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Abstract—Industrial robots, automated manufacturing, and
efficient logistics processes are at the heart of the upcoming
fourth industrial revolution. While there are seminal studies on
the vulnerabilities of cyber-physical systems in the industry, as
of today there has been no systematic analysis of the security of
industrial robot controllers.

We examine the standard architecture of an industrial robot
and analyze a concrete deployment from a systems security
standpoint. Then, we propose an attacker model and confront
it with the minimal set of requirements that industrial robots
should honor: precision in sensing the environment, correctness
in execution of control logic, and safety for human operators.

Following an experimental and practical approach, we then
show how our modeled attacker can subvert such requirements
through the exploitation of software vulnerabilities, leading to
severe consequences that are unique to the robotics domain.

We conclude by discussing safety standards and security
challenges in industrial robotics.

I. INTRODUCTION

Industrial robots are mechanical, multi-axis “arms” used

mainly in the manufacturing sector, or for automation in gen-

eral. The International Federation of Robotics forecasts that,

by 2018, approximately 1.3 million industrial robot units will

be employed in factories globally, and the international market

value for “robotized” systems is approximately of 32 billion

USD [1]. In all of their forms, robots are complex automation

devices that heavily interact with the physical world—in this

sense they are cyber-physical systems (CPSs)—and include

multiple hardware and software components: mechanical actu-

ators, controllers, sensors, human-interaction devices, control

logic, firmware, and operating systems. Moreover, the growing

integration of computerized monitoring of physical production

processes leads to robots being interconnected among them-

selves and with external services. For instance, in the “Industry

4.0” vision, an enterprise-management system automatically

orders any part needed to complete the scheduled production,

reconfigures the robotized production lines, and tracks their

operational status [2].

Along with the major improvements to safety, efficiency,

and production time, this increased complexity and inter-

connection offers a novel attack surface, with consequences

ranging from the compromise of the controlling machines up

to effects on the production chain. One may even conceive

that, in the future, a manufacturer could leverage these novel

attack opportunities to affect the reputation of a competitor—

not to mention the possibility that enemy nations could attack

each others’ factories manufacturing critical goods [3].

A further exacerbating factor is that robot controllers cannot

be promptly patched, since updates may require unacceptable

downtime, or even introduce regressions and new software

bugs that render the software unusable. This “patching prob-

lem” makes the exploitation window of a vulnerability much

longer, eventually increasing the impact of an attack.

Taking advantage of new interconnections to compromise

devices originally designed to work in isolation is a pattern

already observed, for instance, in the automotive [4], [5] and

industrial control system (ICS) sectors. After Stuxnet [6], other

successful attacks have been recently observed: In 2014, an

attack on a German steel mill caused the inability to shut

down a blast furnace. In 2015, 295 security incidents were

reported to the U.S. ICS CERT [7], of which 22 reached the

core of critical control systems.

Unfortunately, even a simple Shodan query (Section II)

shows that sometimes industrial robots are exposed on the

Internet without being properly secured. Alarmed by this

finding, we ran a survey among robot users, and discovered

that they either do not regard a security incident involving

a robot as realistic, or are not fully aware of the potential

damages.

Various informal communications [8] already discussed the

risks caused by security vulnerabilities in industrial robots,

highlighting lack of awareness by both developers and public.

More recently, researchers have raised concerns about the

cyber attack resiliency of unmanned aerial vehicles (UAVs) [9]

and robots for tele-operated surgery [10]. However, the main

focus was the need for secure communication protocols [11],

without analyzing system-specific attacks.

To the best of our knowledge, there is no systematic analysis

of the attack surface and of the impact of cyber attacks

against industrial robots enabled by software vulnerabilities

and architectural flaws. In this paper, we systematically ana-

lyze the feasibility of attacking a modern industrial robot by

exploring concrete attack vectors that, when exploited, can

subvert the interaction between a robot and the surrounding
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Figure 1. A high-level depiction of an Industry 4.0 ecosystem, to help the
reader contextualize our work.

environment, thereby violating its basic requirements. In other

words, we wonder to what extent, starting from the exploita-

tion of the “cyber” components of a robot, an attacker can

affect the physical environment. To answer this question, we

propose a domain-specific attacker model, discuss how certain

combinations of software vulnerabilities enable classes of

attacks unique to industrial robots (e.g., circumventing safety

measures, impairing the precision of movements), and evaluate

their potential impact. More specifically, we enumerate five

classes of attacks, based on the observation that a robot

working under normal circumstances should at least be able to

read accurately from sensors, execute its control logic, perform

precise movements, and not harm humans.

To show the feasibility of the attacks, we present a case

study on a modern industrial robot sold by a major man-

ufacturer. Due to standards and architectural commonalities

among most modern industrial robots, the robot we chose is

representative of a large class of industrial robots. Guided by

our attacker model, we discover various vulnerabilities that

allow an attacker to completely and remotely compromise the

robot-controlling computers, and show how we used them to

implement some of the proposed classes of attacks.

In summary, we present the following contributions:

• We define an attacker model for industrial robots, de-

scribing the capabilities of an adversary to successfully

develop and convey attacks;

• Starting from the “core” architectural features of a generic

industrial robot, we describe concrete, robot-specific at-

tack classes;

• We conduct an experimental security assessment on a de-

facto-standard robot;

• We analyze how, concretely, an attack can leverage soft-

ware vulnerabilities to carry out robot-specific attacks,

evaluating their impact, and discussing the future security

challenges.

II. CONTEXT AND MOTIVATION

We contextualize our work using a high-level Industry 4.0

example scenario (Figure 1), which derives from our domain

knowledge, the standard architectures of industrial robots (Sec-

tion IV), and some of the answers to our survey (summarized

in Section II). We intentionally designed this scenario to be

vendor-agnostic and simple, while representing a complete and

realistic deployment: Robots are connected to their network

via a controller, which can be approximated as a computer that

controls the robot and includes human-interaction subsystems

(e.g., joysticks, switches, I/O and diagnostic ports). In the best

scenario, robots are connected to an isolated subnet. However,

we found out that such subnet is still often remotely accessible,

either through a connection to the Internet, or via dedicated

vendor access (e.g., via GPRS).

The motivation for this work stems from the following key

observations:

Interconnected Robots. Industrial robots are “connected”

primarily for programming and maintenance purposes—a use

case specified by ISO standards [12]. For instance, in a large

car production plant developed by KUKA Robotics, all the

259 robots are connected to central control and monitoring

systems [13]. The industrial robot ecosystem is also empha-

sizing a richer human-robot interaction (HRI) and complex

APIs to integrate robots and ICT ecosystems. For example,

ABB controllers expose a Robot Web Service API [14], an

HTTP REST API that allows external programs to speak

with the robot controller. The availability of easy-to-use APIs

has led to the creation of intermediate layers that allow the

control of robots, even from consumer-grade devices such as

smartphones [15], [16].

It is not hard to envision a pervasive future for industrial

robots, because they are following the same natural evolution

that characterized other digital devices such as smartphones. In

2011, the Robot App Store (http://www.robotappstore.com/),

an application-distribution platform supporting many commer-

cially available consumer robots and drones, opened to the

public. ABB hosts the RobotApps forum (https://robotapps.

robotstudio.com), where users can exchange 3D models,

videos, add-ins and “apps”.

First Observation. The increased connectivity of computer

and robot systems is (and will be) exposing robots to cyber

attacks. Indeed, nowadays, industrial robots—originally con-

ceived to be isolated—are exposed to corporate networks and

to the Internet.

Software-defined Safety. The design of industrial robots

emphasizes safety concerns: Robots are traditionally designed

to operate in a workspace physically separated from humans

(e.g., a cage). However, vendors are introducing several models

of collaborative robots (or cobots), able to work nearby

humans (e.g., ABB’s YuMi, FANUC’s CR-35iA [17], and

Universal Robots’ cobots). This, alongside with the gradual

shift of safety devices’ implementations from hardwired logic

to more flexible software-based implementations, increases the

relevance of safety concerns.

Second Observation. Safety is of increasing importance

in robotics, but the implementation of safety mechanisms in

software is increasing the potential impact of security issues:
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An attacker may disrupt operations and indirectly pose safety

threats to human operators.

Robot Users and Cybersecurity. To understand how much

industrial robotics practitioners and researchers are aware

of cyber security risks deriving from industrial robots, we

performed a preliminary investigation.

We sent a survey to 50 domain experts, both from academia

(i.e., members of the automatic control and robotics com-

munity) and from the industry, including representatives of

relevant scientific and technical societies. We received 20

answers, and we manually followed up to investigate some

of them further. Appendix A details the results of this survey.

The proposed questions (common for all subjects) were aimed

at understanding how industrial robots are deployed, how

safety measures are used, how robots are programmed, and,

in general, to obtain a picture of the users’ perception of

security risks. About 30% of the participants found the default

safety measures of the deployed robots “too limiting” for

specific use cases, and, in fact, 60% told us that they had to

customize them. The answers also unveiled issues related to

the development cycle of robot programs: In many cases, em-

ployees are not accountable for changes to the robot program

code. Regarding security practices, 28% of the respondents did

not enforce access control policies on the robot’s controller,

30% had robots accessible from the Internet, and 76% never

performed a professional cyber security assessment on their

infrastructure. More than 50% of the respondents did not

consider cyber attacks a realistic threat, and those who do,

were mainly concerned about safety issues.

