finally, verifying the proof-of-work in block

headers adds insignificant overhead.

Catena clients need a small, constant amount of storage

to recompute the Bitcoin difficulty and handle blockchain

reorganizations. To recompute the difficulty every 2016 blocks,

Catena clients and servers need to store the last 2016 block

headers of the blockchain, which are 80 bytes each. To prevent

equivocation about withdrawn statements during blockchain

reorganizations (see §IV-D), Catena clients remember the past

100 statements issued by the server (no more than 80 bytes

each due to OP_RETURN limits; see §II-B5). Here we assume

that no Bitcoin fork, whether accidental or malicious, will be

longer than 100 blocks. Thus, Catena’s storage cost for both

clients and servers is smaller than 200 KB.

Catena demands a small amount of bandwidth from clients

and a larger amount from servers who have to serve statements

to clients. First, servers and clients pay an initial cost to sync

all the blockchain headers (currently 35 MB). Servers and

clients need to download all the headers so as to ensure the

chain is sufficiently “heavy” and is thus the correct chain (see

§II-B3). Once this is done, Catena clients need to sporadically

connect to the header relay network to check for new block

headers and connect to the log server to fetch new statements.

The required bandwidth for clients is less than 1 KB every 10

minutes: 600 bytes for statements and Merkle proofs and 80

bytes for each block header, possibly requested from multiple

HRN nodes. In contrast, the server needs bandwidth linear in

the number of Catena clients, since it serves every statement

to each client.

3) Scalability: We believe Catena can scale easily if the

header relay network distributes block headers and the Catena

log server distributes statements and proofs. However, our

current implementation based on Bitcoin’s P2P network will

not scale beyond tens of thousands of Catena clients without

putting significant stress on Bitcoin. As discussed in §IV-B,

there simply aren’t enough connections available in the Bitcoin

network to support a large number of Catena clients. In

addition, our current implementation relies on disk-intensive

Bloom filtering (see §II-B6). We stress that these are current,

surmountable limitations of Bitcoin that all thin blockchain-

based applications need to deal with, not just Catena.

D. Preventing Equivocation in CONIKS

To demonstrate Catena’s applicability to key transparency

schemes, we modified CONIKS [2] to publish directory digests

in a Catena log so as to prevent a malicious provider from

equivocating about its public-key directory. Our modified

CONIKS is as hard to fork as Bitcoin, which we believe

makes CONIKS more resilient to attacks. Our changes to

CONIKS are minimal, consisting of 66 new lines of code for

the CONIKS server and 89 new lines of code for the CONIKS

test client. (We changed Java source files, project files and

configuration files.)

A typical CONIKS provider advertises the root hash of

a prefix Merkle tree periodically to CONIKS clients. This

root hash is signed and is referred to as a Signed Tree Root

(STR). To prevent impersonation, clients have to gossip STRs

amongst themselves or with different providers. Our modifica-

tion of CONIKS removes the need for gossiping by witnessing

STRs in the Bitcoin blockchain using a Catena log. This allows

all CONIKS clients to agree on the same history of STRs. We

lowered the frequency at which providers publish STRs from

once per minute to once per ten minutes to coincide with the

frequency of Bitcoin blocks. We also modified the CONIKS

test client to listen for Bitcoin-witnessed STRs. However,

because the provided test client is not fully implemented to

keep track of STRs, more changes to CONIKS, not Catena,

are needed to actually prevent equivocation.

Catena does not change CONIKS’s public-key distribution

assumptions. CONIKS assumes that clients have a way of

obtaining the public keys of providers. Similarly, our Bitcoin-

witnessed CONIKS assumes that clients have a way of ob-

404



taining the “public keys” for the Catena logs of providers.

Specifically, our “public key” is the log’s genesis transaction

(see §IV-A1). We commit the old public key of the provider

in the auxiliary data of the genesis transaction (see §III-B).

CONIKS clients need this public key to verify CONIKS server

replies to their queries.

