
Protecting Bare-metal Embedded Systems With
Privilege Overlays

Abraham A. Clements∗, Naif Saleh Almakhdhub†, Khaled S. Saab‡, Prashast Srivastava†,
Jinkyu Koo†, Saurabh Bagchi†, Mathias Payer†

∗Purdue University and Sandia National Laboratories, clemen19@purdue.edu
†Purdue University, {nalmakhd, srivas41, kooj, sbagchi}@purdue.edu, mathias.payer@nebelwelt.net

‡Georgia Institute of Technology, ksaab3@gatech.edu

Abstract—Embedded systems are ubiquitous in every aspect of
modern life. As the Internet of Thing expands, our dependence
on these systems increases. Many of these interconnected systems
are and will be low cost bare-metal systems, executing without an
operating system. Bare-metal systems rarely employ any security
protection mechanisms and their development assumptions (un-
restricted access to all memory and instructions), and constraints
(runtime, energy, and memory) makes applying protections
challenging.

To address these challenges we present EPOXY, an LLVM-
based embedded compiler. We apply a novel technique, called
privilege overlaying, wherein operations requiring privileged
execution are identified and only these operations execute in
privileged mode. This provides the foundation on which code-
integrity, adapted control-flow hijacking defenses, and protec-
tions for sensitive IO are applied. We also design fine-grained
randomization schemes, that work within the constraints of bare-
metal systems to provide further protection against control-flow
and data corruption attacks.

These defenses prevent code injection attacks and ROP attacks
from scaling across large sets of devices. We evaluate the
performance of our combined defense mechanisms for a suite of
75 benchmarks and 3 real-world IoT applications. Our results for
the application case studies show that EPOXY has, on average,
a 1.8% increase in execution time and a 0.5% increase in energy
usage.

I. INTRODUCTION

Embedded devices are ubiquitous. With more than 9 billion

embedded processors in use today, the number of devices has

surpassed the number of humans. With the rise of the “Internet

of Things”, the number of embedded devices and their con-

nectivity is exploding. These “things” include Amazon’s Dash

button, utility smart meters, smart locks, and smart TVs. Many

of these devices are low cost with software running directly

on the hardware, known as “bare-metal systems”. In such

systems, the application runs as privileged low-level software

with direct access to the processor and peripherals, without

going through intervening operating system software layers.

These bare-metal systems satisfy strict runtime guarantees on

extremely constrained hardware platforms with few KBs of

memory, few MBs of Flash, and low CPU speed to minimize

power and cost constraints.

With increasing network connectivity ensuring the secu-

rity of these systems is critical [21, 51]. In 2016, hijacked

smart devices like CCTV cameras and digital video recorders

launched the largest distributed denial of service (DDoS)

attack to date [39]. The criticality of security for embedded

systems extends beyond smart things. Micro-controllers ex-

ecuting bare-metal software have been embedded so deeply

into systems that their existence is often overlooked, e.g.,
in network cards [26], hard drive controllers [57], and SD

memory cards [17]. We rely on these systems to provide secure

and reliable computation, communication, and data storage.

Yet, they are built with security paradigms that have been

obsolete for several decades.

Embedded systems largely lack protection against code

injection, control-flow hijack, and data corruption attacks.

Desktop systems, as surveyed in [53], employ many defenses

against these attacks such as: Data Execution Prevention

(DEP), stack protections (e.g., stack canaries [22], separate

return stacks [31], and SafeStack [40]), diversification [49, 41],

ASLR, Control-Flow Integrity [9, 18], or Code-Pointer In-

tegrity (CPI) [40]. Consequently, attacks on desktop-class

systems became harder and often highly program dependent.

Achieving known security properties from desktop systems

on embedded systems poses fundamental design challenges.

First, a single program is responsible for hardware con-

figuration, inputs, outputs, and application logic. Thus, the

program must be allowed to access all hardware resources

and to execute all instructions (e.g., configuring memory

permissions). This causes a fundamental tension with best

security practices which require restricting access to some

resources. Second, bare-metal systems have strict constraints

on runtime, energy usage, and memory usage. This requires all

protections to be lightweight across these dimensions. Third,

embedded systems are purpose-built devices. As such, they

have application-specific security needs. For example, an IO

register on one system may unlock a lock while on a different

system, it may control an LED used for debugging. Clearly the

former is a security-sensitive operation while the latter is not.

Such application-specific requirements should be supported

in a manner that does not require the developer to make

intrusive changes within her application code. Combined,
these challenges have meant that security protection for code
injection, control-flow hijack, and data corruption attacks are
simply left out from bare-metal systems.

As an illustrative example, consider the application of DEP

2017 IEEE Symposium on Security and Privacy

© 2017, Abraham A. Clements. Under license to IEEE.

DOI 10.1109/SP.2017.37

289



to bare-metal systems. DEP, which enforces W ⊕ X on all

memory regions, is applied on desktops using a Memory

Management Unit (MMU), which is not present on micro-

controllers. However, many modern micro-controllers have a

peripheral called the Memory Protection Unit (MPU) that can

enforce read, write, and execute permissions on regions of

the physical memory. At first glance, it may appear that DEP

can be achieved in a straightforward manner through the use

of the MPU. Unfortunately, we find that this is not the case:

the MPU protection can be easily disabled, because there is

no isolation of privileges. Thus, a vulnerability anywhere in

the program can write the MPU’s control register to disable

it. A testimony to the challenges of correctly using an MPU

are the struggles existing embedded OSs have in using it for

security protection, even for well-known protections such as

DEP. FreeRTOS [1], a popular operating system for low-end

micro-controllers, leaves its stacks and RAM to be writable

and executable. By FreeRTOS’s own admission, the MPU

port is seldom used and is not well maintained [3]. This was

evidenced by multiple releases in 2016 where MPU support

did not even compile [8, 2].

To address all of these challenges, we developed EPOXY

(Embedded Privilege Overlay on X hardware with Y software),

a compiler that brings both generic and system-specific protec-

tions to bare-metal applications. This compiler adds additional

passes to a traditional LLVM cross-compilation flow, as shown

in Figure 1. These passes add protection against code injection,

control-flow hijack and data corruption attacks, and direct

manipulation of IO. Central to our design is a lightweight

privilege overlay, which solves the dichotomy of allowing the

program developer to assume access to all instructions and

memory but restrict access at runtime. To do this, EPOXY

reduces execution privileges of the entire application. Then,

using static analysis, only instructions requiring elevated priv-

ileges are added to the privilege overlay to enable privileges

just prior to their execution. EPOXY draws its inputs from a

security configuration file, thus decoupling the implementation

of security decisions from application design and achieves all

the security protections without any application code modifica-

tion. Combined, these protections provide application-specific

security for bare-metal systems that are essential on modern

computers.

In adapting fine-grained diversification techniques [41],

EPOXY leverages unique aspects of bare-metal systems,

specifically all memory is dedicated to a single application and

the maximum memory requirements are determined a priori.

This enables the amount of unused memory to be calculated

and used to increase diversification entropy. EPOXY then

adapts the protection of SafeStack [40], enabling strong stack

protection within the constraints of bare-metal systems.

Our prototype implemenation of EPOXY supports the

ARMv7-M architecture, which includes the popular Cortex-

M3, Cortex-M4, and Cortex-M7 micro-controllers. Our tech-

niques are general and should be applicable to any micro-

controller that supports at least two modes of execution

(privileged and unprivileged) and has an MPU. We evaluate

GNU Linker

Bin

HAL Src

Linker Script

LLVM Linker 
Plugin

App Src

Passes
SafeStack

Backend

Diversification
LLVM Linker 

Plugin

Stdlib Src

`

Options

LLVM 
Bitcode

GCC
Clang

Privilege 
Overlaying

Stdlib

Fig. 1. The compilation work flow for an application using EPOXY. Our
modifications are shown in shaded regions.

EPOXY on 75 benchmark applications and three representa-

tive IoT applications that each stress different sub-systems.

Our performance results for execution time, power usage,

and memory usage show that our techniques work within

the constraints of bare-metal applications. Overheads for the

benchmarks average 1.6% for runtime and 1.1% for energy.

For the IoT applications, the average overhead is 1.8% for

runtime, and 0.5% for energy. We evaluate the effectiveness

of our diversification techniques, using a Return Oriented Pro-

gramming (ROP) compiler [52] that finds ROP-based exploits.

For our three IoT applications, using 1,000 different binaries

of each, no gadget survives across more than 107 binaries.

This implies that an adversary cannot reverse engineer a single

binary and create a ROP chain with a single gadget that scales

beyond a small fraction of devices.

In summary, this work: (1) identifies the essential com-

ponents needed to apply proven security techniques to bare-

metal systems; (2) implements them as a transparent runtime

privilege overlay, without modifying existing source code;

(3) provides state-of-the-art protections (stack protections and

diversification of code and data regions) for bare-metal sys-

tems within the strict requirements of run-time, memory size,

and power usage; (4) demonstrates that these techniques are

effective from a security standpoint on bare-metal systems.

Simply put, EPOXY brings bare-metal application security

forward several decades and applies protections essential for

today’s connected systems.

II. THREAT MODEL AND PLATFORM ASSUMPTIONS

We assume a remote attacker with knowledge of a generic

memory corruption vulnerability, i.e., the application running

on the embedded system itself is buggy but not malicious.

The goal of the attacker is to either achieve code execution

(e.g., injecting her own code, reusing existing code through

ROP or performing Data-oriented Programming [37]), corrupt

specific data, or directly manipulate security-critical outputs

of a system by sending data to specific IO pins. We assume

the attacker exploits a write-what-where vulnerability, i.e., one

which allows the attacker to write any data to any memory

location that she wants. The attacker may have obtained the

290



vulnerability through a variety of means, e.g., source code

analysis, or reverse engineering the binary that runs on a

different device and identifying security flaws in it.

We also assume that the attacker does not have access to

the specific instance of the (diversified) firmware running on

the target device. Our applied defenses provide foundational

protections, which are complementary to and assumed by,

many modern defenses such as, the memory disclosure pre-

vention work by Braden et. al. [15]. We do not protect against

attacks that replace the existing firmware with a compromised

firmware. Orthogonal techniques such as code signing should

be used to prevent this type of attack.