Third Observation. According to our survey, awareness of

security risks seems scarce. Moreover, as detailed in Sec-

tion III, we found evidence of 28 robots directly exposed to

the Internet, with an accessible FTP server.

Given the premises outlined in this section, we believe that an

experimental security analysis of industrial robots is beneficial

for both the research community and the industry.

Therefore, in this work, we (a) define an attacker model; (b)

introduce industrial-robot-specific attacks based on the tasks

that a robot must be able to perform, and, in general, on the

properties that it must possess; and (c) experimentally verify

the feasibility of such attacks on a standard robot architecture

under the defined attacker model.

III. ATTACKER MODEL

We model attackers according to their goals, their level of

access to the system, and their capabilities.

A. Attacker Goals and Threat Scenarios

The attacker wants to obtain control of the target industrial

robot as a means to carry out attacks, leveraging the unique

fact that the system is interacting with the physical world.

We reason about attacker profiles through four example threat

scenarios (which are not necessarily the only possible ones).

Production Outcome Altering. The attacker may want to

inject faults and micro-defects in the production. These defects

can cause immediate or delayed financial loss, and damaged

reputation, resulting in an advantage for competitors and

potentially damaging the brand reputation. Depending on the

manufactured goods, defects can also cause fatalities (e.g., in

automotive, transportation or military fields).

Physical Damage. An attacker could damage machinery, or

cause injuries to people working in the factory, for instance

by disabling or substantially altering safety devices.

Production Plant Halting. According to the extent of the

damages caused by the cyber-attack, the production may

or may not be promptly restarted (e.g., the time to repair

varies greatly). Although financial losses due to downtime are

difficult to estimate, and vary greatly according to the type

and size of the targeted company, the vice president of product

development at FANUC stated [18] that “unplanned downtime

can cost as much as $20,000 potential profit loss per minute,

and $2 million for a single incident.”

Unauthorized Access. An attacker may want to steal sen-

sitive data (e.g., source code; information about production

schedules and volumes).

B. Access Level

We broadly distinguish between network and physical attack

vectors. We focus exclusively on accessible hardware compo-

nents that allow access to the digital attack surface, ignoring

attacks that involve breaking or tampering with the physical

security of the robot controller’s case.

Network Attacker. Even when the robot is not directly

exposed to the Internet, industrial robot controllers can be

connected to the factory LAN, or to (vulnerable) remote

service facilities. The techniques and tactics used to gain

network access are beyond the scope of this work. However, an

attacker usually leverages various entry points to compromise

a computer connected to the factory network, even resorting

to offline methods (e.g., USB sticks [19]) used to pivot attacks

against internal devices.

Remote Exposure. We found that, sometimes, controllers

are reachable from the outside. For about two weeks, we

monitored Shodan and ZoomEye, two search services that

index data from Internet scans, repeatedly querying them

for string patterns contained in the FTP banner of the top

robot manufacturers (e.g., “ABB Robotics,” “FANUC FTP,”

as detailed in Table I). Despite we limited our search to the

top manufactures and to FTP, the findings support our remote-

attacker assumption. We found three distinct Internet-exposed

ABB controllers, one of them providing unrestricted access

using anonymous credentials (i.e., the authentication system

was disabled). For ethical reasons, we did not directly attempt

to connect to those systems; instead, we used only the data

provided by the search services to filter out false positives.

Some industrial robots embed proprietary remote access

devices, used, for example, by the vendor for remote mon-

itoring and maintenance. Such devices are industrial routers,

often dubbed with vendor-specific terms such as “service box.”

The connection between the industrial router and the remote
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Table I
INTERNET-EXPOSED INDUSTRIAL AUTOMATION DEVICES, ACCORDING TO

ZOOMEYE AND SHODAN SEARCH RESULTS

Search string Entries Country

ABB Robotics 5 DK, SE
FANUC FTP 9 US, KR, FR, TW

Yaskawa 9 CA, JP
Kawasaki E Controller 4 DE

Mitsubishi FTP 1 ID

service center can happen over the Internet, through a VPN, or

through a GPRS network that can use the commodity carrier-

provided APNs, or vendor-specific APNs configured on M2M

SIMs. In the latter case, if not properly configured, all factories

using robots from the same vendor will share the same APN

and will be able to connect to one another.

Industrial routers provide a helpful attack surface to gain

access to a robot controller. For example, an attacker could

target a widespread vendor of such appliances, whose products

are also resold by robotics OEMs as part of their support con-

tracts. Among these vendors, eWON is quite representative.

A simple Shodan query for the default banner of the em-

bedded web server (Server: eWON) yielded 1,044 results,

without accounting for customized banners. The web-based

configuration console is easily “fingerprintable,” and attackers

could exploit vulnerabilities or misconfigurations in the router

to gain access to the robot. For example, we analyzed a

eWON device in a black-box fashion and discovered a severe

authentication-bypass vulnerability that allows an attacker to

read the configuration and device information (e.g., event

logs).

Physical Attacker. The simplest and most common type of

physical attacker is the robot operator, who uses the robot’s

handeld HRI interface (i.e., a joystick with a touchscreen

display) on a regular basis to program the robot or manually

pilot its arm(s).

A slightly more sophisticated profile is the “casual” at-
tacker (e.g., malicious contractor or technician), who is able

to plug a device into the robot controller’s openly accessible

RJ-45 (or equivalent) port. This grants full access to the robot

controller’s computer via Ethernet or other I/O interfaces. As

detailed in Section IV, even standard Ethernet access can

mean that the attacker is allowed to send and receive network

frames to and from various sub-systems of the controller

through an unfiltered connection. The physical attacker can

leverage further vectors, for instance internal I/O interfaces

that the controller uses to communicate directly with the

robot’s components (e.g., DeviceNet over CANbus, as found

on ABB’s controllers). Thus, a casual physical attacker is

strictly more powerful than a network attacker.

C. Attacker Characterization

Attacker Profile. Following and simplifying the taxonomy

introduced in [20], the most likely profile for attacks requiring

physical access is an insider, whereas network attacks can

be performed by a broader set of cybercriminals. Given the

safety-critical and economic characteristics of the targets, we

need also to consider nation-state level attackers. To model

them, we assume that they would be able to reach the same

access level and target knowledge typical of an insider, while,

at the same time, would be able to launch sophisticated attacks

from remote endpoints. Such attackers would also not be

constrained by costs.

Technical Capabilities. We assume attackers to be familiar

with the structure of the target industrial robot, and to possess

the technical skills to perform reverse engineering without

exploiting any insider technical knowledge. Realistically, they

can rely on publicly available information (e.g., controller soft-

ware and firmware available for download from the vendor’s

website), and some reverse engineering. As a matter of fact,

we learned most of the details described in this paper by

reading freely available technical documentation. Therefore,

an attacker can do the same.

Access to Equipment. We consider it to be trivial for an

attacker to access a copy of the controller’s firmware binary

executables in order for them to reverse engineer the software

and discover vulnerabilities. Indeed, some vendors make the

controller firmware, or simulation environments, freely avail-

able for download from their website (e.g., the controller’s

firmware for ABB robots is included in the RobotWare distri-

bution as part of the RobotStudio suite).

Depending on the attackers’ budget, they may or may

not be able to test exploits before carrying out an attack,

as this would require access to a full-fledged deployment.

If unable to access a real robot, an attacker can leverage

simulators distributed by vendors in order to gain technical

knowledge about the target, and to prepare an attack payload.

For example, ABB’s RobotStudio suite allows one to make

use of a simulated environment. The simulator is contained in

a shared library that shares most of the code (and, thus, most

of the vulnerabilities) with the firmware of the controller’s

computer. This is clearly an advantage to the attacker, who

can gather complete access to platform-specific details without

accessing an actual controller.

On the other hand, some vendors (e.g., COMAU and Kuka)

provide their software only to customers. In this specific case,

the attacker needs at least temporary physical access to a robot

controller to dump a copy of the firmware. When not uploaded

remotely, the firmware is usually loaded from a removable

medium such as a MMC, which can be leaked—or stolen—

from the company that has access to the robot’s software as

part of a support contract. This does not necessarily require

an insider attacker, but just minimal knowledge about the

controller, and short-term network or physical access to the

robot.

Similarly to other specialized CPS domains (e.g., avionics

and ICS), used or reconditioned industrial robot parts are

available for sale without restrictions. The cost of such parts

may vary, and a complete robot with its controller has a

relatively high price tag. However, we do not consider such

a price out of reach for our attacker. For example, search-
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Figure 2. Black-box view of a standard industrial robot architecture. The
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via a REST API, with a program on the HRI interface, moving the joystick).
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(e.g., end effectors, servo motors) through dedicated I/O interfaces. The
controller is also reachable through a remote-access interface.

ing online marketplaces (e.g., globalrobots.com, ebay.com,

alibaba.com) shows that the IRB 140 manipulator from ABB,

which matches the reference setup we used in our experimental

analysis, can be purchased for a price ranging from $13,000

to $28,950 together with an outdated S4C controller; other

manipulators with an IRC5 controller can be found in the price

range of $24,999 to $35,500. Ultimately, access to specific

features (e.g., the GPRS remote service box of the robot that

we analyzed) is more complex, as these are only available

directly from the vendor as part of support contracts.