VII. DISCUSSION AND FUTURE WORK

1) Building Catena on Top of Bitcoin: We chose to design

Catena on top of Bitcoin because of Bitcoin’s resilient proof-

of-work consensus [42] and its real-world deployment. This

makes Catena-enabled applications easy to deploy (no need

to wait for trustworthy parties to come into existence) and

expensive to attack (adversaries have to double spend in

Bitcoin). Still, it’s important to note that Bitcoin’s security as

a “black box” consensus protocol remains an open problem.

For example, it can be difficult to dismiss externally-motivated

adversaries who are well-incentivized to maliciously mine and

double spend. Finally, we note that Catena could also be built

on top of other blockchains such as Ethereum [84], but we

believe Bitcoin’s security currently outmatches the security of

all other blockchains.

In particular, we avoided Ethereum for a few reasons.

First, we believe Bitcoin is a more mature ecosystem to base

applications on, given the many blockchain-based apps built

on top of it [14], [15], [85]–[87]. Second, Ethereum plans

on transitioning to a proof-of-stake consensus algorithm [88]

called Casper [89] that could change the trust assumptions

behind thin nodes. For instance, an additional assumption

in Casper is that clients who are offline for too long can

authenticate a list of “bonded” validators out-of-band [89].

Third, recent work shows that rational Ethereum miners have

an incentive to skip verifying “expensive” blocks that other

miners constructed maliciously [61]. In Bitcoin, such attacks

are less practical since block verification does not involve

executing arbitrarily complex smart contracts.

2) Censorship: Catena’s liveness depends on the

censorship-resistance of the Bitcoin network. Malicious

miners can censor Catena transactions and exclude them

from the Bitcoin blockchain, which reduces the liveness of a

Catena log. We stress, however, that Bitcoin’s decentralized

consensus does provide some degree of censorship-resistance

by allowing any honest miner to join the protocol, eventually

resulting in an honest, non-censoring, majority. We also

stress that censorship attacks have not been observed in

practice and we leave a more careful analysis of Bitcoin’s

censorship-resistance to future work.

3) Historical Consistency: Catena is application-agnostic

and does not guarantee application-specific internal consis-
tency [20] of statements, which needs to be checked at the

application layer. Instead, Catena only guarantees historical
consistency [20] of statements, enabling applications to later

check the correct semantics of statements. As an example,

Catena ensures that all clients of a key transparency scheme

such as Certificate Transparency (CT) [10] see the same

history of signed tree heads (STHs). However, clients still

have to check the internal consistency of the STHs to detect

impersonation. For instance, Bob’s client will want to make

sure that across all STHs, his public key has not been changed

maliciously, and thus he hasn’t been impersonated.

It is important to understand that without historical consis-

tency, any guarantees of internal consistency are meaningless.

This is exactly why we designed Catena. For instance, a

malicious CT log server [10] can equivocate, giving Alice

a signed tree head (STH) with her real public key and a

fake public key for Bob, while giving Bob a different STH

with his real public key and a fake public key for Alice.

Alice and Bob both verify their own STHs as being internally

consistent and believe they were not impersonated. However,

because Alice and Bob have no historical consistency, they

are looking at different STHs, which means the internal

consistency guarantees they have are essentially useless. In

this case, Alice and Bob are being impersonated even though

internal consistency tells them they are not.

VIII. RELATED WORK

Tamper-evident logging [20] allows auditors to ensure a

log’s correct behavior. A history tree is used to store events

in the log, check their membership and prove that a new

version of the log is consistent with a past version (i.e., no past

events have been removed or modified). Unfortunately, tamper-

evident logging does not address equivocation attacks, assum-

ing auditors can gossip to detect forks. Catena offers the same

semantics as tamper-evident logging (i.e., membership proofs,

consistency proofs) but also prevents equivocation. However,

because the Bitcoin blockchain is implemented as a hash-

chain, Catena’s membership and consistency proofs are linear,

not logarithmic, in the log’s size. In practice, a Catena log can

commit root hashes of a history tree and prevent equivocation

about the tree, while preserving logarithmic membership with

respect to a root hash and logarithmic consistency proofs

between two consecutive root hashes.