We make the following assumptions about the target system.

First, it is running a single bare-metal application, which

utilizes a single stack and has no restrictions on the memory

addresses, peripherals, or registers that it can access or instruc-

tions that it can execute. This is the standard mode of execution

of applications on bare-metal systems, e.g., is the case with

every single benchmark application and IoT application that

we use in the evaluation and that we surveyed from the vendors

of the ARM-equipped boards. Second, we require the micro-

controller to support at least two execution privilege levels,

and have a means to enforce access controls on memory for

these privilege levels. These access controls include marking

regions of memory as read, write, and/or execute. Typically, an

MPU provides this capability on a micro-controller. We looked

at over 100 Cortex-M3, M4, and M7 series micro-controllers

from ARM and an MPU was present on all but one. Micro-

controllers from other vendors, such as AVR32 from Atmel,

also have an MPU.

III. ARCHITECTURE BACKGROUND INFORMATION

This section presents architecture information that is needed

to understand the attack vectors and the defense mechanisms

in EPOXY. Bare-metal systems have low level access to hard-

ware; this enables an attacker, with a write-what-where vulner-

ability, to manipulate the system in ways that are unavailable

to applications on desktop systems. Defense strategies must

consider these attack avenues, and the constraints of hardware

available to mitigate threats. For specificity, we focus on

the ARMv7-M architecture which is implemented in ARM

Cortex-M(3,4,7) micro-controllers. The general techniques are

applicable to other architectures subject to the assumptions

laid out in Section II. We present key details of the ARMv7-

M architecture, full details are in the ARMv7-M Architecture

Reference Manual [11].

A. Memory Map

In our threat model, the attacker has a write-what-where

vulnerability that can be used to write to any memory address;

therefore, it is essential to understand the memory layout of the

system. Note that these systems use a single, unified memory

space. A representative memory map illustrating the different

memory regions is shown in Figure 2. At the very bottom of

memory is a region of aliased memory. When an access is

made to the aliased region, the access is fulfilled by accessing

Fig. 2. An example memory map showing the regions of memory commonly
available on an ARMv7-M architecture micro-controller. Note the cross
hatched areas have an address but no memory.

physical memory that is aliased, which could be in the Internal

RAM, Internal Flash, or External Memory. The alias itself

is specified through a hardware configuration register. Thus,

memory mapped by the aliased region is addressable using

two addresses: its default address (e.g., the address of Internal

RAM, Internal Flash, or External Memory) and address of the

aliased region. This implies that a defender has to configure

identical permissions for the aliased memory region and the

actual memory region that it points to. A common peripheral

(usually a memory controller) contains a memory-mapped

register that sets the physical memory addressed by the aliased

region. A defender must protect both the register that controls

which memory is aliased, in addition to the physical and

aliased memory locations.

Moving up the address space we come to Internal Flash, this

is Flash memory that is located inside the micro-controller. On

ARMv7-M devices it ranges in size from a couple KB to a

couple MB. The program code and read only data are usually

stored here. If no permissions are enforced, an attacker may

directly manipulate code1. Address space layout randomization

is not applied in practice and the same binary is loaded on all

devices, which enables code reuse attacks like ROP. Above the

Flash is RAM which holds the heap, stack, and global data

(initialized data and uninitialized bss sections). Common sizes

range from 1KB to a couple hundred KB and it is usually

smaller than the Flash. By default this area is read, write,

and execute-enabled, making it vulnerable to code injection

attacks. Additionally, the stack employs no protection and thus

is vulnerable to stack smashing attacks which can overwrite

return addresses and hijack the control flow of the application.

Located above the RAM are the peripherals. This area

is sparsely populated and consists of fixed addresses which

control hardware peripherals. Peripherals include: General

Purpose Input and Output (GPIO), serial communication

(UARTS), Ethernet controllers, cryptography accelerators, and

many others. Each peripheral is configured, and used by read-

ing and writing to specific memory addresses called memory-

mapped registers. For example, a smart lock application will

1In Flash a 1 may be changed to a 0 without erasing an entire block, parity
checks are also common to detect single bit flips. This restricts the changes
that can directly be made to code; however, a wily attacker may still be able
to manipulate the code in a malicious way.

291



use an output pin of the micro-controller to actuate its locking

mechanism. In software this will show up as a write to a fixed

address. An adversary can directly open the lock by writing

to the GPIO register using a write-what-where vulnerability,

bypassing any authentication mechanism in the application.

The second region from the top is reserved for external

memory and co-processors. This may include things like

external RAM or Flash. However, on many small embedded

systems nothing is present in this area. If used, it is sparsely

populated and the opportunities presented to an attacker are

system and program specific. The final area is the System

Control Block (SCB). This is a set of memory-mapped regis-

ters defined by ARM and present in every ARMv7-M micro-

controller. It controls the MPU configuration, interrupt vector

location, system reset, and interrupt priorities. Since the SCB

contains the MPU configuration registers, an attacker can

disable the MPU simply by writing a 0 to the lowest bit

of the MPU CTRL register located at address 0xE000ED94.

Similarly, the location of the interrupt vector table is set by

writing the VTOR register at 0xE000ED08. These indicate that

the SCB region is critical from a security standpoint.

B. Execution Privileges Modes

Like their x86 counterparts, ARMv7-M processors can exe-

cute in different privilege modes. However, they only support

two modes: privileged and unprivileged. In the current default

mode of operation, the entire application executes in privileged

mode, which means that all privileged instructions and all

memory accesses are allowed. Thus, we cannot indiscrimi-

nately reduce the privilege level of the application, for fear

of breaking the application’s functionality. Once privileges

are reduced the only way to elevate privileges is through

an exception. All exceptions execute in privileged mode and

software can invoke an exception by executing an SVC (for

“supervisor call”) instruction. This same mechanism is used

to create a system call in a traditional OS.

C. Memory Protection Unit

ARMv7-M devices have a Memory Protection Unit or MPU

which can be used to set read, write, or execute permissions

on regions of the physical memory. The MPU is similar to

an MMU, but it does not provide virtual memory addressing.

In effect, the MPU adds an access control layer over the

physical memory but memory is still addressed by its physical

addresses. The MPU defines read, write, and execute privileges

for both privileged and unprivileged modes. It also enables

making regions of memory non executable (“execute never”

in ARM’s terminology). It supports setting up to 8 regions,

numbered from 0 to 7, with the following restrictions: (1) A

region’s size can be from 32 Bytes to 4 GBytes, in powers of

two; (2) Each region must be size-aligned (e.g., if the region

is 16KB, it must start on a multiple of 16KB); (3) If there is

a conflict of permissions (through overlapping regions), then

the higher numbered region’s permissions take effect. Figure 3

illustrates how memory permissions are applied.

Fig. 3. Diagram illustrating how the protection regions (R-x) defined in
the MPU by EPOXY are applied to memory. Legend shows permissions
and purpose of each region. Note regions R1-R3 (not shown) are developer
defined.

For the remainder of this paper we will use the follow-

ing notations to describe permissions for a memory region:

(P-R?W ?,U-R?W ?,X| −?) which encodes read and write per-

missions for privileged mode (P), unprivileged mode (U),

and execution permission for both privileged and unprivileged

mode. For example, the tuple (P-RW,U-R,X) encodes a region

as executable, read-write for privileged mode and executable,

read-only access for unprivileged mode. Note, execute per-

missions are set for both privileged and unprivileged mode.

For code to be executed, read access must be granted. Thus,

unprivileged code can be prevented from executing a region

by removing read access to it.

D. Background Summary

Current bare-metal system design exposes a large attack

surface—memory corruption, code injection, control-flow hi-

jack attachs, writing to security-critical but system-specific IO,

and modification of registers crucial for system operation such

as the SCB and MPU configuration. Execution privilege modes

and the MPU provide the hardware foundation that can be used

to develop techniques that will reduce this vast attack surface.

However, the development assumption that all instructions and

all memory locations are accessible is in direct conflict with

the security requirements, as some instructions and memory

accesses can exploit the attack surface and need to be re-

stricted. Next we present the design of our solution EPOXY,

which resolves this tension by using privilege overlays, along

with various diversification techniques to remove the attack

surface.

IV. DESIGN

EPOXY’s goal is to apply system specific protections to

bare-metal applications. This requires meeting several require-

ments: (1) Protections must be flexible as protected areas

vary from system to system; (2) The compiler must enable

the enforcement of policies that protect against malicious

code injection, code reuse attacks, global data corruption, and

direct manipulation of IO; (3) Enforcement of the policies

must satisfy the non-functional constraints—runtime, energy

usage, and memory usage should not be significantly higher

292



than in the baseline insecure execution. (4) The protections

should not cause the application developers to make changes

to their development workflow and ideally would involve no

application code changes.

EPOXY’s design utilizes four components to apply pro-

tections to bare-metal systems, while achieving the above

four goals. They are: (1) access controls which limit the

use of specific instructions and accesses to sensitive memory

locations, (2) our novel privilege overlay which imposes the

access control on the unmodified application, (3) an adapted

SafeStack, and (4) diversification techniques which utilize all

available memory.

A. Access Controls

Access controls are used to protect against code injection

attacks and defend against direct manipulation of IO. Access

controls specify the read, write, and execute permissions

for each memory region and the instructions which can

be executed for a given execution mode. As described in

Section III, modern micro-controllers contain an MPU and

multiple execution modes. These are designed to enable DEP

and to restrict access to specific memory locations. We utilize

the MPU and multiple execution modes to enforce access

controls in our design. Using this available hardware, rather

than using a software only approach, helps minimize the

impact on runtime, energy consumption, and memory usage.