IV. INDUSTRIAL ROBOTS ARCHITECTURES

This section describes the basic structure of an industrial

robot, including common components, the tasks it can perform,

and how such tasks translate from high-level commands to

concrete actions. A visual overview of a generic industrial

robot system is given in Figure 2.

Scope. The scope of our analysis is defined by all the com-

ponents that must be part of a standard industrial robot. For

instance, we exclude the overall control of the manufacturing

process, as it involves multiple external control systems and

parts that would require a per-deployment analysis in order to

obtain a thorough security assessment.

The only optional components in our scope are remote-

access devices, which are commonly offered by vendors. This

decision is due to the security relevance of such devices, and

to account for remote adversaries in the attacker model.

A. Architecture, Components and Functionality

Industrial robots are extensively standardized [21]: They

are architecturally, functionally, and technically similar across

vendors, and share a minimum set of requirements.

Robot. An industrial robot is an “automatically controlled,

re-programmable, multipurpose manipulator programmable in

three or more axes, which can be either fixed in place or mobile

for use in industrial automation applications” (ISO 8373 [22]).

Mechanically, an industrial robot is an arm with two or more

joints, terminated by an end effector (e.g., pliers, cutter, laser

beam welder) that interacts with the environment. The main

global
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operator
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decision
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level

action
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task
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SENSORS ACTUATORS

Figure 3. Abstract representation of the control system architecture of a
robot controller. The arrows represent the data flow, and the blocks represent
“generic” modules. From left to right, the controller acquires measurements
from the environment, uses its knowledge and internal state to process the
inputs, takes a decision, and actuates it. The functionality of the robot can be
expressed at various levels of abstraction, from the highest level at the top
(task, e.g., what the operator wants the robot to do), to the lowest level at the
bottom (servo, e.g., current to apply to the motor’s driver).

characteristic of an industrial robot is its multipurpose nature,

which implies a high level of complexity in the controller.

Controller. The robot controller is a complex device, typi-

cally enclosed in one or more chassis, “hiding” a multitude

of interconnected electrical and computer systems. A robot

controller is designed with an emphasis on efficiency, complex

motion description, nonlinear control, and interaction with

human operators.

By exploring the current product lines from leading vendors

such as ABB, COMAU, Yaskawa, FANUC, and Kuka, we

confirm that they all share a common architecture, types of

components, and functional characteristics. We noticed that

most of the controllers on the market also implement a similar

software architecture, with operator interfaces running on

Windows CE-based embedded systems (or equivalent), and

one or more real-time VxWorks-based controller computers.

Control System. The controller implements a control system
to supervise the robot’s activities, making it one of the most

safety- and security-critical components: It embodies the logic

and functionality required to monitor and pilot the mechanical

parts of the robot, and to communicate with the environment.

As a reference, throughout this paper, we will refer to the

functional model proposed in [23] and depicted in Figure 3.

Horizontally, the control system is split into three functional

modules, and four hierarchical levels. The sensory processing
modules capture the state of the system (e.g., via various

sensors and servo motors position). The knowledge models
modules hold the “knowledge” of the system and of the

environment. The decision strategies modules translate high-

level tasks into actions. Vertically, the task level consists of the

task specifications given by the user. The action level translates

the symbolic commands from the task level into motion

paths. The primitive level computes the motion trajectory and

manages the control strategy. Finally, the servo level reads

measurements from sensors (e.g., position, velocity, torque),
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and engages the control algorithms to provide a drive signal

to the servo motors.

Human-Robot Interaction. The human operator is in charge

of monitoring, starting, and stopping the operations of the

robot, whereas the programmer is in charge of writing task
programs (i.e., the set of instructions that define the specific

task of the robot).

The interaction between human and robot via a user inter-

face is generically called human-robot interaction (or HRI).

For example, operators and programmers can monitor the

status of the robot, and program it through the teach pendant, a

hand-held unit connected to the controller via wired or wireless

connection (Figure 4b shows a real pendant by ABB). The

teach pendant looks like a “heavy duty” tablet, augmented with

physical buttons and joysticks. In Figure 3 the HRI interfaces

(the teach pendant or the operator’s computer running specific

control software) are generically represented by the “operator

interface.”

The operator needs to interact with multiple functional

levels in order to control the robot (e.g., to program tasks,

to modify configurations, and to stop servomotors in case of

an emergency), and to be informed on the system state for

supervision and intervention (e.g., which motor is moving, is

the robot in manual or automatic mode?). Moreover, the oper-

ator can permanently modify the robot’s knowledge (e.g., load

a program, move the robot’s arm), which in turn changes the

decisions taken by the control system.

Robot Programming. The controller accepts task specifica-

tions written using a domain-specific programming environ-

ment. These programs can be written online or offline.

Online programming is common in modern robotic applica-

tions: The robot is “piloted” to record a sequence, by moving

(specifically, jogging) the axes in the desired position using

the teach-pendant’s joystick, and storing the recorded data

(e.g., coordinates of the position) read via the joint position

transducers. This technique is called “teaching by showing.”

Offline programming environments allow one to build more

complex programs on a simulated robot replica. Although

source code can be written with text editors (see Appendix C),

programming is aided by simulators (e.g., ABB’s RobotStudio

or Universal Robot’s URSim), which offer a software repre-

sentation of the robot, allowing programmers to experiment

with new features, and write and debug programs in a safe

environment. The resulting program can be loaded on the real

controller.

Robot programs are stored in the controller’s global mem-
ory. It holds the functional blocks needed to exchange infor-

mation between levels and modules, and maintain estimations

of the state of the whole system (e.g., known position on each

axis) and of the environment (e.g., temperature, weight of the

piece held by the pliers).

Automatic vs. Manual Mode. The controller can work in

automatic or manual mode. In automatic mode—intended for

regular operations of the robot in production—, the controller

Table II
ATTACK SUMMARY WITH VIOLATED REQUIREMENTS

Attack Safety Integrity Accuracy

Control Loop Alteration � � �
User-perceived Robot State Alteration � � �
Robot State Alteration � � �
Production Logic Tampering � � �
Calibration Parameters Tampering � � �

loads and executes task programs from the global memory;

in manual mode, the robot performs movements according

to inputs issued by the operator through the teach pendant.

Manual mode allows both a reduced-speed mode, used for

programming the robot, and a high-speed mode, used for

testing.

B. Summary of Requirements

Accuracy. The robot should read precise values from sen-

sors, and should issue correct and accurate commands to

the actuators, so that the movements are performed within

acceptable error margins. A violation of this requirement could

translate into small defects in the outcome. For example, if

the robot is used for welding, a minimal change in how the

weld is carried could structurally undermine the workpiece,

which in the case of a car body could possibly mean tragic

consequences for the end user safety.

Safety. Given their paramount importance, safety require-

ments are rigidly specified by ISO standards. They can be

summarized as: expose sufficient and correct information so

that operators can take safe and informed decisions; allow

operators to engage emergency procedures; execute emergency

procedures quickly and safely.

Integrity. The robot controller should minimize the risk

that badly written control logic could result in damage to

its physical parts. Violating this requirement means physically

damaging the manipulator, or even the controller itself, since

several high-voltage electric parts are used by the controller

to drive the servo motors.

We consider an attack to be any physical damage to the ar-

chitecture, or any violation of these requirements—if initiated

through a digital vector.

V. ATTACKING INDUSTRIAL ROBOTS

This section describes industrial-robot-specific attack oppor-

tunities to violate the accuracy, safety, and integrity require-

ments. For each attack, we describe the targeted functional

level in the model of Figure 3. Table II summarizes the attacks

and the corresponding requirements they violate. Instead,

in Section VI-G we discuss how an attacker can leverage

digital vulnerabilities to carry out these attacks.

A. Attack 1: Control Loop Alteration

This attack targets the servo level. It leverages the fact

that, for flexibility and code-reusability purposes, kinematics

and configuration parameters are read from a file or defined

dynamically at runtime. An attacker able to access a configu-

ration file can modify these parameters.
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For the attacker, the most interesting parameters to modify

are the ones affecting the robot movements: An extreme

parameter modification can completely violate functional and

safety requirements.

Closed Loop Control Parameters Detuning. A precise

control of the position of each link is crucial to ensure that

the robot is closely following the desired trajectory, especially

over long periods of time. To this purpose, industrial robots

adopt closed loop control techniques, such as industry-standard

Proportional Integral and Derivative (PID) and Proportional

position Integral and proportional Velocity (PIV) control sys-

tems, for the angular position of each joint axis.

In general, the aim of a closed loop control system is to

make the controlled variable follow a reference signal (set

point) as closely as possible. The values of its parameters

affect “how well” the controlled variable is able to track the

set point, thus influencing the precision of the movement, and

the voltage of the servo motors. With a sub-optimal tuning, the

controller will only slowly reach the desired position, violating

the accuracy requirements. This, in turn, affects the quality

of the outcome (i.e., the workpiece can be milled too much,

or the welding process can be compromised). Furthermore,

wrong parameters may lead to controller instability, causing

overshoots over the desired set point. This can result in a

violation of safety properties, and cause mechanical stress that

could damage the robot.

Open Loop Control Parameters Detuning. Speed and po-

sition control are usually implemented with additional open-

loop actions, employing filters to smooth the signal generated

by the closed loop control. This means that any change to

the configuration of this part will directly and immediately

affect the outputs (position and speed). This could severely

amplify resonance effects, violating the integrity requirements

of the robot, or cause overshoots of joints, bypassing the safety

boundaries.