Proofs of proofs of work (PPOW) [90] enable thin clients

to verify the “weight” of a blockchain (see §II-B3) by down-

loading only O(log n) rather than all n block headers. Should

Bitcoin adopt this interesting technique, Catena clients could

leverage it to download fewer block headers from the HRN.

First, we can leverage PPOWs to decrease the bootstrapping

bandwidth of Catena clients from O(n) to O(log n) when

initially syncing with a blockchain of n blocks. Second, we

can leverage PPOWs to skip downloading some of the block

headers between two statements si and si+1, should there

be a large number of blocks between consecutive statements.

However, we cannot leverage PPOWs to skip downloading

Catena transactions and their corresponding block headers.

This is because Catena clients need to verify that all Catena

transactions are chained correctly (see §IV-C).

Peter Todd’s uniquebits [91] allows users to publish signed

hashes of arbitrary data in the Bitcoin blockchain for later

auditing. At a high level, the scheme commits the signed

data d and PGP fingerprint information about the signer by

leveraging both “Pay-to-Script Hash” (P2SH) transactions [50]
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and “fake” public keys (see §II-B5). Unfortunately, uniquebits

does not address the equivocation problem: the scheme cannot

efficiently prevent a signer from publishing two pieces of data

d and d′ and equivocating to thin clients about which piece was

signed. Similarly, CommitCoin [59] uses the Bitcoin block-

chain to “timestamp” commitments and prove they were made

at a certain time, but cannot efficiently prevent equivocation.

Concomitant with the publication of our online version of

Catena [92], Peter Todd independently proposed a Bitcoin-

based log that prevents equivocation using single-use seals
[93]. Single-use seals generalize the concept of spending a

transaction output in Bitcoin while committing some arbitrary

data in the process. The transaction output waiting to be spent

is the identifier of the single-use seal, while the transaction

that spends that output and commits some arbitrary data

(see §II-B5) is known as the closing transaction. Importantly,

when a seal is “closed” by spending its output via a closing

transaction, another seal can be specified as the arbitrary

data in that transaction. This is similar to how, in Catena, a

new transaction spends the previous transaction’s continuation

output (equivalent to “closing a seal”) and creates a new

continuation output (equivalent to specifying a new seal).

As opposed to Catena, single-use seals provide a certain

degree of censorship-resistance because the identifier of the

next seal can be hidden from miners by committing to it

in the closing transaction. In contrast, with Catena, the next

continuation output (see §IV-A2) is always public and known

by miners, so they can censor transactions that try to spend it.

However, Catena is more efficient than single-use seals, since

each statement requires a single transaction to be posted on

the blockchain, while single-use seals require two transactions

(one transaction for the seal’s identifier plus another closing

transaction). Furthermore, although thin client verification of

a log would be possible with single-use seals, the details of

this are never considered in depth [93], a contribution that

Catena makes. Finally, to the best of our knowledge, single-

use seals have not been implemented yet, making Catena the

first implementation of an efficient Bitcoin-based log.

Keybase [14] and Blockstack [15], [24] use the Bitcoin

blockchain to prevent equivocation but do so inefficiently,

requiring clients to run a full Bitcoin node. Keybase period-

ically publishes the Merkle root of its public-key directory

by committing it in transactions signed under a fixed public

key known by Keybase clients [83]. Specifically, Keybase

stores the Merkle root in the transaction’s output as a “fake”

public key (see §II-B5). Unfortunately, this approach does not

allow clients to efficiently and correctly obtain all Keybase-

issued transactions using Bloom filtering (see §II-B6). This is

because Bitcoin P2P nodes can selectively hide transactions

from clients and show different transactions to different users,

thus equivocating about the Keybase directory (see §IV-C).

In Catena, a new transaction always spends the previous

one, creating a unique chain due to the difficulty of double

spending. As a result, all Catena clients see the same history of

transactions, implicitly agreeing on the history of statements.