On our target architecture, IO is handled through memory-

mapped registers as well and thus, the MPU can be used to

restrict access to sensitive IO. The counter argument to the

use of the MPU is that it imposes restrictions—how many

memory regions can be configured (8 in our chosen ARM

architecture) and how large each region needs to be and

how it should be aligned (Section III-C). However, we still

choose to use the MPU and this explains in part the low

overhead that EPOXY incurs (Table II). While the MPU and

the processor execution modes can enforce access controls at

runtime they must be properly configured to enable robust

protection. We first identify the proper access controls and

how to enforce them. We then use the compiler to generate

the needed hardware configuration to enforce access controls

at runtime. Attempts to access disallowed locations trap to a

fault handler. The action the fault handler takes is application

specific, e.g., halting the system, which provides the strongest

protects as it prevents repeated attack attempts.

The required access controls and mechanisms to enforce

them can be divided into two parts: architecture dependent and

system specific. Architecture-dependent access controls: All

systems using a specific architecture (e.g., ARMv7-M) have

a shared set of required access controls. They must restrict

access to instructions and memory-mapped registers that can

undermine the security of the system. The instructions that

require execution in privileged mode are specified in the pro-

cessor architecture and are typically those that change special-

purpose registers, such as the program status register (the MSR
and CPS instructions). Access to these instructions is limited

by executing the application by default in unprivileged mode.

Memory-mapped registers, such as the MPU configuration

registers, and interrupt vector offset register, are common to

an architecture and must be protected. In our design, this is

done by configuring the MPU to only allow access to these

regions (registers) from the privileged mode.

System-specific access controls: These are composed of

setting W ⊕ X on code and data, protection of the alias

control register, and protecting any sensitive IO. W⊕X should

be applied to every system; however, the locations of code

and data change from system to system, making the required

configuration to enforce it system specific. For example, each

micro-controller has different amounts of memory and a devel-

oper may place code and data in different regions, depending

on her requirements. The peripheral that controls the aliased

memory is also system specific and needs protection and thus,

access to it should be set for the privileged mode only. Last,

what IO is sensitive varies from system to system and only

the subset of IO that is sensitive need be restricted to the

privileged mode.

To simplify the implementation of the correct access con-

trols, our compiler generates the necessary system configura-

tion automatically. At the linking stage, our compiler extracts

information (location, size, and permissions) for the code

region and the data region. In addition, the developer provides

on a per-application basis information about the location and

size of the alias control register and what IO is sensitive.

The compiler then uses this information, along with the

architecture-specific access controls, to generate the MPU

configuration. The MPU configuration requires writing the

correct bits to specific registers to enforce the access controls.

Our compiler pass adds code to system startup to configure the

MPU (Figure 3 and Table I). The startup code thus drops the

privileges of the application that is about to execute, causing

it to start execution in unprivileged mode.

B. Privilege Overlay

We maintain the developer’s assumption of access to all

instructions and memory locations by using a technique that

we call, privilege overlay. This technique, identifies all instruc-

tions and memory accesses which are restricted by the access

controls—referred to as restricted operations—and elevates

just these instructions. Conceptually, this is like overlaying

the original program with a mask which elevates just those

instructions which require privileged mode. In some ways,

this privilege overlaying is similar to an application making

an operating system call and transitioning from unprivileged

mode to privileged mode. However, here, instead of being

a fixed set of calls which operate in the operating system’s

context, it creates a minimal set of instructions (loads and

stores from and to sensitive locations and two specific instruc-

tions) that execute in their original context (the only context

used in a bare-metal application execution) after being given

permissions to perform the restricted operation. By elevating

just those instructions which perform restricted operations

through the privilege overlay, we simplify the development

293



process and by carefully selecting the restricted operations,

we limit the power of a write-what-where vulnerability.

Privilege overlaying requires two mechanisms: A mecha-

nism to elevate privileges for just the restricted operations

and a mechanism to identify all the restricted operations.

Architectures employing multiple execution modes provide

a mechanism for requesting the execution of higher level

software. On ARM, this is the SVC instruction which causes

an exception handler to be invoked. This handler checks if the

call came from an authorized location, and if so, it elevates

the execution mode to the privileged mode and returns to the

original context. If it was not from an authorized location,

then it passes the request on to the original handler without

elevating the privilege, i.e., it denies the request silently. The

compiler identifies each restricted operation and prepends it

with a call to the SVC handler and, immediately after the

restricted operation, adds instructions that drop the execution

privileges. Thus, each restricted operation executes in priv-

ileged mode and then immediately returns to unprivileged

mode.

The restrictions in the way MPU configuration can be spec-

ified, creates challenges for EPOXY. The MPU is restricted

to protecting blocks of memory of size at least 32 Bytes,

and sometimes these blocks include both memory-mapped

registers that must be protected to ensure system integrity,

and those which need to be accessed for correct functionality.

For example, the Vector Table Offset Register (VTOR) and

the Application Interrupt and Reset Control Register (AIRCR)

are immediately adjacent to each other in one 32 Byte region.

The VTOR is used to point to the location of the interrupt

vector table and is thus a security critical register, while the

AIRCR is used (among other things) for the software running

on the device to request a system reset (say, to reload a new

firmware image) and is thus not security critical. There is no

way to set permissions on the VTOR without also applying

the same permissions to the AIRCR. EPOXY overcomes this

restriction by adding accesses to the AIRCR to the privilege

overlay, thus elevating accesses whenever the AIRCR is being

accessed.

C. Identifying Restricted Operations

To identify restricted operations we utilize static analysis

and optionally, source code annotations by the developer.

Using static analysis enables the compiler to identify many of

the restricted operations, reducing the burden on the developer.

We use two analyses to identify restricted operations; one

for restricted instructions and a second to identify restricted

memory accesses. Restricted instructions are defined by the

Instruction Set Architecture (ISA) and require execution in

privileged mode. For the ARMv7-M architecture these are the

CPS and MSR instructions, each of which controls specific

flags in the program status register, such as enabling or

disabling interrupt processing. These privileged instructions

are identified by string matching during the appropriate LLVM

pass. Identifying restricted memory accesses however is more

challenging.

An important observation enables EPOXY to identify most

restricted accesses. In our case, the memory addresses being

accessed are memory-mapped registers. In software, these

accesses are reads and writes to fixed addresses. Typically,

a Hardware Abstraction Layer (HAL) is used to make these

accesses. Our study of HAL’s identified three patterns that

cover most accesses to these registers. The first pattern uses

a macro to directly access a hard-coded address. The second

pattern uses a similar macro and a structure to access fixed

offsets from a hard-coded address. The last pattern uses a

structure pointer set to a hard-coded address. All use a hard-

coded address or fixed offsets from them. The use of hard-

coded addresses, and fixed offsets from them, are readily

identifiable by static analysis.

Our static analysis uses backward slicing to identify these

accesses. A backward slice contains all instructions that af-

fect the operands of a particular instruction. This enables

identifying the potential values of operands at a particular

location in a program. We limit our slices to a single function

and examine only the definitions for the address operand of

load and store operations. Accesses to sensitive registers are

identified by checking if the address being accessed is derived

from a constant address. This static analysis captures many of

the restricted memory accesses; however, not all accesses can

be statically identified and manual annotations (likely by the

developer) are required in these cases. Note that we observed

few annotations in practice and most are generic per hardware

platform, i.e., they can be provided by the manufacturer. This

primarily occurs when memory-mapped registers are used as

arguments in function calls or when aliasing of memory-

mapped registers occurs. Aliasing occurs when the register

is not directly referenced, but is assigned to a pointer, and

multiple copies of that pointer are made so that the register is

now accessible via many different pointers. These point to two

limitations of our current static analysis. Our backward slicing

is limited to a single function and with some bounded engi-

neering effort, we can expand it to perform inter-procedural

analysis. To overcome the second limitation though requires

precise alias analysis, which is undecidable in the general case

[50]. However, embedded programs—and specifically access

to memory mapped registers—are constrained in their program

structures reducing the concern of aliasing in this domain.

D. Modified SafeStack

EPOXY defends against control-flow hijacking attack by

employing SafeStack [40], modified to bare-metal systems.

SafeStack is a protection mechanism that uses static analysis to

move local variables which may be used in an unsafe manner

to a separate unsafestack. A variable is unsafe if it may access

memory out-of-bounds or if it escapes the current function. For

example, if a supplied parameter is used as the index of an

array access, the array will be placed on the unsafestack. It

utilizes virtual addressing to isolate the unsafestack from the

rest of the memory. By design, return addresses are always

placed on the regular stack because they have to be protected

from illegal accesses. SafeStack ensures that illegal accesses

294



may only happen on items on the unsafestack. In addition

to its security properties, Safestack has low runtime overhead

(generally below 1% [40] §5.2) and a deterministic impact

on stack sizes makes it a good fit for bare-metal systems.

The deterministic impact means—assuming known maximum

bounds for recursion—the maximum size for both the regular

and unsafestack is fixed and can be determined a priori. Use

of recursion without knowing its bounds is bad design for

bare-metal systems.

While the low runtime overhead of SafeStack makes it

suitable for bare-metal systems, it needs an isolated memory

region to be effective. The original technique, deployed on

Intel architectures, relied on hardware support for isolation

(either segmentation or virtual memory) to ensure low over-

head. For example, it made the safe region accessible through

a dedicated segment register, which is otherwise unused, and

configured limits for all other segment registers to make the

region inaccessible through them (on x86). Such hardware
segment registers and hardware protection are not available
in embedded architectures. The alternate pure software mech-

anism based on Software Fault Isolation [56] would be too

expensive for our embedded applications because it requires

that all memory operations in a program are masked. While on

some architectures with a large amount of (virtual) memory,

this instrumentation can be lightweight (e.g., a single and
operation if the safe region occupies a linear part of the address

space – encoded in a mask, resulting in about 5% overhead),

here masking is unlikely to work because the safe region

will occupy a smaller and unaligned part of the scarce RAM

memory.

Therefore, to apply the SafeStack principle to bare-metal

systems, we place the unsafestack at the top of the RAM, and

make the stack grow up, as shown in Figure 4a. We then place

a guard between the unsafestack and the other regions in RAM,

shown as the black region in the figure. This follows best

practices for embedded systems to always grow a stack away

from other memory regions. The guard is created as part of

the MPU configurations generated by the compiler. The guard

region is inaccessible to both privileged and unprivileged

code (i.e., privileges are (P-,W-,XN)). Any overflow on the

unsafestack will cause a fault either by accessing beyond the

bounds of memory, or trying to access the guard region. It

also prevents traditional stack smashing attacks because any

local variable that can be overflown will be placed on the

unsafestack while return addresses are placed on the regular

stack. Our design for the first time provides strong stack

protection on bare-metal embedded systems.