Robot Arm and Workpiece Configuration Tampering.
Since a single model of controller must drive different robots,

the physical characteristics of the manipulator (i.e., arm and

joints) are configurable. This configuration is part of the

knowledge model of the robot, and will affect the overall

dynamics of the system. The workpiece and the manipulator

are part of the system, because they have a characteristic

weight, shape, and center of gravity and mass, which change

over time (e.g., when the workpiece is cut in half, or another

manipulator is installed).

Any unexpected modification of these parameters can result,

for example, in an amount of applied force exceeding the

safety limits, or simply destroying the workpiece or surround-

ing environment.

In the case of co-bots, which operate with no physical

fencing [24], this aspect raises safety concerns, to the point

that standards (e.g., ISO TS 15066 [25]) define the maximum

force and pressure levels that a co-bot can apply against each

relevant part of the human body.

Safety Limits Tampering. The control loop parameters com-

prise the speed limits (e.g., when in manual mode) and the

characteristics of the brakes (e.g., minimum activation time).

Although safety measures are mechanically actuated, since

control loop parameters can be configurable at runtime, the

attacker is given an opportunity to bypass safety measures, or

to change the precision of the robot’s movements.

B. Attack 2: User-Perceived Robot State Alteration

The operator interface must provide timely information at

least on the motor state (on/off) and on the operational mode

(manual/automatic). Moreover, standards [12] mandate that

safety-critical conditions (e.g., restarting a robot from the stop

status) require a deliberate user confirmation.

Unfortunately, some of these conditions (as well as the

user’s acknowledgment) are communicated via software, not

through electrical components (e.g., LEDs, buttons). This is

the case of current models of co-bots. Thus, the impact of

a mere UI-modification attack is remarkable. Altering the UI

could hide or change the true robot status, fooling operators

into a wrong evaluation of the risk, and, consequently, creating

a substantial safety hazard.

C. Attack 3: Robot State Alteration

The attacker can go beyond altering the perceived state:

Under some conditions, the attacker could alter the true state

of the robot, while the operator remains unaware. This attack

could be combined with other attacks to obtain a greater

impact: For instance, a workpiece could be altered without

even the controller noticing.

Motor State. In some controllers, such as in ABB’s YuMi

co-bot, the switch between “manual” and “automatic” mode

is triggered via a software panel implemented in the teach

pendant, not via a hardwired physical switch. As a result, the

human operator would trust the robot when in manual mode

and operate nearby it, while the attacker could be silently

changing the mode of operation to move the robot arm(s) at

full speed causing physical harm to the nearby human.

Software or Wireless Safety Features. Some vendors imple-

ment safety features, such as emergency stop (e-stop) buttons,

in software. Worse, modern teach pendants, which of course

must include an e-stop button, are wireless (e.g., COMAU’s

wireless teach pendant).

Therefore, safety features are subject to man-in-the-middle

or interface-manipulation attacks. For example, a man-in-the-

middle attacker can cause denial of service (i.e., forcefully

stopping the robot during normal operation). Moreover, an

attacker can disable safety features, thus preventing legitimate

users from triggering the e-stop procedure in case of emer-

gency, with clear implications to the safety of the operator.

D. Attack 4: Production Logic Tampering

This attack refers to the task level. If the controller does not

enforce end-to-end integrity of the task program, an attacker

can leverage a file-system or authentication-bypass vulnerabil-

ity to arbitrarily alter the production logic. For example, the
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attacker could insert small defects, trojanize the workpiece, or

fully compromise the manufacturing process.

E. Attack 5: Calibration Parameters Tampering

This attack targets the sensory processing and knowledge
model levels. It is essential for any control system to know

the precise axial positions, and to compute the error; thus, the

first time a robot is connected to a controller, or after any con-

figuration change, the sensing equipment must be calibrated.

Calibration is used to compensate for known measurement

errors when triggering servo motors.

The calibration data, initially stored in the sensing equip-

ment, is transmitted to the controller during system boot. Then,

the controller uses its local copy of the data.

When the robot is not moving, an attacker can manipulate

the calibration parameters on the controller. When the robot

starts moving, such manipulation has the effect of forcing

a servo motor to move erratically or unexpectedly, because

the true error in the measured signal (e.g., joint position) is

different from the error that the controller knows. This has the

concrete consequence of violating all of the requirements.

If such a malicious manipulation happens while the robot

is moving, there are two possible outcomes. If the controller

does not supervise speed and positions, the outcome is the

same of the previous case, with the additional effect that not

only the final position of a joint will be affected, but also the

maximum speed. Instead, if the controller supervises speed

and positions, it can detect unexpected movements, and engage

stopping procedures. While the latter case does not result in a

violation of any requirement, if the attacker repeatedly triggers

such manipulations at “runtime,” it can lead to a denial of

service attack: The robot will persist in the stop status.

VI. CASE STUDY

To evaluate the feasibility of the presented attacks for an

adversary described by our model, we evaluate the attack

surface of a reference robot from a leading vendor (ABB)

that implements the architecture described in Section IV.

After presenting an in-depth technical analysis of the de-

ployed robot (Section VI-B), we practically analyze its attack

surface and security model (Section VI-C), and we present

a set of vulnerabilities that, if exploited, lead to a complete

compromise of the controller (Section VI-D and VI-E). As a

proof of concept, in Section VI-G we show how to use them

to violate safety, integrity, and accuracy requirements, leading

to industrial-robot-specific types of attacks.

Note. We experimentally verified the presence and the exploitability

of the vulnerabilities that we discovered, and promptly disclosed them

to the vendor (Appendix B). Where applicable, we include a reference

to the vendor’s security advisory. While most of the vulnerabilities

have been fixed, some are not easily solvable without breaking the

boot process. We remark that, even though most controllers share

the same industrial standards and have a similar architecture, this

does not necessarily means that they share the same software or

implementation vulnerabilities. The focal point of our results are not

the specific instances of the vulnerabilities that we found, but, rather,

their usage in complex attacks to industrial robot architectures.

A. Experimental Setup

Our experimental setup consists of an ABB 6-axis IRB140

industrial robot, capable of carrying a 6 kg payload, equipped

with the widely-deployed IRC5 controller (Figure 4) running

RobotWare 5.13.10371, and the Windows CE-based FlexPen-

dant (teach pendant). The IRB140 must operate in a cage and

relies on the default, standard safety measures.

Overall, the total cost of our experimental setup, including

the industrial robot, controller, cage, cabling, compressed air

piping, and installation fees, is around $75,000, excluding the

vendor’s 24/7 maintenance service contract.

B. Technical Analysis of IRB140/IRC5

Figure 4c schematizes the components of the IRC5 con-

troller, with the internal and external data connections. All the

internal components are easily reachable since the lock present

on the chassis is only meant to prevent accidental electrical

shocks and can be easily bypassed with a screwdriver.

Flex Pendant (FP). The ABB FlexPendant is an ARM-

based system equipped with a touch screen, manufactured by

Keba [26], with a pre-installed .NET Compact Framework

3.5. It is designed to run custom applications developed

using a vendor-provided .NET-based SDK. The FlexPendant is

equipped with safety devices (i.e., emergency stop and dead-

man switch), which are electrically connected to the panel

board, and ethernet-connected to the main computer.

When the robot is in manual mode, the operator can make

it move by issuing commands via the teach pendant, and

must keep the teach pendant’s dead-man switch pressed at all

times while the robot is moving. Instead, in automatic mode,

the robot runs previously stored programs in an unattended

fashion.

Main Computer (MC). The main computer is based on the

Intel x86 architecture, and runs the VxWorks 5.5.1 RTOS.

Being responsible for the task, action, and primitive level con-

trol, it orchestrates the execution of tasks and coordinates the

controller’s components: It interprets the task program code

written in ABB’s RAPID language, manages the execution of

tasks, chooses the best control strategy, applies forward and

inverse kinematics, and implements the path planning strategy.

Axis Computer (AXC). The AXC—a PowerPC-based board

running the VxWorks 5.4.2 RTOS—implements the “servo

level” of the abstract control system in Figure 3. This computer

controls the servo motors that operate the joints through the

drive and contactor units. The contactor unit is a switching

device that controls the status of the motors (on/off), whereas

the drive unit provides power to the motors of the manipulator.

In addition, the AXC feeds back to the MC any data needed

in the planning phase (e.g., position and revolution counters).

1The controller we used only supports RobotWare 5.x. However, we verified
with ABB and by manual reverse engineering that our findings also apply to
the latest version of RobotWare 6.x at the time of running the experiments.
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(a) Caged arm and end effector. (b) Controller and teach pendant.
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Figure 4. Experimental setup: ABB IRB140 industrial robot (left), IRC5 controller and teach pendant (center), and schematics (right).

Finally, to estimate the error and complete the control loop

that generates the drive signals, it acquires from sensors the

position and status of each servo motor.

Panel Board (PB). The panel board, or safety board, is

mostly based on discrete integrated circuits and relays that

block the robot when safety-critical conditions occur. It imple-

ments the safety requirements mandated by the standards (ISO

12100 [27]): Therefore, it is not programmable by the user.