In Blockstack [15], users submit their own operations (e.g.,

“register public key” or “update public key”) to the Bitcoin

blockchain by creating transactions that include these opera-

tions in an OP_RETURN output. Blockstack nodes download

the full Bitcoin blockchain and filter these Blockstack-specific

transactions (recognized via a magic byte in the OP_RETURN
data), accumulating the Blockstack operations into a consensus
hash [15]. Importantly, thin clients can query Blockstack

nodes for public keys (e.g., “look up Alice’s public key”)

and authenticate their responses against a consensus hash.

Unfortunately, because thin clients cannot download the entire

blockchain, they would have to obtain consensus hashes from

a trusted entity which, if compromised, could equivocate about

these hashes. In this sense, Catena could make equivocation

about consensus hashes as hard as forking Bitcoin, thereby in-

creasing Blockstack’s thin client security (discussed in §II-A2).

Coin coloring schemes [85]–[87] leverage the Bitcoin block-

chain to enable the secure issuance and transfer of assets

different than bitcoins, such as smart property, stocks or bonds

[94]. The key idea is that a set of coins locked in an output can

be assigned a static color which can be correctly maintained

as those coins change hands. To prevent double spending

of colored coins, coloring schemes also leverage Bitcoin’s

security against double spends along with some additional

verification by “color-aware” wallets. The overhead of these

schemes is similar to Catena’s, since “color-aware” (thin)

wallets only need to keep track of transactions that affect an

asset (e.g., reassigned ownership).

Coin coloring schemes and Catena both rely on the difficulty

of double spending but do so to solve slightly different

problems. Specifically, while coin coloring schemes prevent

equivocation about the never-changing color of a coin, Catena

prevents equivocation about an ever-growing log of statements.

While some coloring schemes support committing arbitrary

data in their transactions [95] and could be adapted to prevent

equivocation, to the best of our knowledge, this has not yet

been done. Thus, we believe Catena to be the first system that

solves the equivocation problem efficiently using Bitcoin.

Non-equivocation contracts [96] disincentivize equivocation

by penalizing it with monetary loss. Specifically, if an author-

ity equivocates, its Bitcoin secret key, which locks some funds,

is implicitly revealed via a mechanism similar to double-

authentication-preventing signatures (DAPS) [97]. As a result,

anybody who detects equivocation can spend those funds. The

advantage of non-equivocation contracts is that statements are

not included in the Bitcoin blockchain so they can be issued

faster than in Catena. This enables interesting applications,

such as asynchronous payment channels [96], which are not

possible with Catena. However, as opposed to Catena, non-

equivocation contracts only disincentivize equivocation and do

not necessarily prevent it. For example, an outsider who steals

the authority’s secret key and wants to harm the authority

is actually incentivized to equivocate and can easily do so.

With Catena, even with a stolen secret key, an outsider cannot

equivocate without forking the Bitcoin blockchain.

CoSi [17] prevents equivocation by requiring a threshold

number of “witnesses” to also verify and sign an authority’s
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statements. Depending on the application, these witnesses

could also check the internal consistency of statements (see

§VII-3). In contrast, Catena prevents equivocation by assuming

its authority, Bitcoin, is trustworthy, without relying too much

on the header relay network (HRN) to keep it honest (see

§V-E). Both CoSi and Catena make assumptions about connec-

tivity of participants. CoSi requires a relatively well-connected

set of witnesses for its tree broadcast scheme while Catena

requires the Bitcoin P2P network not to be easily partitioned.

One drawback of CoSi is that it requires an admission control

process for witnesses to prevent Sybil attacks [44]. As a result,

finding witnesses who are reputable, trustworthy entities could

be hard. In contrast, Catena could be easier to deploy since it

only relies on the Bitcoin blockchain as a single trustworthy

witness and on a header relay network that can be bootstrapped

using existing blockchain explorers (see §IV-B).