V. IMPLEMENTATION

A. Access Controls

We developed a prototype implementation of EPOXY,

building on LLVM 3.9 [42]. In our implementation, access

controls are specified using a template. The template consists

of a set of regions that map to MPU region configurations

(see Section III-C for the configuration details). Due to current

hardware restrictions, a maximum of 8 regions are supported.

TABLE I
THE MPU CONFIGURATION USED FOR EPOXY. FOR OVERLAPPING

REGIONS THE HIGHEST NUMBERED REGION (R) TAKES EFFECT.

R Permissions Start Addr Size Protects
0 P-RW,U-RW,XN 0x00000000 4GB Default
4 None Varies 32B unsafestack Guard
5 P-RW,U-R,XN 0xE000E000 4KB SCB
6 P-RW,U-R,XN 0x40013800 512B Alias. Ctrl. Reg
7 P-R,U-R,X 0x00000000 256MB Executable Code

Our basis template uses five regions as shown in Table I.

Region 0 encodes default permissions. Using region 0 ensures

all other regions override these permissions. We then use the

highest regions and work down to assign permissions to ensure

that the appropriate permissions are enforced. Region 7 is used

to enforce W ⊕X on executable memory. This region covers

both the executable memory and its aliased addresses starting

at address 0. The three remaining regions (4-6) can be defined

in any order and protect the SCB, alias control register, and

the unsafestack guard.

The template can be modified to accommodate system

specific requirements, e.g., changing the start address and size

of a particular region. For example, the two micro-controllers

used for evaluation place the alias control register at different

physical addresses. Thus, we modified the start address and

size for each micro-controller. Regions 1-3 are unused and

can be used to protect sensitive IO that is application specific.

To do this, the start address and size cover the peripheral and

permissions are set to (P-RW,U-RW,XN). The addresses for

all peripherals are given in micro-controller documentation

provided by the vendor. The use of the template enables system

specific access controls to be placed on the system. It also

decouples the development of access control mechanisms and

application logic.

We implemented a pass in LLVM that generates code to

configure the MPU based on the template. The code writes

the appropriate values to the MPU configuration registers to

enforce the access controls given in the template, and then

reduces execution privileges. The code is called at the very

beginning of main. Thus all of main and the rest of the

program executes with reduced privileges.

B. Privilege Overlays

Privileged overlay mechanisms (i.e., privilege elevation and

restricted operation identification) are implemented using an

LLVM pass. To elevate privileges two components are used.

They are a privilege requester and a request handler. Requests

are made to the handler by adding code which performs the

operations around restricted operations, as shown in Algorithm

1. This code saves the execution state and executes a SVC

(SVC FE) to elevate privileges. The selected instructions are

then executed in privileged mode, followed by a code sequence

that drops privileges by setting the zero bit in the control

register. Note that this sequence of instructions can safely be

executed as part of an interrupt handler routine as interrupts

execute with privileges and, in that mode, the CPU ignores

both the SVC instruction and the write to the control register.

295



Fig. 4. Diagrams showing how diversification is applied. (a) Shows the RAM layout with SafeStack applied before diversification techniques are applied. (b)
Shows RAM the layout after diversification is applied. Note that unused memory (gray) is dispersed throughout RAM, the order of variables within the data
section (denoted 1-7) and bss section (greek letters) are randomized. Regions A, B, C, and D are random sizes, and G is the unsafestack guard region. (c)
Layout of functions before protection; (d) Layout of functions after trapping and randomizing function order.

Algorithm 1 Procedure used to request elevated privileges

1: procedure REQUEST PRIVILEGED EXECUTION

2: Save Register and Flags State
3: if In Unprivileged Mode then
4: Execute SVC FE (Elevates Privileges)
5: end if
6: Restore Register and Flags
7: Execute Restricted Operation
8: Set Bit 0 of Control Reg (Reduces Privileges)
9: end procedure

Algorithm 2 Request handler for elevating privileges

1: procedure HANDLE PRIVILEGE REQUEST

2: Save Process State
3: if Interrupt Source == SVC FE then
4: Clear bit 0 of Control Reg (Elevates Privileges)
5: Return
6: else
7: Restore State
8: Call Original Interrupt Handler
9: end if

10: end procedure

The request handler intercepts three interrupt service rou-

tines and implements the logic shown in Algorithm 2. The

handler stores register state (R0-R3 and LR – the remaining

registers are not used) and checks that the caller is an SVC

FE instruction. Authenticating the call site ensures that only

requests from legitimate locations are allowed. Due to W⊕X ,

no illegal SVC FE instruction can be injected. If the interrupt

was caused by something other than the SVC FE instruction

the original interrupt handler is called.

The request handler is injected by the compiler by intercept-

ing three interrupt handlers. These are: the SVC handler, the

Hard Fault handler, and the Non Maskable Interrupt handler.

Note that executing an SVC instruction causes an interrupt.

When interrupts are disabled the SVC results in a Hard Fault.

Similarly, when the Fault Mask is set all interrupt handlers

except the Non-Maskable Interrupt handler are disabled. If

an SVC instruction is executed when the fault mask is set it

causes a Non-Maskable Interrupt. Enabling and disabling both

interrupts and faults are privileged operations, thus all three

interrupt sources need to be intercepted by the request handler.

Privileged requests are injected for every identified restricted

operation. The static analyses used to identify restricted op-

erations are implemented in the same LLVM pass. It adds

privilege elevation request to all CPS instructions, and all

MSR instructions that use a register besides the APSR regis-

ters. These instructions require execution in privileged mode.

To detect loads and stores from constant addresses we use

LLVM’s use-def chains to get the back slice for each load

and store. If the pointer operand can be resolved to a constant

address it is checked against the access controls applied in

the MPU. If the MPU’s configuration restricts that access a

privilege elevation request is added around the operation. This

identifies many of the restricted operations. Annotations can

be used to identify additional restricted operations.

C. SafeStack and Diversification

The SafeStack in EPOXY extends and modifies the SafeS-

tack implemented in LLVM 3.9. Our changes enable support

for the ARMv7-M architecture, change the stack to grow up,

and use a global variable to store the unsafestack pointer. Stack

offsets are applied with global data randomization. Global data

randomization is applied using a compiler pass. It takes the

amount of unused RAM as a parameter which is then randomly

split into five groups. These groups specify how much memory

can be used in each of the following regions: stack offset,

data region, bss region, unsafestack offset, and unused. The

number of bytes added to each section is a multiple of four

to preserve alignment of variables on word boundaries. The

data and bss region diversity is increased by adding dummy

variables to each region. Note that adding dummy variables

to the data regions increases the Flash used because the initial

values for the data section are stored as an array in the Flash

and copied to RAM at reset. However, Flash capacity on a

micro-controller is usually several times larger than the RAM

capacity and thus, this is less of a concern. Further an option

can be used to restrict the amount of memory for dummy

variables in the data section. Dummy variables in the bss do

not increase the amount of Flash used.

Another LLVM pass is used to randomize the function order.

This pass takes the amount of memory that can be dispersed

throughout the text section. It then disperses this memory

between the function by adding trap functions to the global

function list. The global function list is then randomized,

and the linker lays out the functions in the shuffled order in

296



the final binary. A trap function is a small function which,

if executed, jumps to a fault handler. These traps are never

executed in a benign execution and thus incur no runtime

overhead but detect unexpected execution.

VI. EVALUATION

We evaluate the performance of EPOXY with respect to the

design goals, both in terms of security and resource overhead.

We first evaluate the impact on runtime and energy using a set

of benchmarks. We then use three real-world IoT applications

to understand the effects on runtime, energy consumption, and

memory usage. Next, we present an evaluation of the effec-

tiveness of the security mechanisms applied in EPOXY. This

includes an evaluation of the effectiveness of diversification

to defeat ROP-based code execution attacks and discussion

of the available entropy. We complete our evaluation by

comparing our solution to FreeRTOS with respect to the three

IoT applications.

Several different kinds of binaries are evaluated for each

program using different configurations of EPOXY these are:

(1) unmodified baseline, (2) privilege overlays (i.e., applies

privilege overlaying to allow the access controls to protect

system registers and apply W ⊕X .), (3) SafeStack only, and

(4) fully protected variants that apply privileged overlaying,

SafeStack, and software diversity. We create multiple variants

of a program (20 is the default) by providing EPOXY a unique

diversification seed. All binaries were compiled using link time

optimization at the O2 level.

We used two different development boards for our

experiments the STM32F4Discovery board [6] and the

STM32F479I-Eval [5] board. Power and runtime were mea-

sured using a logic analyzer sampling execution time at

100Mhz. Each application triggers a pin at the beginning and

at the end of its execution event. A current sensor with power

resolution of 0.5 μW was attached in series with the micro-

controller’s power supply enabling only the power used by the

micro-controller to be measured. The analog power samples

were taken at 125 KHz, and integrated over the execution time

to obtain the energy consumption.

A. Benchmark Performance Evaluation

To measure the effects of our techniques on runtime and en-

ergy we use the BEEBs benchmarks [47]. The BEEBs’ bench-

marks are a collection of applications from MiBench [34],

WCET [33] and DSPstone [60] benchmarks. They were de-

signed and selected to measure execution performance and en-

ergy consumption under a variety of computational loads. We

selected the 75 (out of 86) BEEBs’ benchmarks that execute

for longer than 50,000 clock cycles, and thus, providing a fair

comparison to real applications. For reference, our shortest IoT

application executes over 800,000 clock cycles. Each is loaded

onto the Discovery board and the logic analyzer captures

the runtime and energy consumption for 64 iterations of the

benchmark for each binary.