The PB is connected to the MC via a 1 MHz RS485 single-

duplex connection, used to send a heartbeat packet containing

the current status of the robot: motors on/off, emergency stop

status, operating mode (manual reduced speed, manual full

speed, automatic).

The MC periodically sends a keepalive signal to the PB,

and will interrupt the MC whenever a change in the operating

state is detected. For efficiency, this is implemented through

an FPGA wired to the MC’s PCI board.

Network Connections. The MC is the most exposed compo-

nent of the robot: It communicates, through ethernet connec-

tions, with any external devices and with the teach pendant.

Internally, the AXC and MC also communicate through a

standard ethernet connection. The controller, and ultimately

the MC, can be connected to a local network through the

LAN ethernet port, whereas a secondary ethernet port (the

“service port”) enables direct connection with a client host for

maintenance and programming purposes. Although, by default,

any host connected to the service port is assigned an IP address

on a separate subnet, the MC bridges the service port to the

FlexPendant’s ethernet connection.

Furthermore, on the external side of the chassis, there are

a host-mode USB port directly connected to the MC, the

main power switch, the emergency stop button, and a keyed

switch to change the operating mode (manual or automatic),

connected to the panel board. Notably, the USB port can mount

mass-storage devices.

C. Attack Surface and Security Model

Modern industrial robots expose a considerable attack sur-

face for both network and physical attackers. The main entry

Table III
ATTACK SURFACE BY CHANNEL

Access Channel

Physical - USB port
- Industrial bus access via, e.g., after-market end effectors
- Ethernet: LAN service port
- Direct access to internal devices (e.g., axis computer)

Local - LAN port

Remote - WAN access to (un-firewalled) LAN port
- WAN access to remote service facilities, i.e., service box

Wireless - Wireless (e.g., GSM) access to remote service facilities

points are summarized in Table III. We will focus on the

network attack surface, a sub-set of the physical (local) sur-

face. Both the MC and the FP expose a number of network

services that are essential for the operation of the robot.

There are standard services such as FTP, used to share files

and system information between the robot and the internal

network, and custom services. The RobAPI [28] is a custom

service that offers the most extensive network attack surface: It

is a complex and partially authenticated API that both the FP

and any host connected via the service or LAN port can use

to “talk” to the MC. RobAPI clients are expected to use the

RobotStudio suite, but of course valid RobAPI messages can

be crafted and encapsulated inside standard TCP/IP frames.

Moreover, the MC exposes a UDP-based discovery service,

used by the FlexPendant and by RobotStudio to automatically

discover robot controllers on the network. The FP instead

uses broadcast UDP packages to send debug information

and messages. The AXC communicates with the MC via

a proprietary protocol on top of Ethernet. This protocol is

uninteresting for our purposes since it is not directly exposed.

The MC is the most sensitive entry point, as it exposes

various services to the network, and gaining unauthorized

access to this component leads to a complete compromise of

the controller. It performs sensitive operations on its own, and

the communication between internal components of the robot

is implicitly trusted. For this reason, we dedicate a separate

section to its security analysis: Section VI-D.

User Authentication System. According to the documenta-
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tion, the User Authentication System (UAS) is optional, and in

place “for protecting data and functionality from unauthorized

use” [29]. When the UAS is enabled, the controller enforces

access control rules according to a simple role-based model.

When logging in through a client device (e.g., FlexPendant, or

a computer running RobotStudio), a username and password

are required. A user belongs to one or more groups; a group

specifies multiple grants that define the actions users are

allowed to perform on the controller. Grants are divided into

application grants and controller grants: The controller grants

are enforced on the main computer, whereas the application

grants are validated by specific applications running on the

client device without involving the controller. For example,

the grant that allows one to manage the UAS settings, or the

grant that allows a user to read or write files are controller

grants; the grant that controls access to a specific menu on

the FlexPendant is an application grant. An API also allows

developers to use the UAS to perform access control in custom

FlexPendant applications.

Boot Process. When the controller is powered on, the MC

boots, and exposes an FTP service to allow the AXC and the

FP to download their firmware image. The AXC will use hard-

coded credentials to connect to the MC, while the FP will use

credentials that have been stored in the Windows registry (set

to default values). The FP will be responsible for retrieving

the correct version of the image out of many present on the

MC. Any firmware or application file coming from the FTP

server is implicitly trusted.

D. Security Analysis of the Main Computer

Unsecured Network Surface and Command Injection.
Network-exposed services are an important attack surface. For

example, an attacker can abuse the FTP-exposed file system to

read and modify configuration and program source files and,

ultimately, to control the actions that the robot executes.

Exposing the file system over the network may lead to

deeper consequences. In the VxWorks RTOS, filesystem oper-

ations are used to access devices, which are mounted in a sin-

gle directory hierarchy. On the MC, a custom device driver is

mounted at /command. When reading files in the /command
directory, the device driver returns information about the

MC. The FlexPendant’s boot loader, for instance, uses this

mechanism to read the main computer’s environment variables,

synchronize the clock, and retrieve startup information. Any

file written over FTP to the path /command/command or

/command/command.cmd is interpreted as a script: Each

line of the script must contain a command (out of a set defined

by the driver), a white space, and a parameter. The remote

service box uses this functionality to automatically configure

itself.

Interestingly, the command shell executes an arbitrary

VxWorks symbol passed as a parameter (ABBVU-DMRO-

124642, fixed as of RobotWare 5.15.12, 6.03.02 and 5.61.07):

This feature can be leveraged by an attacker to bypass the UAS

or to execute functions in an unintended way. For example,

by writing a file containing the line shell reboot, the

main computer performs a warm restart; with the command

shell uas_disable, the user authentication system is

temporarily disabled (and, as a side effect, the system reboots).

Weak Authentication. The UAS protects the controller from

unauthorized FTP and RobAPI access. We found that, due to

implementation flaws, an attacker can bypass it.

First, to allow the FP to retrieve configuration information,

authentication is disabled during the system boot: During this

phase, the default static credentials can be used to access the

shared file system. In fact, the FlexPendant boot loader logs

in with a specific username and a hard-coded password. If

the attacker knows when a reboot takes place or is able to

trigger one, the controller can be remotely accessed using

those credentials.

Second, the UAS comes with a default user, without pass-

word, that cannot be changed or removed. Although it is

possible to revoke the sensitive permissions granted to this

user, the documentation explicitly warns that there is a risk of

being locked out by changing the group membership of the

default user, without fully explaining the security implications

of leaving meaningful grants assigned to it.

Third, we found that a specific user, used by the service box

to exchange data with the main computer, has a set of hard-

coded credentials that are embedded in the MC’s firmware

and cannot be changed (ABBVU-DMRO-124644, fixed as of

RobotWare 6.01). Although this user can only access FTP

paths related to the /command device driver, this makes the

aforementioned command injection vulnerability exploitable

without authentication.

Naı̈ve Cryptography. An attacker with read-only filesystem

access is able to tamper with the UAS configuration, changing

the privileges of existing accounts and changing or retrieving

the password of all users. The UAS configuration (including

the plain-text passwords of all users) is stored in an XML file

obfuscated through a bit-wise XOR operation with a random

key; as the key is stored at the beginning of the obfuscated

file itself, the obfuscation is completely useless. The vendor

considers this behavior “by design,” and asserts that the UAS’s

purpose is more related to safety (assign users different roles

and prevent users from making mistakes) than to security.

More generally, encryption schemes are used to safeguard

the integrity of some specific and safety-critical configuration

files, such as the ones containing sensitive control loop param-

eters. We found such schemes to be weak obfuscation/integrity

mechanisms rather than proper encryption: keys are derived

from the file name and, in some cases, part of the file content.

By reverse engineering the controller firmware, we found all

the information needed to reconstruct the encryption keys: An

attacker who can access a firmware update, or who has file

system access, is able to read and modify safety- and accuracy-

critical configuration files.

Memory Corruption. A proprietary protocol, RobAPI, is

used to access a set of services exposed by the controller:
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changing the configuration, moving the robot, obtaining in-

formation about the current task, and controlling the task

program execution. RobAPI consists of messages that are

exchanged synchronously (i.e., request-response) and asyn-

chronously (i.e., through event subscriptions). Most of the

RobAPI functionality is authenticated through the UAS. Upon

authentication (once per TCP connection), the MC returns

a user ID that the client sends as part of all the messages.

The exposed RobAPI functionality is also divided into a set

of domains. For example, the CONTROLLER domain gives

access to general settings, and the RAPID domain controls

the execution of RAPID programs.

We found an exploitable memory error in the code that

receives RobAPI requests for the DHROOT domain. The error

is a textbook stack-based buffer overflow in the function

DHROOT_SET_REQ. More precisely, when the command

DomainHookTest is invoked, the property field of the

request string is copied to a buffer using the strcpy()
function, without checking whether the user-provided string

fits in the statically allocated space. The specific vulnerable

endpoint does not require authentication (ABBVU-DMRO-

124645, fixed in release 5.15.12, 6.03.02 and 5.61.07).

Similarly, we were able to find other stack-based buffer

overflows exploitable in a similar way in the parsing routines

of the /command endpoint (ABBVU-DMRO-128238, fixed

in releases 5.15.13, 6.04 and 5.61.07). We experimentally

validated that an attacker can exploit these vulnerabilities to

obtain remote arbitrary privileged code execution on the MC.

As the MC firmware does not have mitigation mechanisms

against the exploitation of memory corruption errors, and there

is no privilege separation between processes or between user

and kernel land, exploiting memory corruption is trivial.