Like CoSi, Catena can offer both “proactive” and “retroac-

tive” security [17]. In particular, Catena can be used retroac-

tively by clients to validate previously accepted statements,

or it can be used proactively before accepting a statement

as valid. Unlike CoSi, Catena suffers a higher delay when

used proactively because clients have to wait for sufficient

confirmations before accepting a statement. This is a cost

Catena pays for using a decentralized consensus network as

its only witness. However, we stress that not all applications

care about this cost. In particular, Catena is suitable for

key transparency schemes, Tor directory servers and software

transparency schemes, which all perform batching and update

their state infrequently.

Key transparency schemes can detect equivocation using

gossip amongst users [2], [11], [25], [26], gossip between

users and trusted validators [28], federated trust [2], any-trust

assumptions [27] or non-collusion between actors [27], [28].

Catena instead relies on the resilience of Bitcoin’s proof-

of-work consensus to prevent, not just detect, equivocation.

Our approach can provide proactive security [17] at the

cost of publishing new statements every 10 minutes with an

average 60-minute confirmation latency (if clients wait for 6

confirmations). Alternatively, Catena can provide retroactive

security with no latency. We believe Catena can strengthen

key transparency schemes because it enables anyone to audit

efficiently for non-equivocation. We also believe Catena’s

approach to non-equivocation is simpler and more trustworthy

due to the decentralized nature of Bitcoin’s consensus protocol.

EthIKS [98] uses the Ethereum blockchain [84] to prevent

equivocation in CONIKS [2], a key transparency scheme that

enables users to efficiently monitor their own public key

bindings. EthIKS implements CONIKS as a “smart contract”

in the Ethereum blockchain and relies on Ethereum miners

to enforce CONIKS security invariants. Like Catena, EthIKS

also efficiently leverages proof-of-work consensus within a

cryptocurrency to prevent equivocation in the log. However,

different from Catena, EthIKS guarantees internal consistency

(see §VII-3) of the CONIKS log, though this comes at the

expense of additional Ethereum transaction fees paid by the

EthIKS log server [98]. In contrast, Catena clients have to

check each log statement for internal consistency themselves,

incurring an overhead linear in the number of statements in the

log. For certain applications where internal consistency checks

are not expensive (e.g., monitoring your own binding in a

public-key directory) and minimizing server costs is a priority,

Catena could be better suited. However, when server costs are

not a concern (e.g., costs can be shifted to users), Ethereum-

based approaches like EthIKS could be better suited.

IX. CONCLUSION

We design and implement Catena, an append-only log that

is as hard to fork as the Bitcoin blockchain but efficient to

verify by thin clients such as mobile phones. Specifically, in

Catena, an attacker can equivocate if and only if he can double

spend Bitcoin transactions, which is notoriously difficult due

to Bitcoin’s proof-of-work consensus. The key idea behind

Catena is to chain OP_RETURN transactions together by

having a new transaction spend the previous one, making

equivocation in the log as hard as double spending in Bitcoin.

Catena can be used to prevent equivocation in key trans-

parency schemes, paving the way for more trustworthy public-

key directories. Catena can also be used as a public log for

Tor Consensus Transparency [13], as a software transparency

scheme to prevent malicious software updates or as a consen-

sus log for mutually distrusting participants. Catena’s over-

heads are small. Clients only need to download 80-byte block

headers and 600-byte statements, a significant improvement

over previous blockchain-based transparency schemes [14],

[15], [24] which currently require auditors to download 90

GB of blockchain data [19]. We develop a prototype of Catena

in Java and apply it to CONIKS, a key transparency scheme,

demonstrating Catena’s feasibility. Next, we plan on extending

our prototype to scale for popular applications.

Our main reason for designing Catena is to prevent equiv-

ocation in compromised online services. In that sense, we

believe Catena can bring Bitcoin’s non-equivocation guaran-

tees to many important applications today. In particular, we

hope Catena can be adopted by secure messaging apps such

as Signal [99] or public-key directories such as Keybase [14],

giving end users stronger guarantees about non-equivocation.
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[43] J. A. Donet Donet, C. Pérez-Solà, and J. Herrera-Joancomartı́, “The
Bitcoin P2P Network,” in Financial Cryptography and Data Security
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