Across the 75 benchmarks the average overhead is 1.6%

for runtime and 1.1% for energy. The largest increase is on

TABLE II
THE RUNTIME AND ENERGY OVERHEADS FOR THE BENCHMARKS

EXECUTING OVER 2 MILLION CLOCK CYCLES. COLUMNS ARE SAFESTACK

ONLY (SS), PRIVILEGE OVERLAY ONLY (PO), AND ALL PROTECTIONS OF

EPOXY APPLIED, AVERAGED ACROSS 20 VARIANTS (ALL), AND THE

NUMBER OF CLOCK CYCLES EACH BENCHMARK EXECUTED, IN MILLIONS

OF CLOCK CYCLES. AVERAGE IS FOR ALL 75 BENCHMARKS

% Runtime %Energy Clk
Benchmark SS PO All SS PO All
crc32 0.0 0.0 2.9 -0.1 -0.6 2.5 2.2
sg..insearch 0.0 0.2 -1.0 -0.2 -0.9 0.5 2.2
ndes 2.9 -0.2 1.3 2.4 1.2 3.4 2.4
levenshtein 1.5 0.0 3.0 1.7 0.8 3.8 2.6
sg..quicksort -2.3 0.0 -1.4 -2.8 -0.5 -0.3 2.7
slre -1.5 -0.3 5.3 -2.0 -0.3 8.1 2.9
sgl..htable -0.6 0.0 2.0 -1.0 -0.7 3.4 2.9
sgl..dllist -0.6 0.0 0.7 0.3 -0.1 2.6 3.7
edn 0.0 -0.1 0.8 1.9 1.5 4.2 3.8
sg..insertsort -0.3 0.0 1.7 -0.1 -1.6 1.6 3.9
sg..heapsort 0.0 0.0 -0.5 -0.1 1.4 1.9 4.0
sg..queue -7.3 0.0 -7.3 -4.2 -0.9 -3.4 4.6
sg..listsort -0.4 0.0 0.7 -0.1 -0.5 2.4 4.9
fft 0.0 0.4 0.4 -0.1 0.6 -0.3 5.1
bubblesort 0.0 0.0 1.7 -0.1 1.0 2.6 6.8
matmult int 0.0 0.0 1.2 -0.1 -0.4 0.7 6.8
adpcm 0.0 0.1 -0.4 0.1 2.3 0.6 7.3
sglib rbtree -0.2 -0.1 2.4 0.1 -0.7 3.7 7.4
mat..float 0.0 0.6 0.7 0.0 0.1 1.2 8.6
frac 1.6 2.0 1.7 2.4 2.8 4.0 9.9
st 0.0 0.1 0.4 -0.9 -0.3 1.2 19.0
huffbench 1.3 0.0 1.5 7.3 1.2 4.5 20.9
fir -1.0 -1.0 1.7 -2.0 1.5 3.1 21.0
cubic -0.2 0.2 0.1 0.0 -0.2 0.6 30.1
stb perlin 0.0 -1.3 0.0 0.0 -3.0 0.4 31.6
mergesort -0.2 0.5 2.1 -1.0 -0.4 3.1 44.0
qrduino 0.0 0.0 -1.2 -0.1 -0.7 -0.6 46.0
picojpeg 0.0 -0.4 -2.4 0.0 0.0 0.2 54.3
blowfish -0.4 0.0 -1.3 1.4 -1.3 0.5 56.9
dijkstra 0.0 -0.1 -8.7 -0.1 0.0 -7.3 70.5
rijndael -1.1 0.0 0.1 -0.6 -0.4 2.0 94.9
sqrt 0.0 2.1 1.4 0.0 1.8 2.1 116.2
whetstone -0.4 -0.3 0.1 0.8 0.3 1.6 135.5
nbody 1.1 1.1 0.4 0.9 0.9 2.5 139.0
fasta 0.0 0.0 0.4 0.1 0.4 1.2 157.1
wikisort 0.3 0.9 2.1 0.2 0.1 3.0 179.6
lms 0.0 0.1 0.6 -0.1 0.3 0.2 225.2
sha -3.5 0.0 -3.7 -1.3 -0.2 0.2 392.9
Average 0.1 0.1 1.1 0.2 -0.2 2.5 26.3

cover 14.2% runtime, 17.9% energy and largest decrease on

compress (-11.7% runtime, -10.2% energy). ctl stack is the

only other benchmark that has a change in runtime (13.1%) or

energy (15.8%) usage that exceeds ±10%. Table II shows the

runtime and energy overheads for the benchmarks executing

over 2 million clock cycles. The remaining benchmarks are

omitted for space. We find runtime is the biggest factor in

energy consumption—the Spearman’s rank correlation coeffi-

cient is a high 0.8591.

The impact on execution time can be explained by the

application of SafeStack (e.g., sg..queue in Table II) and diver-

sification. Modest improvements in execution time were found

by the creators of SafeStack ([40] §5.2), the primary cause

being improvements in locality. Likewise, our improvements

come from moving some variables to the unsafestack. These

typically tend to be larger variables like arrays. This increases

the locality of remaining variables on the regular stack and

297



enables them to be addressed from offsets to the stack pointer,

rather than storing base addresses in registers and using offsets

from these. This frees additional registers to store frequently

used variables, thus reducing register spilling, and consequent

writes and reads to the stack, thereby improving execution

time. The impact of the privilege overlay on the running

time is minimal because these benchmarks have few restricted

operations in them and the setups due to EPOXY (such as

MPU configuration) happen in the startup phase which is not

measured for calculating the overhead.

Diversification changes execution time in two ways. The

first is locality of functions and variables relative to each other.

Consider separately the case of a control-flow transfer and a

memory load/store. When a control-flow transfer is done (say

a branch instruction) and the target is close by, then the target

address is created relative to the PC and control flow is trans-

ferred to that address (1 instruction). On the other hand, if the

target address is farther off, then a register is loaded with the

address (2 instructions) and control transferred to the content

of the register (1 instruction). Sometimes diversification puts

the callee and called function farther apart than in the baseline

in which case the more expensive operation is used. In other

cases the opposite occurs, enabling less expensive (compared

to the baseline) control transfer to be used. Similarly, when

a memory load (or store) is done from a far off location, a

new register needs to be loaded with the address and then

the location accessed (3 instructions), while if it were to a

location near an address already in a register, then it can

be accessed using an offset from that register as the base

address (1 instruction). The dispersed accesses also uses more

registers, increasing register pressure.

Another effect of diversification is even more subtle and

architecture specific. In our target ARM architecture, when a

caller invokes a function, general-purpose registers R0-R3 are

assumed to be used and overwritten by the callee function

and therefore the compiler does not need to save the values

of those registers in the callee context. Thus the compiler

gives preference to using R0-R3 when allocating registers. Due

to our register randomization this preference is not always

followed, and other general purpose registers (R4-R13) are

used more often than they are in the baseline case. When R4-

R13 are used they first must be saved to, and restored from

the stack, decreaseing performance. To partially alleviate this

performance hit, EPOXY in its register randomization favors

the use of the registers R0-R3 in the callee function through a

non-uniform stochastic process, but does not deterministically

enforce this. Reassuringly, the net effect from all the instances

of the diversification is only a small increase in the runtime—

a worst case of 14.7% and an average of 1.1% across all the

benchmark applications.

B. Application Performance Evaluation

Benchmarks are useful for determining the impact of our

techniques under controlled conditions. To understand the

overall effects on realistic applications, we use three represen-

tative IoT applications. Our first program, PinLock, simulates

a simple IoT device like a door lock. It requests a four digit

pin be entered over a serial port. Upon reception the pin is

hashed, using SHA1, and compared to a precomputed hash.

If the hashes match, an LED is turned on, indicating the

system is unlocked. If an incorrect pin is received the user is

prompted to try again. In this application the IO is restricted

to privileged mode only, thus each time the lock is unlocked,

privileged execution must first be obtained. This demonstrates

EPOXY’s ability to apply application specific access controls.

We repeatedly send an incorrect pin followed by the correct

pin and measure time between successful unlocks. The baud

rate (115,200 max standard rate) of the UART communications

is the limiting factor in how fast login attempts are made.

We also use two vendor applications provided with the

STM32F479I-Eval board. The FatFS-uSD program imple-

ments a FAT file system on a micro-SD card. It creates a

file on the SDCard, writes 1KB of data to the file and then

reads back the contents and checks that they are the same. We

measure the time it takes to write, read and verify the file. The

TCP-Echo application implements a TCP/IP stack and listens

for a packet on the Ethernet connection. When it receives a

packet it echoes it back to the receiver. We measure the time

it takes to send and receive 1,000 packets, with requests being

sent to the board fast enough to fully saturate the capabilities

of the STM32F479I-Eval board (i.e., computation on the board

is the limiting factor in how fast packets are sent and received).

For each of the three applications we create the same set

of binaries used for the benchmarks: baseline, SafeStack only,

privilege overlay only, and 20 variants with all protections

of EPOXY. To obtain runtime and energy consumption we

average 10 executions of each binary. Percent increase relative

to the baseline binary is taken for each binary. The average

runtime overhead is 0.7% for PinLock, 2.4% for FatFS-uSD,

and 2.1% for TCP-Echo. Figure 5a shows the execution time

overheads as a whisker plot. In the worst case among all

executions of all applications protected with EPOXY, the

runtime overhead is 6.5% occurring on TCP-Echo. Again

we see energy consumption is closely related to execution

time. Each application’s average energy overheads are: −2.9%
for PinLock, 2.6% for FatFS-uSD and 1.8% for TCP-Echo.

Figure 5b shows the energy consumption overheads, with

a noticeable difference: PinLock has a very tight runtime

distribution, and a relatively wide energy distribution. This

application is IO bound and the application is often waiting to

receive a byte over the serial port, due to the slow serial con-

nection, causing the time variation to be hidden. However, the

changed instruction mix due to EPOXY still causes variation

in energy overhead.