E. Security Analysis of the FlexPendant

Missing Code Signing. The boot image that the FP downloads

from the MC is not signed, and we verified that it can be easily

modified by an attacker who is able to reverse engineer the

file format. We used this issue to implement the UI attack

depicted in Figure 6.

We were able to reverse engineer the image format, which

is a ZIP-compressed binary containing the file name, size

and content. In Section VI-G we show that an attacker can

use this vulnerability to execute arbitrary code on the FP, by

tampering with the data exchanged between MC and FP (e.g.,

by previously compromising the MC or—if the attacker is

local—through network attacks such as ARP spoofing).

Memory Corruption. We found a memory error in the exe-

cutable TpsStart.exe, executed during the FP’s startup process.

If an attacker is able to tamper with a specific file when it

is retrieved from the MC (/command/Timestamp), they

can trigger a stack-based buffer overflow by making sure that

the retrieved file name is longer than 512 bytes (ABBVU-

DMRO-124645, fixed in release 5.15.12, 6.03.02 and 5.61.07).

Exploiting this vulnerability can block the FlexPendant boot,

resulting in a denial of service, which in turn offers to the

attacker the opportunity to expect a reboot—and thus launch

some of the previously mentioned exploits.

Poor Runtime Isolation. Programmers can develop appli-

cations that run on the FlexPendant in two ways: using the

RAPID programming language with the ScreenMaker utility,

or using the FlexPendant SDK.

The RAPID language allows one to control robot positions,

to perform I/O processing, and to use network sockets. How-

ever, it does not allow one to manipulate processes or call

native APIs, and it provides only limited file system access.

The FlexPendant SDK allows richer access, and is thus

more interesting to an attacker. The SDK is composed of .NET

Compact Framework 3.5 assemblies, Visual Studio templates

and a compliance tool that generates a DLL library used

by the Application Host Framework to load the assembly

as part of the “graphical teach pendant unit”. We found out

that the compliance tool, as part of the checks it performs,

tries to ensure that the code does not use a set of forbidden

operations: reflection capabilities and the use of some specific

.NET namespaces that allow access to raw filesystem and

RobAPI capabilities intended to be used only in vendor-

provided libraries, not in custom applications. The tool per-

forms this check by means of regular expressions and by using

a disassembler for the .NET bytecode (ILDasm).

Alas, the version of the compliance tool provided with

the SDK does not enforce these restrictions at all. It is also

evident that an attacker could bypass this by simply modifying

the compliance tool itself: There is no way to perform these

security checks on the programmer’s side in a completely safe

manner.

In addition, we found some limitations in the opera-

tions allowed with the FlexPendant SDK: Access to the

filesystem is naı̈vely regulated through a blacklisting pro-

cess implemented in the FileSystemDomain class of the

ABB.Robot.Controllers namespace. This blacklist de-

nies access to the CTRLROOT and INTERNAL directories. Us-

ing assemblies part of the namespace ABB.Robotics.Dcl,

which should be blacklisted by the compliance tool, we can

obtain full unrestricted access to the shared file system, and

execute any operation allowed by the full RobAPI (obeying

only the UAS privileges—when applied). This also allows re-

flashing the memory of the pendant, resulting in full compro-

mise of the TPU.

In some versions of the IRC5 controller (e.g., the IRC5

Compact used in ABB’s YuMi), the switch between automatic

and manual mode is performed entirely via software, and not

delegated to a physical key wired to an electrical circuit and a

speed limiting line. Alarmingly, the YuMi is a co-bot, which

operates nearby the operator, with no cage required. Since hav-

ing full privileged access to the teach pendant means that an

attacker is able to patch system-level .NET assemblies, or even

to overwrite the firmware with a customized malicious one,

this also allows an attacker to abuse software-defined switches

to toggle the operating mode without user intervention, posing

significant safety risks to the operators.
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Furthermore, although Microsoft dropped support for the

.NET Compact Framework 3.5, the vendor will continue to

provide the FlexPendant SDK on future pendants for backward

compatibility reasons—meaning that the FP will continue run-

ning an old, unsupported, and potentially vulnerable version

of the .NET framework [30].

F. Attack: Controller Exploitation

We will now describe a multi-step exploitation path, com-

prising several of the presented vulnerabilities. This can be

leveraged to seize complete control by the most general of the

adversaries: a remote network attacker who has no knowledge

of valid UAS credentials, and who can connect to the RobAPI

and FTP services.

1) Main Computer Compromise. We used the FTP static

credentials we discovered to access the /command
driver, and, alternatively, exploited the memory errors

found in the RobAPI to gain initial access.

2) Authentication Bypass. We temporarily disabled the

UAS and triggered a full system reboot. To this end, we

invoked uas_disable via the shell function of the

FTP /command, and, alternatively, via the exploitation

of the remote code execution vulnerability (e.g., the

RobAPI memory error).

3) Payload Upload. With full FTP access without cre-

dentials, we permanently disabled UAS by editing the

obfuscated configuration file, and then uploaded custom,

malicious, .NET DLL (or RAPID code) to the running

system directory on the controller.

4) Persistent Access We triggered another reboot via FTP

(/command shell function), causing the FlexPendant to

auto-execute the uploaded malicious .NET libraries—or

the MC to load the malicious RAPID files.

In the FlexPendant context, due to the lack of proper sandbox-

ing, the attacker has now complete access to the OS resources,

and any arbitrary remote code execution vulnerability in the

RobAPI would imply unrestricted control of the MC. Another

possibility is to leverage full unrestricted access to the FTP to

upload a maliciously crafted RobotWare image, allowing the

attacker to compromise all the other components, because the

firmware images are not signed.

Command & Control. Although not essential, we used the

FTP-accessible file system as a simple command & control

server to exchange data with the compromised FlexPendant,

without needing a direct network connection to it. Alterna-

tively, an attacker can load a RAPID module that is executed

on the MC and acts as a relay between the FP and the remote

attacker. We can consider that, at this point, our attacker has

completely compromised the robot controller: We describe the

attacks’ implementation starting from this assumption.

G. Attack: Robot Exploitation

We can now explain how we implemented robot-specific

attacks to show that an adversary can affect the production

chain after compromising the robot controller.
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Figure 5. (Section VI-G1: Accuracy Violation) End effector 2D trajectory
when the robot is programmed to move south/north on a straight line.

As discussed in Section VIII, some attacks presented in

Section V can have a disruptive impact, up to the entire

cost of the deployment or the violation of safety policies

and regulations. When unable to implement an attack entirely,

we discussed our implementation with a domain expert, who

confirmed its feasibility and its potential destructive effects.

1) Accuracy Violation: The robot we analyzed uses a closed

loop controller to control the joint position. For each joint,

a PID controller ensures that its angular position follows, as

closely as possible, the reference trajectory needed to complete

the task. As mentioned in Section V-A, if an attacker is able

to “detune” the controller, they can reduce the accuracy of the

movement and, ultimately, impair the precision of the system.

The PID parameters are stored in a robot-specific configura-

tion file on the MC file system2; this file is naı̈vely obfuscated

as described in Section VI-D.

To precisely measure the trajectory of the end effector under

nominal and attack conditions, we decoded such data from

the RS232 service port and real-time ethernet, by enabling a

debug functionality in the MC, which allowed us to collect the

coordinates of the position at fast sampling intervals. While

doing so, we did not interfere with the attacker’s capabilities.

By leveraging the remote code execution vulnerability, we

modified the control-loop configuration files, which are naı̈vely

obfuscated and, thus, easily modifiable. In particular, we

changed the proportional gain of the first joint’s PID controller,

setting it to 50% of its original value. Then, we programmed

the robot to perform a straight horizontal movement. Figure 5

shows the trajectory of the end effector projected on the hori-

zontal plane, which is notably altered. Although the maximum

difference between the position under normal conditions and

under attack is small (less than 2 mm), according to the specific

machining that the robot is performing, it can be enough to

destroy the workpiece.

2) Safety Violation: To violate safety requirements, we

used the User-Perceived Robot State Alteration approach (Sec-

tion V-B) to trick the operator into thinking that the robot is in

manual/motor-off mode, whereas it is in auto/motor-on mode.

Recall that in auto/motor-on mode, an attacker is able to load a

2As an example, the configuration file for the IRB140 robot is located
in the robotware directory under robots/irb1_140/irbcfg/sec_
140_0.81_5_typea_1.cfg.enc.
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Figure 6. (Section VI-G2: Safety Violation) Modified teach pendant showing
motors off/manual mode while in auto/motor on.

program task that pilots the robot, while the operator believes

that the robot is in manual/motor-off mode, and thus it is safe

to get close to it.

We implemented this attack by leveraging the lack of code

signing in the FP firmware, which we reverse engineered

to find the routines that implement the user interface. We

modified the strings that are output on the display, to show

false information to the operator, and re-packaged the binary

firmware. Then we used the authentication bypass on the FTP

server to load the binary on the MC’s file system, and we

waited for the next reboot that had the effect of loading the

malicious firmware onto the teach pendant. As an alternative,

we could have leveraged the command-injection vulnerability

to force the MC to reboot remotely. Figure 6 shows the

modified UI.