Changes in memory usage are shown in Table III. It shows

the averages of increase to code (text section), global data (data

and bss sections), and stack usage for the 20 variants of each

application. SafeStack, privilege overlaying, and diversifica-

tion can all affect the code size. SafeStack increases the code

size by requiring additional instructions to manage a second

stack, privilege overlaying directly injects new code, and as

discussed previously diversification can cause the compiler to

298



P
in
L
o
c
k

F
a
t
F
S
-u
S
D

T
C
P
-E
c
h
o

−15

−10

−5

0

5

10

15

%
In
c
r
e
a
s
e
R
u
n
t
im

e

SS

PO

(a)

P
in
L
o
c
k

Fa
tF
S
-u
S
D

T
C
P
-E
c
h
o

−15

−10

−5

0

5

10

15

%
In
c
re
a
s
e
E
n
e
rg
y

SS

PO

(b)

Fig. 5. Box plots showing percent increase in execution time (a) and energy
(b) for the three IoT applications. The diamond shows the SafeStack only
binary, and the star shows the privilege overlay only binary.

TABLE III
INCREASE IN MEMORY USAGE FOR THE IOT APPLICATIONS FROM

APPLYING ALL OF EPOXY’S PROTECTIONS.

Stack
App Text Global Data SafeStack Priv. Over.
PinLock 3,390 (29%) 14.6 (1%) 104 (25%) 0
FatFs-uSD 2,839 (12%) 18.2 (1%) 128 (3%) 36 (1%)
TCP-Echo 3,249 (8%) 7.2 (0%) 128 (29%) 0

emit varying code. In all, we find that all the three applications

needed less than 3,390 additional bytes for code. For PinLock

(the smallest application) which has a baseline text size of

11,788 bytes, the additional 3,390 bytes would still fit in

16KB Flash, thus the same micro-controller could be used

with EPOXY’s protections. Impacts on data are caused by

SafeStack (4 bytes for the unsafestack pointer), and a few

bytes added to preserve alignment of variables. The majority

of the increase in stack size come from applying SafeStack.

It accounts for all the increase in PinLock and 128 bytes in

both FatFS-uSD and TCP-Echo. SafeStack increases the stack

requirements, because splitting the stack requires memory for

the sum of the execution paths with the deepest regular stack

and the deepest unsafestack across all possible execution paths.

In comparison, for the baseline, which has a single stack, only

memory for the deepest execution path is required. Privilege

overlays may also require additional memory—to save and

restore state while elevating privileges—but extra memory is

only needed when it increases the stack size of the deepest

execution path. Thus, additional memory, beyond SafeStack

is not needed for PinLock or TCP-Echo.

From the performance and memory usage requirements

we find that EPOXY’s protections operate within the non-

functional constraints of runtime, energy consumption and

memory usage. It also greatly reduces the burden on the

developer. For all BEEBs benchmarks, FatFS-uSD, and TCP-

Echo (77 applications in all), a total of 10 annotations were

made. These annotations were all made in ARM’s CMSIS

library—a C-language Hardware Abstraction Library (HAL)

for common ARM components—which is shared across the

77 applications. PinLock required an additional 7 annotations

to protect its IO. We envision HAL writers could provide pre-

annotated libraries, further reducing the burden on developers.

The annotations were all required because offsets were passed

as arguments to functions and a store was done by adding the

offset to a constant address. Extending our analysis to be inter-

procedural will allow the compiler to handle these cases and

remove the need for manual annotation. Our compiler elevated

35 (PinLock), 31(FatFs-uSD), and 25 (TCP-Echo) operations

on the IoT applications.

C. Security Evaluation

EPOXY meets the design goals for usability and perfor-

mance, but does it provide useful protection? First, EPOXY

enables the application of W ⊕X , a proven protection against

code injection and is foundational for other protections. Our

W⊕X mechanism also protects against attacks which attempt

to bypass or disable W ⊕X by manipulating system registers

using a write-what-where vulnerability. EPOXY incorporates

an adapted SafeStack, which provides effective protection

against stack smashing and ROP attacks by isolating poten-

tially exploitable stack variables from return addresses. While

the security guarantees of the first two are deterministic, or by

design, that of the last one is probabilistic and we evaluate its

coverage.

1) Verifier: Each restricted operation is granted privileged

execution, and in its original context this is desired and nec-

essary. However, if the restricted operation is executed as part

of a code reuse attack, the elevated privilege could undermine

the security of the embedded system. To gain insight into the

risk posed by the privilege overlays, we measure for each

of the three IoT applications, how many overlays occur, how

many instructions are executed in each, and how many have

externally defined registers (external to the privilege overlay)

that are used for addressing within the overlay. We wrote a

verifier, which parses the assembly code of the application and

identifies all privilege overlays. The results for the 20 variants

of the IoT applications are shown in Table IV. It shows that the

number of privilege overlays is small and that on average 5 to

7 instructions are executed within each. This results in a small

attack surface and is a sharp reduction relative to the current

state-of-practice in which the entire execution is in privileged

mode.

2) Diversification: To further mitigate code reuse attacks

and data corruption attack, EPOXY uses diversification for

function locations in the code, data, and registers. This also

provides protection against Data-oriented programming using

TABLE IV
RESULTS OF OUR VERIFIER SHOWING THE NUMBER OF PRIVILEGE

OVERLAYS (PO), AVERAGE NUMBER OF INSTRUCTIONS IN AN OVERLAY

(AVE), MAXIMUM NUMBER OF INSTRUCTIONS IN AN OVERLAY (MAX),
AND THE NUMBER OF PRIVILEGE OVERLAYS THAT USE EXTERNALLY

DEFINED REGISTERS FOR ADDRESSING (EXT).

App PO Ave Max Ext
PinLock 40 7.0 53 15
FatFs-uSD 31 5.0 20 0
TCP-Echo 25 5.2 20 0

299



global variables. Ultimately the amount of diversity available

is constrained by the amount of memory. Our diversification

strategies distribute any unused memory within the data, bss,

and text regions. Let S denote the amount of slack memory

and R denote the size of the region (any one of the three above,

depending on which kind of diversification we are analyzing).

For the text region S is the amount of unused Flash, and for

the data and bss regions S is the amount of unused RAM.

Then the total amount of memory available for diversifying

any particular region is R+S—say for the global data region,

the variable can be placed anywhere within R and the slack

memory S can be split up and any piece “slid” anywhere

within the data region. Since each is randomized by adding

variables or jump instructions with a size of 4 bytes the total

number of locations for a pointer is (R+ S)/4.

Let us consider PinLock, our smallest example. It uses 2,376

bytes of RAM and would require a part with 4,096 bytes of

RAM, leaving 1,720 bytes of slack. PinLock’s data section is

1,160 bytes, thus a four byte pointer can have 720 locations or

over 9 bits of entropy. This exceeds Linux’s kernel level ASLR

(9 bits, [29] Section IV), and unlike Linux’s ASLR, disclosure

of one variable does not reveal the location of all others.

The text region is 11,788 bytes which means at least 16KB

of Flash would be used. Since all Flash can be used except

the region used for storing initial values for the data region

(maximum of 1,556 bytes in PinLock), the text section can

be diversified across 15,224 bytes. This enables approximately

3,800 locations for a function to be placed, which translates to

entropy of just under 12 bits. Entropy is ultimately constrained

due to the small size of memory but, similar to kernel ASLR,

an attacker cannot repeatedly guess as the first wrong guess

will raise a fault and stop the system.

3) ROP analysis: To understand how diversity impacts code

reuse attacks we used the ROPgadget [52] ROP compiler.

This tool disassembles a binary and identifies all the available

ROP gadgets. A ROP gadget is a small piece of code ending

in a return statement. It provides the building block for an

attacker to perform ROP attacks. ROP attacks are a form of

control hijack attacks which utilize only the code on the sys-

tem, thus bypassing code integrity mechanisms. By chaining

multiple gadgets together, arbitrary (malicious) execution can

be performed. By measuring surviving gadgets across different

variants we gain an understanding of how difficult it is for an

attacker to build a ROP attack for a large set of binaries.

For each of the three applications, we identify gadgets

individually in each of 1,000 variants. Each variant had all

protections applied. To obtain the gadgets, ROPgadget parsed

each file and reported all gadgets it found including duplicates.

ROPgadget considers a duplicate to be the same instructions

but at a different location, by including these we ensure that

gadgets have the best chance of surviving across variants.

The number of gadgets located at the same location with the

same instructions were then counted across the 1,000 variants.

To define the metric “number of gadgets surviving across x
variants” consider a gadget that is found at the same location

and with the identical instructions across all x variants. Count

TABLE V
NUMBER OF ROP GADGETS FOR 1,000 VARIANTS THE IOT

APPLICATIONS. LAST INDICATES THE LARGEST NUMBER OF VARIANTS

FOR WHICH ONE GADGET SURVIVES.

Num. Surviving
App Total 2 5 25 50 Last
PinLock 294K 14K 8K 313 0 48
FatFs-uSD 1,009K 39K 9K 39 0 32
TCP-Echo 676K 22K 9K 985 700 107

up all such gadgets and that defines the metric. This is a

well-used metric because the adversary can then rely on the

gadget to craft the control-flow hijacking attack across all the

x variants. Clearly, as x goes up, this metric is expected to

decrease. Table V shows the number of gadgets that survived

across a given number of variants. To interpret this, consider

that for the column “2”, this number is the count of gadgets

which survived across 2 or more variants of the program. The

last remaining gadget survived across 48 variants of PinLock,

only 32 variants of FatFS-uSD, and 107 variants of TCP-Echo.

If a ROP attack only needs the single gadget which survives

across the maximum number of variants—an already unlikely

event—it would work on just over 10% of all variants. This

shows that our code diversification technique can successfully

break the attacker’s ability to use the same ROP attack against

a large set of binaries.

D. Comparison to FreeRTOS

Porting an application to FreeRTOS-MPU could provide

some of the protections EPOXY provides. Compared to

EPOXY, FreeRTOS-MPU does not provide W ⊕ X or code

reuse defenses. FreeRTOS-MPU provides privilege separation

between user tasks and kernel task.

User tasks running in unprivileged mode can access their

stack and three user definable regions if it wishes to share

some data with another user mode task. A kernel task runs

in privileged mode and can access the entire memory map. A

user task that needs to perform a restricted operation can be

started in privileged mode but then the entire execution of the

user task will be in privileged mode. If the privilege level is

dropped, then it cannot be elevated again for the entire duration

of the user task, likely a security feature in FreeRTOS-MPU.

We compare our technique to using FreeRTOS-MPU by

porting PinLock to FreeRTOS-MPU. The vendor, STMicro-

electronics, provided equivalent applications for FatFS-uSD

and TCP-Echo that use FreeRTOS; we added MPU support to

these application. This required: 1) Changing linker and startup

code of the application to be compatible with the FreeRTOS-

MPU memory map. 2) Changing the existing source code to

use FreeRTOS-MPU specific APIs. 3) If any part of a task

required a privileged operation, then the entire task must run

with full privileges (e.g., task initializing TCP stack).

Table VI shows the code size, RAM size, number of

instructions executed and the number of privileged instructions

for each application using EPOXY and FreeRTOS-MPU. The

number of instructions executed (Exe) is the number of in-

structions executed for the whole application to completion.

300



TABLE VI
COMPARISON OF RESOURCE UTILIZATION AND SECURITY PROPERTIES OF

FREERTOS-MPU(FREERTOS) VS. EPOXY SHOWING MEMORY USAGE,
TOTAL NUMBER OF INSTRUCTIONS EXECUTED (EXE), AND THE NUMBER

OF INSTRUCTIONS THAT ARE PRIVILEGED (PI).

App Tool Code RAM Exe PI

PinLock
EPOXY 16KB 2KB 823K 1.4K
FreeRTOS 44KB 30KB 823K 813K

FatFs-uSD
EPOXY 27KB 12K 33.3M 3.9K
FreeRTOS 58KB 14KB 34.1M 33.0M

TCP-Echo
EPOXY 43KB 35KB 310.0M 1.5K
FreeRTOS 74KB 51KB 321.8M 307.0M

Privileged instructions (PI) describe which of these instruc-

tions execute in privileged mode. Both are obtained using the

Debug Watch and Trace unit provided by ARM [11]. The

results for EPOXY are averaged over 100 runs across all

20 variants with 5 runs per variant, and FreeRTOS-MPU’s

are averaged over 100 runs. It is expected that the total

number of instruction to be comparable as both are running the

same applications. However, EPOXY uses an average of only

0.06% of privileged instructions FreeRTOS-MPU uses. This is

because EPOXY uses a fine-grained approach to specify the

privileged instructions, while FreeRTOS-MPU sets the whole

task as privileged. A large value for PI is undesirable from

a security standpoint because the instruction can be exploited

to perform security-critical functions, such as, turning off the

MPU thereby disabling all (MPU-based) protections.

VII. RELATED WORK

Our work uses our novel privilege overlays, to enable

established security policies from the desktop world for bare-

metal embedded systems. We also customize several of these

protections to the unique constraints of bare-metal systems.

Modern desktop operating systems such as Windows, Linux,

and Mac OS X protect against code injection and control-flow

hijack attacks through a variety of defenses, such as DEP [55],

stack canaries [22], Address Space Layout Randomization

[49], and multiple levels of execution privileges.

The research community has expended significant effort

in developing defenses for control-flow hijacking and data

corruption. These works include: Artificial Diversity [20,

36, 13, 14, 35, 32, 38, 41, 48, 25], Control-Flow Integrity

(CFI) [9, 43, 58, 59, 46, 18], and Code Pointer Integrity

(CPI) [40]. Artificial Diversity [20] outlines many techniques

for creating functionally equivalent but different binaries and

how they may impact the ability for attacks to scale across

applications. A recent survey [41] performs an in-depth review

of the 20+ years of work that has been done in this area.

Artificial software diversity is generally grouped by how it is

applied, by a compiler [36, 13, 14, 35, 32, 38, 45, 15] or by

binary rewriting [48, 25]. With the exceptions of [32, 45, 15]

these works target the applications supported by an OS,

and assume virtual address space to create large entropy.

Mclaughlin et al. [45] propose a firmware diversification

technique for smart meters, using compiler rewriting. They

give analytically results on how it would slow attack prop-

agation through smart meters. They give no analysis with

respect to execution time overhead or energy consumption.

Giuffrida et al. [32] diversify the stack by adding variables to

stack frames, creating a non-deterministic stack size which is

not suitable for embedded systems. EPOXY applies compile-

time diversification and utilizes techniques appropriate to their

constraints. Braden et al. [15] focus on creating memory

leakage resistant applications without hardware support. They

use an approach based on SFI to prevent disclosure of code

that has been randomized using fine-grained diversification

techniques. Their approach assumes W ⊕X and is compatible

with MPUs. Our work provides a way to ensure enforcement

of W ⊕X automatically.

CFI uses control-flow information to ensure the targets of

all indirect control-flow transfers end up at valid targets. CFI

faces two challenges: precision and performance. While the

performance overhead has been significantly reduced over

time [46, 54], even the most precise CFI mechanism is

ineffective if an attacker finds a code location that allows

enough gadgets to be reached, e.g., an indirect function call

that may call the function desired by the attacker [19, 28].

CFI with custom hardware additions has been implemented

on embedded systems [24] with low overhead. Our techniques

only require the commonly available MPU. CPI [40] enforces

strict integrity of code pointers with low overhead but re-

quires runtime support and virtual memory. However, separate

memory regions and MMU-based isolation are not available

on bare-metal embedded systems. We leverage SafeStack, an

independent component of CPI that protects return addresses

on the stack, and adapt it to embedded systems without virtual

memory support.

Embedded systems security is an important research topic.

Cui and Stolfo [23] use binary rewriting to inject runtime

integrity checks and divert execution to these checks; diversi-

fying code in the process. Their checks are limited to checking

static memory via signatures and assumes DEP. Francillon

et al. [31] use micro-controller architecture extensions to

create a regular stack and a protected return stack. EPOXY

also uses a dual stack, without additional hardware support.

Firmware integrity attestation [30, 27, 44, 10] uses either a

software or hardware trust anchor to provide validation that

the firmware and or its execution matches a known standard.

These techniques can be used to enforce our assumption

that the firmware is not tampered with at installation. Some

frameworks [16, 4, 7, 1] enable creation of isolated compu-

tational environments on embedded systems. mbedOS[4] and

FreeRTOS [1] are both embedded operating systems which

can utilize the MPU to isolate OS context from application

context. TyTan [16] and mbed μV isor [7] enable sandboxing

between different tasks of a bare-metal system. These require

that an application be developed using its respective API.

ARM’s TrustZone [12] provides hardware to divide execution

between untrusted and trusted execution environments. The

ARMv7-M architecture does not contain this feature.

301



VIII. DISCUSSION

Real-time systems. The diversity techniques we employ

introduce some non-determinism between variants. This may

make it unsuitable for real-time systems with strict timing

requirements. However, the variability is low (a few percent)

making our techniques applicable to wide ranges of devices,

particularly IoT devices, as they generally have soft real-time

constraints. Investigation of the methods to further reduce

variability is an area of future work. This involves intrusive

changes to the compiler infrastructure to make its actions more

deterministic in the face of diversification.

Protecting inputs and outputs. We demonstrated EPOXY’s

ability to protect the lock actuator on PinLock. Protecting the

Ethernet and the SD interfaces is conceptually the same—a

series of reads and writes to IO registers. However, the HAL

for these interfaces makes use of long indirection chains, i.e.,
passing the addresses of these registers as function parameters.

Our current analysis does not detect these accesses, and the

complexity of the HAL makes manual annotation a daunting

task. Extending our analysis to be inter-procedural will allow

us to handle these complex IO patterns.

Use with lightweight OSs. EPOXY can be extended to apply

its protections to lightweight OSs, such as FreeRTOS. Our

diversity techniques are directly usable as they do not change

any calling conventions. Privilege Overlays require the use of

a system call and care must be take to ensure one is reserved.

Currently SVC FE is used, an arbitrary choice, which can

be changed to a compile-time parameter. Thus, enabling the

application of W ⊕ X—assuming the OS does not use the

MPU, which typically is the case. To apply SafeStack, the only

remaining protection, EPOXY needs to know the number of

threads created, and how to initialize each unsafestack. This

may be obtained by making EPOXY aware of the OS thread

create functionality, so it can be modified to setup both stacks.

The OS’s context switch would also need to be changed to save

and restore separate unsafestack guards for each thread. With

these changes EPOXY could apply its defenses to systems

using a lightweight OS.

IX. CONCLUSION

Bare-metal systems typically operate without even basic

modern security protections like DEP and control-flow hijack

protections. This is caused by the dichotomy inherent in

bare-metal system development: all memory is executable

and accessible to simplify system development, but security

principles dictate restricting some of their use at runtime. We

propose EPOXY, that uses a novel technique called privilege

overlaying to solve this dichotomy. It applies protections

against code injection, control-flow hijack, and data corruption

attacks in a system-specific way. A performance evaluation of

our prototype implementation shows that not only are these

defenses effective, but that they result in negligible execution

and power overheads. The open-source version of EPOXY is

available at https://github.com/HexHive/EPOXY.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful

comments. We also thank Brandon Eames for his informative

feedback. This material is based in part upon work supported

by the National Science Foundation under Grant Numbers

CNS-1464155 and CNS-1548114. Any opinions, findings, and

conclusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views of

the National Science Foundation. This work is also funded by

Sandia National Laboratories. Sandia National Laboratories is

a multi-program laboratory managed and operated by Sandia

Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energys National

Nuclear Security Administration under contract DE-AC04-

94AL85000.

REFERENCES

[1] FreeRTOS-MPU. http://www.freertos.org/
FreeRTOS-MPU-memory-protection-unit.html

[2] FreeRToS Support Forum. ARM CM3 MPU does not seem
to build in FreeRTOS 9.0.0. https://sourceforge.net/p/freertos/
discussion/382005/thread/3743f72c/

[3] FreeRToS Support Forum. Stack overflow detection on Cortex-
m3 with MPU . https://sourceforge.net/p/freertos/discussion/
382005/thread/18f8a0ce/#deab

[4] mbed OS. https://www.mbed.com/en/development/mbed-os/
[5] STM32479I-EVAL. http://www.st.com/resource/en/user

manual/dm00219352.pdf
[6] STM32F4-Discovery. http://www.st.com/st-web-ui/

static/active/en/resource/technical/document/data brief/
DM00037955.pdf

[7] The mbed OS uVisor. https://www.mbed.com/en/technologies/
security/uvisor/

[8] FreeRToS Support Forum. Mistype in port.c for
GCC/ARM CM3 MPU , Jan 2016. https://sourceforge.net/
p/freertos/discussion/382005/thread/6a4f7df2/

[9] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, Control-
flow integrity, In ACM Conf. on Computer and Communication
Security. ACM, 2005, pp. 340–353.