Although we did not have access to the YuMi co-bot, we

noticed that it shares the same software as the IRC5 controller

with only insubstantial modifications. By reverse engineering

the .NET assemblies of the YuMi’s FlexPendant, we found

evidence suggesting that the mode of operation can be changed

via software as described in Section V-C.

3) Integrity Violation: It is possible to violate integrity

properties through the control-loop alteration approach (Sec-

tion V-A), and the calibration-parameters tampering approach

(Section V-E). We wanted to overshoot the joints in order to

make the robot collapse on itself, and to force the servo motors

beyond its physical, structural limits; this attack is costly and

potentially destructive, because its goal is to damage the robot.

Alternatively, an attacker could use the robot state alteration

approach (Section V-C) to repeatedly and abruptly start and

stop a servo motor, causing wear to the electro-mechanical

components, the brakes, and the servo motor itself.

We implemented the software stages of this attack using two

vulnerabilities: first, we created valid encrypted configuration

files containing arbitrary calibration parameters; second, we

modified them on the controller, exploiting the remote code

execution bug in the MC.

At this point, instead of starting the robot, we showed

the modified configuration files to a domain expert (a lab

technician who normally operates the robot), who confirmed

the destructive effects on the robot. Additionally, we checked

the effect of such configuration changes on the sections of

the code that implement the control and supervision routines,

which we reverse engineered manually. The only integrity

checks that we found in the speed and position supervision

routines can be easily bypassed modifying the MC’s control

logic through the use of any of the vulnerabilities we found.

VII. DISCUSSION

A. Cyber Security and Safety Standards

Industrial robots standards emphasize safety requirements.

For example [12], [31], they define performance requirements,

stopping functions, e-stop features, required pendant controls,

and speed bounds. Unfortunately, none of the standards ex-

plicitly account for cyber-security threats: Although some of

them have mild security implications, they do not explicitly

account for adversarial control during risk assessment.

Instead, cyber security issues in ICS [32] and automo-

tive [33] have received better attention from standardization

bodies. We hope that our work will serve as motivation to

develop similar standards for industrial robots.

B. Security Measures and Challenges

The already hard task of designing a secure architecture

without sacrificing functionality is exacerbated by challenges

in providing timely security updates, a well-known problem

in embedded systems and ICS [34]. Compared with other ICT

systems, industrial robots have a very long lifetime, which

increases the burden on vendors to support several deployed

devices, leading to so-called “forever-day” vulnerabilities (i.e.,

well known vulnerabilities that are never patched). Moreover,

there is friction to adding system-level hardening features,

which renders the exploitation of vulnerabilities more probable

than on mainstream OSs. This is amplified by the so-called

“patching problem” well known to ICS security practitioners:

As industrial robots are critical to productivity, customers may

be worried about potential downtime or regressions caused

by software updates, and refrain from timely patching their

systems.

We overview the main challenges that arise when applying

even textbook-level security practices in the industrial robots

domain.

1) Human interaction: Human intervention can modify the

outcome of the attacks we presented or stop them. For exam-

ple, if emergency stops are implemented by means of electro-

mechanical switches (i.e., not via software), an operator who

spots an abnormal behavior can promptly halt the robot.

However, some attacks can alter the user-perceived robot

state (section V-B), confusing the operator, whose reaction

time will be too slow to counteract a quick and unexpected

movement of the robot. Furthermore, attacks can be more

effective when used in a stealthy way, e.g., by introducing

small defects or stealing intellectual property.
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2) Attack Detection and System Hardening: Effective and

readily applicable attack-detection approaches are needed to

provide a short- to medium-solution for threat mitigation.

Attack Detection (Short Term). Research and industry ef-

forts should provide short-term solutions to mitigate the impact

of vulnerabilities. For example, detection and correction of

anomalies must be explored, rather than focusing on access

control techniques only. As for automotive systems [5], pre-

vention measures may interfere with the production chain and

induce downtime: thus, a delicate balance between detection

and prevention should be considered.

System Hardening (Short/Medium Term). As it is hard

to patch all vulnerabilities in complex software, medium- to

long-term solutions include system hardening to make reliable

exploitation more expensive. Implementing these techniques in

legacy embedded platforms is challenging; they may require

hardware support and design changes.

Notably, it is far easier to exploit memory corruption vul-

nerabilities in the robot we analyzed than in mainstream OSs.

Industrial robots, like many embedded systems, employ real-

time operating systems (RTOSs) with poor or no hardening

features. Surprisingly, although RTOSs are used in critical

tasks, most research in this area is focused on determinism,

efficiency and safety, rather than on system security.

An effective, short-term way to harden a RTOS is by

enabling OS- and compiler-based mitigations, such as ASLR,

DEP, and canaries. This set of functionality is common, but is

not always supported in embedded systems.

Another effective containment measure is to enforce priv-

ilege separation at the OS level, and to require physical

separation of critical functionality across different subsystems.

The challenging part here is the trade-off between security

and real-time requirements. For instance, the VxWorks 5.x

OS used in ABB’s RobotWare 5.x executes all code in kernel

mode and is built as a monolithic ELF binary. Although

VxWorks 6 supports user- and kernel-mode demarcation since

2004 for platforms having an MMU (the so-called real-time

process model), this functionality is not used even in newer

versions of RobotWare (over twelve years later).

This reasoning also applies also to functionality aimed

at executing custom code: Even though the flexibility of

industrial robots requires the execution of customized soft-

ware, they do not need access to any functionality of the

underlying OS. Custom applications and robot programs can

be limited to a sandboxed environment, following the principle

of least privilege. For example, Microsoft .NET’s Application

Domains [35] can be used as a light sandboxing mechanism

in .NET-based embedded systems such as the teach pendant.

3) Software Design and Deployment Challenges: We iden-

tified some steps that vendors can adopt to reduce the im-

pact of security issues. Although well-known in the security

community, applying them in this domain is challenging, due

to time-consuming patching processes, as well as non-trivial

changes in the controller design.

Program Protection (Short Term). Removing or making

it easy for the users to disable detailed debug outputs and

symbols can play a key role in increasing the cost of an

attack, especially for casual attackers. In the system we

analyzed, the executable binary of the main computer was

not stripped, and detailed debug output was readily available

from the serial console, which eased reverse engineering and

exploit development. We also observed that the FlexPendant

broadcasts detailed debug information through UDP packets,

making it accessible to a physical attacker connected to the

service port of the main computer.

Secure Software Development Lifecycle (Long Term). In

general, enforcing secure software engineering practices can

improve code robustness and harden the underlying platform.

Such practices range from forbidding the use of unsafe C

library functions (e.g., strcpy, strcat, sprintf), to

using static-analysis tools to find potentially problematic code

regions and unsafe implementation patterns. These practices

must be a part of a comprehensive process that takes security

into account during the whole software development lifecycle.

Unfortunately, the fact that we have found textbook vulnera-

bilities in one of the most widely deployed robot controllers is

an indicator that not even basic static checking was in place.

Secret Management (Medium Term). In our case study we

observed frequent use of (i) static, wired-in credentials, shared

among the devices of the same model, (ii) obfuscation of

passwords (as opposed to hashing and salting), and (iii) naı̈ve

“encryption” of configuration files. These measures create a

false sense of security. For example, a superficial review of

the software source code may imply that certain functionality

is strongly authenticated, whereas it is instead accessible with

a password readily available in the firmware executable.

Component Interconnection Hardening (Medium Term).
In the domain of industrial robots (as well as the ICS and auto-

motive ones), the threat model assumes the internal network to

be trusted. This assumption is not realistic in scenarios where

a component is compromised: Even if such a component is

not critical to the operation of the system, it may grant the

attacker access to the trusted network. An effective hardening

measure is to move toward an Industry-4.0-compliant threat

model, without a trusted internal and factory network, where

the boundary between internal and external is dynamic. This

implies, for instance, appropriately filtering inputs coming

from connected components as if they were coming from an

untrusted party, and taking into account eavesdropping and

tampering of messages.

For example, some UI alteration attacks (Section V-B) can

be mitigated by not trusting the teach pendant: A switch hard-

wired to the controller can be used to require the operator’s

acknowledgment before critical state changes.

Code and Configuration Signing (Medium Term). An

effective system-level mitigation is the implementation of code

signing mechanisms with strong authentication.

Broadly speaking, we can distinguish between three types

of executable code: vendor-provided firmware, program task

code, and custom software developed on top of a vendor-

provided software development kit (SDK). It is expected that

only the vendor can develop and run updated firmware for the
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robot components. For custom code, the customer must be able

to sign code for its own robots (but not for other customers’

ones): This way, an attacker who can upload arbitrary files to

the robot file system would not gain arbitrary code execution.

Solving the problem on a global scale is challenging due

to the trade-off between safety and security, and development

and deployment time and effort. A possible way to tackle it

is using a PKI with the vendor as a certification authority,

issuing per-customer certificates.

Fortunately, commercial embedded OSs and hardware plat-

forms are moving toward supporting secure boot capabilities

(e.g., the Security Profiles in VxWorks 7), which would allow

implementing a full code-signing chain.

A mechanism to keep the flexibility of the teach pendant

programming model intact, if sandboxing mechanisms are in

place to limit the privileges of user-provided program task

code, is to enforce the code signing policy only when the robot

is running in automatic mode. Before switching to automatic

mode, the code can be signed offline or even online (e.g., via

smart-card devices connected to the teach pendant).