[10] T. Abera, N. Asokan, L. Davi, J. Ekberg, T. Nyman, A. Paverd,
A. Sadeghi, and G. Tsudik, C-FLAT: control-flow attestation
for embedded systems software, In Symp. on Information,
Computer and Communications Security, 2016.

[11] ARM, ARMv7-M Architecture Reference Manual, “E.b” ed.,
2014.

[12] ARM, Trustzone, 2015. http://www.arm.com/products/
processors/technologies/trustzone/

[13] S. Bhatkar, D. DuVarney, and R. Sekar, Address Obfuscation:
An Efficient Approach to Combat a Broad Range of Memory
Error Exploits. USENIX Security Symp., 2003.

[14] S. Bhatkar, D. DuVarney, and R. Sekar, Efficient Techniques
for Comprehensive Protection from Memory Error Exploits,
USENIX Security Symp., 2005.

[15] K. Braden, S. Crane, L. Davi, M. Franz, P. Larsen, C. Liebchen,
and A.-R. Sadeghi, Leakage-resilient layout randomization for
mobile devices, In Network and Distributed Systems Security
Symp. (NDSS), 2016.

[16] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and
P. Koeberl, Tytan: Tiny trust anchor for tiny devices, In Design
Automation Conf. ACM/IEEE, 2015, pp. 1–6.

[17] bunnie and Xobs, The exploration and explotation of a sd
memory card, In Chaos Computing Congress, 2013.

[18] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brun-
thaler, and M. Payer, Control-Flow Integrity: Precision, Security,

302



and Performance, ACM Computing Surveys, vol. 50, no. 1, 2018,
preprint: https://arxiv.org/abs/1602.04056.

[19] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross,
Control-Flow Bending: On the Effectiveness of Control-Flow
Integrity, In SEC: USENIX Security Symposium, 2015.

[20] F. B. Cohen, Operating system protection through program
evolution, Computers and Security, vol. 12, no. 6, pp. 565–584,
oct 1993.

[21] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, A
large-scale analysis of the security of embedded firmwares, In
USENIX Security Symp., 2014, pp. 95–110.

[22] C. Cowan, C. Pu, D. Maier, and J. Walpole, StackGuard:
Automatic Adaptive Detection and Prevention of Buffer-
Overflow Attacks. USENIX Security Symp., 1998.

[23] A. Cui and S. J. S. Stolfo, Defending Embedded Systems
with Software Symbiotes, In Intl. Conf. on Recent Advances in
Intrusion Detection. Springer, 2011, pp. 358–377.

[24] L. Davi, M. Hanreich, D. Paul, A.-R. Sadeghi, P. Koeberl,
D. Sullivan, O. Arias, and Y. Jin, Hafix: Hardware-assisted flow
integrity extension, In Proceedings of the 52Nd Annual Design
Automation Conference, ser. DAC ’15, 2015, pp. 74:1–74:6.

[25] L. V. Davi, A. Dmitrienko, S. Nürnberger, and A.-R. Sadeghi,
Gadge Me If You Can, In Symp. on Information, Computer
and Communications Security. ACM Press, 2013, p. 299.

[26] L. Duflot, Y.-A. Perez, G. Valadon, and O. Levillain, Can you
still trust your network card, CanSecWest, pp. 24–26, 2010.

[27] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito, Smart:
Secure and minimal architecture for (establishing dynamic) root
of trust. In Network and Distributed System Security Symp.,
vol. 12, 2012, pp. 1–15.

[28] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard,
H. Okhravi, and S. Sidiroglou-Douskos, Control jujutsu: On the
weaknesses of fine-grained control flow integrity, In CCS’15:
Conference on Computer and Communications Security, 2015.

[29] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, Jump over
aslr: Attacking branch predictors to bypass aslr, In IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2016.

[30] A. Francillon, Q. Nguyen, K. B. Rasmussen, and G. Tsudik,
A minimalist approach to remote attestation, In Euro. Design,
Automation, and Test. EDAA, 2014, p. 244.

[31] A. Francillon, D. Perito, and C. Castelluccia, Defending
embedded systems against control flow attacks, In ACM Conf.
on Computer and Communication Security, 2009, pp. 19–26.

[32] C. Giuffrida, A. Kuijsten, and A. Tanenbaum, Enhanced
operating system security through efficient and fine-grained
address space randomization. USENIX Security Symp., 2012.

[33] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, The
mälardalen wcet benchmarks: Past, present and future, In Open
Access Series in Informatics, vol. 15. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2010.

[34] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown, Mibench: A free, commercially
representative embedded benchmark suite, In Intl. Work. on
Workload Characterization. IEEE, 2001, pp. 3–14.

[35] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz,
Profile-guided automated software diversity, In Intl Symp. on
Code Generation and Optimization. IEEE, 2013, pp. 1–11.

[36] A. Homescu, S. Brunthaler, P. Larsen, and M. Franz, Librando:
Transparent code randomization for just-in-time compilers, In
ACM Conf. on Computer and Communication Security, 2013.

[37] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and
Z. Liang, Data-oriented programming: On the expressiveness
of non-control data attacks, In IEEE Symp. on Security and
Privacy. IEEE, 2016, pp. 969–986.

[38] T. Jackson, B. Salamat, A. Homescu, K. Manivannan, G. Wag-
ner, A. Gal, S. Brunthaler, C. Wimmer, and M. Franz,
Compiler-generated software diversity, In Moving Target De-

fense. Springer, 2011, pp. 77–98.
[39] B. Krebs, DDoS on Dyn Impacts Twit-

ter, Spotify, Reddit. https://krebsonsecurity.com/2016/10/
ddos-on-dyn-impacts-twitter-spotify-reddit/

[40] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song, Code Pointer Integrity, USENIX Symp. on Operating
Systems Design and Implementation, 2014.

[41] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, SoK:
Automated Software Diversity, IEEE Symp. on Security and
Privacy, pp. 276–291, 2014.

[42] C. Lattner and V. Adve, Llvm: A compilation framework for
lifelong program analysis and transformation, In Intl. Symp.
Code Generation and Optimization. IEEE, 2004, pp. 75–86.

[43] J. Li, Z. Wang, T. Bletsch, D. Srinivasan, M. Grace, and
X. Jiang, Comprehensive and efficient protection of kernel con-
trol data, IEEE Trans. on Information Forensics and Security,
vol. 6, no. 4, pp. 1404–1417, 2011.

[44] Y. Li, J. M. McCune, and A. Perrig, Viper: Verifying the
integrity of peripherals’ firmware, In ACM Conf. on Computer
and Communications Security, 2011, pp. 3–16.

[45] S. E. McLaughlin, D. Podkuiko, A. Delozier, S. Miadzvezhanka,
and P. McDaniel, Embedded firmware diversity for smart elec-
tric meters. In USENIX Work. on Hot Topics in Security, 2010.

[46] B. Niu and G. Tan, Modular control-flow integrity, ACM SIG-
PLAN Notices, vol. 49, no. 6, pp. 577–587, 2014.

[47] J. Pallister, S. J. Hollis, and J. Bennett, BEEBS: open
benchmarks for energy measurements on embedded platforms,
CoRR, vol. abs/1308.5174, 2013.

[48] V. Pappas, M. Polychronakis, and A. D. Keromytis, Smashing
the gadgets: Hindering return-oriented programming using in-
place code randomization, IEEE Symp. on Security and Privacy,
pp. 601–615, 2012.

[49] PaX Team, PaX address space layout randomization (ASLR),
2003. http://pax.grsecurity.net/docs/aslr.txt

[50] G. Ramalingam, The undecidability of aliasing, ACM Trans.
Program. Lang. Syst., vol. 16, no. 5, Sep. 1994.

[51] A.-R. Sadeghi, C. Wachsmann, and M. Waidner, Security and
privacy challenges in industrial internet of things, In Design
Automation Conf. ACM/IEEE, 2015, p. 54.

[52] J. Salwan, ROPgadget - Gadgets Finder and Auto-Roper, 2011.
http://shell-storm.org/project/ROPgadget/

[53] L. Szekeres, M. Payer, and D. Song, SoK: Eternal War in
Memory, In IEEE Symp. on Security and Privacy. IEEE, may
2013, pp. 48–62.

[54] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlings-
son, L. Lozano, and G. Pike, Enforcing forward-edge control-
flow integrity in gcc & llvm, In USENIX Security Symp., 2014.

[55] A. van de Ven and I. Molnar, Exec Shield, 2004. https:
//www.redhat.com/f/pdf/rhel/WHP0006US Execshield.pdf

[56] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham,
Efficient software-based fault isolation, In SOSP’03: Symposium
on Operating Systems Principles, 1993.

[57] J. Zaddach, A. Kurmus, D. Balzarotti, E.-O. Blass, A. Francil-
lon, T. Goodspeed, M. Gupta, and I. Koltsidas, Implementation
and implications of a stealth hard-drive backdoor, In Annual
Computer Security Applications Conf., 2013, pp. 279–288.

[58] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, Practical control flow integrity and ran-
domization for binary executables, In IEEE Symp. on Security
and Privacy. IEEE, 2013, pp. 559–573.

[59] M. Zhang and R. Sekar, Control flow integrity for cots binaries,
In USENIX Security Symp., 2013, pp. 337–352.

[60] V. Zivojnovic, J. M. Velarde, C. Schlager, and H. Meyr, Dsp-
stone: A dsp-oriented benchmarking methodology, In Intl. Conf.
on Signal Processing Applications and Technology, 1994, pp.
715–720.

303