In the system we analyzed, we found various “encrypted”

configuration files. It is unclear if the intended use of encryp-

tion for these configuration files is to avoid casual tampering

with the configuration or if the developers had a more complex

threat model in mind. However, these configuration files

control safety parameters and signal routings, and are critical

for the operation of the robot; if this is the case, requiring that

the configuration files are signed (with the same infrastructure

in place for custom code) will address this problem effectively.

VIII. LIMITATIONS

Cost of Exploit Testing. The high cost and limited avail-

ability of industrial robotics equipment affected the depth of

our analysis: we could not perform experiments carrying a

substantial risk of permanently breaking electro-mechanical

components of the robot (e.g., drive the robot after reaching its

physical operating limits). We were bound to respect several

security and safety regulations, and not authorized to make

such experiments whenever the exact outcome could not be

forecast with good accuracy. For example, we could not per-

form experiments involving introducing excessive controller

instability, or where the outcome depended on specific features

of the controller that we could not simulate.

Generality. We restricted our case study analysis to standard

features of the ABB IRB140/IRC5 robot/controller, without

considering optional equipment that could increase the attack

surface. Thus, our analysis is conservative. For example, the

robot controller supports an optional I/O board based on

DeviceNet FieldBus [36], which are known to be insecure [4],

[5]. This opens an interesting attack scenario, which we

defer to future research, where compromised after-market end

effectors can gain unauthorized access to the robot.

Survey. While we think that the survey results are inter-

esting by themselves, a survey targeting more participants is

needed to make results statistically significant.

IX. CONCLUSIONS

This paper represents the first step in a broader exploration

of security issues in the industrial robotics ecosystem.

We explored, theoretically and experimentally, the chal-

lenges and impacts of the security of modern industrial robots.

We built an attacker model, and showed how an attacker

can compromise a robot controller and gain full control of

the robot, altering the production process. We explored the

potential impacts of such attacks and experimentally evaluated

the resilience of a widespread model of industrial robot (rep-

resentative of a de facto standard architecture) against cyber

attacks. We then discussed the domain-specific barriers that

make smooth adoption of countermeasures a challenging task.

Interesting future research directions include exploring

multi-robot deployments, co-bots, and the safety and security

implications of the adoption of wireless connections. Also, an

improved survey would produce statistically significant results.

We definitely plan to analyze controllers from other vendors,

to further confirm the generality of our approach.
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APPENDIX A

SURVEY ANSWERS

As far as we know, the only user survey about the safety or

the security of industrial robots in literature was carried out in

1993 and was mainly focused on safety [37]. As summarized

in Section II, we contacted 50 experts in the field, choosing

among:

• researchers in the field of robotics,

• engineers working with top robot manufacturers (e.g.,

ABB, KUKA, Comau),

• experts from companies whose core business is based on

using industrial robots,

• two IEEE RAS TCs (“Energy, environment, and safety

issues in robotics and automation,” and “Safety, security

and rescue robotics”),

• the chair of the “Industrial Robotics” Topic Group at EU

Robotics,

• two prominent mailing lists.

We received answers from 20 subjects. Some of them

followed up via email for a more in-depth conversation.

Given the nature of our questions, we required the users of

the survey to express a strong opinion on the subject, in order

to avoid a possible central tendency bias.

An interesting result of the survey is that the overall care

about safety, and the use of safety measures since the time of

publishing of the last survey on safety [37], has increased,

with 60% of the respondents employing some customized

form of protection measures (i.e., human tracking by sensors,

electronic defenses). The same cannot be said for cyber

security: assessments on the ICT infrastructure have been

conducted only by ∼ 23% of the respondents, and the share

of respondents that conducted security assessment of the

networks that controls the robot operations is just the ∼ 11%.

Moreover only 47% of the respondents consider a cyber

attack against industrial robots a realistic threat: of these, only

1 respondent is a developer working in the industry and 1 has

experience with robots both in both an industrial and academic

context.

APPENDIX B

COORDINATED DISCLOSURE

We reached out to the vendor in order to promptly disclose

any vulnerabilities found during the research described in

this article, and offered a possibility to share their remarks

in the final version of this article. Following our disclosure,

the vendor (ABB) confirmed and patched (or mitigated) all

the vulnerabilities described in this paper. Also, the vendor

released an official security advisory [38] to give the users

time to update the installed base before the publication date.
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We also disclosed the vulnerability in the industrial router to

eWON, who fixed the issue in the latest firmware revision

(11.2s2).

Table IV
SURVEY RESPONSES: GENERAL QUESTIONS

Context of experience with Industrial Robots
Academia 11

Industry 6
Both 2

User’s role
Researcher 8
Developer 5
Professor 4

Student 1
Other 1

Type of industrial robots used or deployed in a factory:
(multiple choice)

Articulated 18
Dual-arm 6
SCARA 4

Cartesian 3
Cylindrical 2

Other 2
Delta 1

Robots application: (multiple choice)
Material Handling 13

Assembly 13
Palletizing 5

Other 4
Welding 2
Painting 1

Industrial robot vendors employed: (multiple choice)
Kuka 11
ABB 9

Other(s) 9
Fanuc 6

Comau 3
Motoman 3

Denso 1
Adept 1

Kawasaki 1

# of robots employed for development and testing
1 to 5 12

5 to 10 4
10 or more 2

# of robots employed in production (where applicable):
10 or more 5

1 to 5 2
5 to 10 1

Table V
SURVEY RESPONSES: SAFETY

Typical safety setup:
Collaborative robot 11

Caged robot 10
Other 3

Default safety measures are too limiting for specific use case:
Yes 5
No 12

Safety measures are customized:
Yes 11
No 7

Table VI
SURVEY RESPONSES: ROBOT PROGRAMMING

A development cycle is employed for robot programs and
automation scripts:

Yes 7
No 4

Access control policy is enforced on the robot:
Yes 13
No 5

Employees are accountable for changes to the robot’s program
code:

Yes 9
No 9

Table VII
SURVEY RESPONSES: PERCEPTION OF THE RISK

Robots are connected to an internal network:
Yes 14
No 4

Robot controllers are accessible via Internet:
Yes 5
No 13

Robot controllers are accessible via a wireless network:
Yes 8
No 10

Robot controllers are connected to the ICT infrastructure via:
EtherCAT 1

Intranet over Ethernet 3
WiFi 1

Bluetooth for discovery of non-wifi components 1
Disconnected 3

Internal factory VPN

The ICT infrastructure has been ever audited:
Yes 4
No 13

The network that controls robots operations has been ever
audited:

Yes 2
No 15

User considers cyber attacks against robots a realistic threat
Yes 8
No 9

If a realistic threat, the consequences could be:
Impact on physical safety 7

Production losses 4
Small defects introduced in the final product 1

Other 3

Worst case scenario in case of insider threat:
Potential safety hazards, harm to human operators 6

Mechanical damage 6
Stop productivity 2

IP violation/leak sensitive know-how 1

Financial impact of an attack against robots:
Quantifiable 3

Hardly quantifiable 1
Not quantifiable 6

If not robots, the most valuable asset at risk could be:
Intellectual property 5

Humans 2
Material goods and equipment 2

Production data 1
Other sensitive data (i.e., patient data for medical robots) 1
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APPENDIX C

PROGRAM TASK SOURCE CODE EXAMPLE

MODULE myStopRoutine
CONST jointtarget p0 := [ [ -179, 90, -90, 0, 0, 0], [ 0, 9E9, 9E9, 9E9, 9E9, 9E9] ];
CONST jointtarget p1 := [ [ 179, 90, -90, 0, 0, 0], [ 0, 9E9, 9E9, 9E9, 9E9, 9E9] ];
VAR jointtarget jInitial;
VAR jointtarget jFinal;
VAR intnum pers1int;
VAR intnum monit1int;
PERS bool trapped;
PERS bool done;

PROC main()
TPErase;
trapped := FALSE;
done := FALSE;
MoveAbsJ p0, v2000, fine, tool0; ! move robot to initial position
WaitRob \ZeroSpeed; ! wait for robot to finish movement
CONNECT pers1int WITH stopping; ! add interrupt handler
IPers trapped, pers1int; ! set interrupt to trigger via watchdog on persisten variable
CONNECT monit1int WITH monitor; ! another interrupt
ITimer 0.1, monit1int; ! set interrupt to trigger after 1ms
WaitTime 1.0;
MoveAbsJ p1, vmax, fine, tool0; ! move from p0 to p1 at max speed

ENDPROC

TRAP stopping
VAR num delta;
ISleep pers1int;
jInitial := CJointT(); ! read joints coordinates
StopMove \Quick; ! stop robot
WaitRob \ZeroSpeed;
jFinal := CJointT(); ! read joints coordinates
delta := jFinal.robax.rax_1-jInitial.robax.rax_1;
TPWrite "Delta = " \Num:=delta;
TPWrite "Max acc = " \Num:=200*200/delta/2;
IWatch pers1int;

ENDTRAP

TRAP monitor
ISleep monit1int;
jInitial := CJointT();
IF done = false AND jInitial.robax.rax_1 > 0 THEN ! set interrupt to trigger when the first joint reaches

or goes over halfway
trapped := TRUE;
done := TRUE;
TPWrite "Checking... " \Num:=jInitial.robax.rax_1;

ENDIF
IWatch monit1int;

ENDTRAP
ENDMODULE
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