
How They Did It: An Analysis of Emission
Defeat Devices in Modern Automobiles

Moritz Contag∗, Guo Li†, Andre Pawlowski∗, Felix Domke‡,
Kirill Levchenko†, Thorsten Holz∗, and Stefan Savage†

∗ Ruhr-Universität Bochum, Germany, {moritz.contag, andre.pawlowski, thorsten.holz}@rub.de
† University of California, San Diego, {gul027, klevchen, savage}@cs.ucsd.edu

‡ tmbinc@elitedvb.net

Abstract—Modern vehicles are required to comply with a
range of environmental regulations limiting the level of emissions
for various greenhouse gases, toxins and particulate matter. To
ensure compliance, regulators test vehicles in controlled settings
and empirically measure their emissions at the tailpipe. However,
the black box nature of this testing and the standardization
of its forms have created an opportunity for evasion. Using
modern electronic engine controllers, manufacturers can pro-
grammatically infer when a car is undergoing an emission test
and alter the behavior of the vehicle to comply with emission
standards, while exceeding them during normal driving in favor
of improved performance. While the use of such a defeat device
by Volkswagen has brought the issue of emissions cheating to the
public’s attention, there have been few details about the precise
nature of the defeat device, how it came to be, and its effect on
vehicle behavior.

In this paper, we present our analysis of two families of
software defeat devices for diesel engines: one used by the
Volkswagen Group to pass emissions tests in the US and Europe,
and a second that we have found in Fiat Chrysler Automobiles. To
carry out this analysis, we developed new static analysis firmware
forensics techniques necessary to automatically identify known
defeat devices and confirm their function. We tested about 900
firmware images and were able to detect a potential defeat device
in more than 400 firmware images spanning eight years. We
describe the precise conditions used by the firmware to detect a
test cycle and how it affects engine behavior. This work frames
the technical challenges faced by regulators going forward and
highlights the important research agenda in providing focused
software assurance in the presence of adversarial manufacturers.

I. INTRODUCTION

On September 18, 2015, the US Environmental Protection

Agency (EPA) issued a notice of violation to the Volkswagen

Group, accusing one of the world’s largest automakers of

circumventing the EPA’s emissions tests [18], setting into

motion the most expensive emissions scandal in history.

At the heart of the scandal is Volkswagen’s use of a defeat
device, defined by the EPA as any device that “reduces the

effectiveness of the emission control system under conditions

which may reasonably be expected to be encountered in

normal vehicle operation and use,” with exceptions for starting

the engine, emergency vehicles, and to prevent accidents [19].

The defeat device in Volkswagen vehicles used environ-

mental parameters, including time and distance traveled, to

detect a standard emissions test cycle: if the engine control unit

determined that the vehicle was not under test, it would disable

certain emission control measures, in some cases leading the

vehicle to emit up to 40 times the allowed nitrogen oxides [15].

Defeat devices like Volkswagen’s are possible because of

how regulatory agencies test vehicles for compliance before

they can be offered for sale. In most jurisdictions, including

the US and Europe, emissions tests are performed on a chassis

dynamometer, a fixture that holds the vehicle in place while

allowing its tires to rotate freely. During the test, a vehicle

is made to follow a precisely defined speed profile (i.e.,

vehicle speed as a function of time) that attempts to imitate

real driving conditions. The conditions of the test, including

the speed profile, are both standardized and public, ensuring

that the testing can be performed in a transparent and fair

way by an independent party. However, knowing the precise

conditions of the test also makes it possible for manufacturers

to intentionally alter the behavior of their vehicles during the

test cycle, a practice colloquially called “cycle beating.”

While Volkswagen’s cheating was breathtaking in scope

(a dozen vehicle models spanning at least six years), it has

also highlighted the difficulty of monitoring manufacturers’

emission compliance. Meeting modern emissions standards

is one of the main challenges faced by car manufactur-

ers as emission standards become more stringent. In many

cases, technological limitations put compliance in conflict

with consumer demands for performance, efficiency, or cost—

creating a powerful incentive for car makers to evade the

regulatory burden. At the same time, automobiles have grown

in complexity: the modern automobile is a complex cyber-

physical system made up of many electronic components,

making it as much a software system as a mechanical one.

A premium-class automobile, for example, can contain more

than 70 electronic control units and 100 million lines of

code [4]. As a part of this trend, nearly all aspects of engine

operation are controlled by an Engine Control Unit (ECU),

an embedded system creating a closed control loop between

engine sensors and actuators. This allows manufacturers to

precisely control all aspects of engine operation and thus drive

significant improvements in performance, reliability, and fuel

economy. The ECU is also responsible for ensuring that the

vehicle complies with the emissions requirements imposed by

governmental regulatory bodies. Indeed, while some emission

2017 IEEE Symposium on Security and Privacy

© 2017, Moritz Contag. Under license to IEEE.

DOI 10.1109/SP.2017.66

231

control measures, like the catalytic converter or particulate

filters, are passive, many others require active control by

the ECU, which must sometimes sacrifice performance or

efficiency for compliance. These tradeoffs are particularly

challenging for diesel engines, which in their simplest form are

noisier and emit more particulates and nitrogen oxides (NOx)

than gasoline engines [3].

Electronic engine control has also made it easier to cir-

cumvent emissions testing by implementing a defeat device

in software. The black box nature of emissions testing makes

it nearly impossible to discover such a software-based defeat

device during a test, forcing regulators to rely on heavy fines

to discourage cheating. Unfortunately, as the Volkswagen case

illustrates, it can take many years to discover such a defeat

device. Given the ultimate limitations of testing, we are led

to consider whether we can detect defeat devices using soft-
ware verification techniques. Unfortunately, verifying complex

software systems is a difficult problem in its own right, more

so for a cyber-physical system like a modern automobile. In

our case, the setting is also adversarial—rather than trying

to find bugs, we are looking for intentional attempts to alter

a system’s behavior under test conditions. This paper aims

to be a first step in cyber-physical system verification in an

adversarial setting with two case studies of automobile defeat

devices and binary analysis techniques to identify verification-

critical code elements across multiple software revisions.

We begin with two case studies of software defeat de-

vices found in light diesel vehicles. The first set belongs

to automobiles produced by the Volkswagen Group, which

has publicly admitted to their use. The Volkswagen defeat

device is arguably the most complex in automotive history.

Unfortunately, there are few technical details available to the

public about its operation, its effect on engine behavior, and

how its design evolved over time; our paper closes this gap and

we believe helps highlight the key challenges for regulators

going forward. Unfortunately, Volkswagen is not alone in

evading emissions testing. Fiat Chrysler Automobiles (FCA) is

currently being investigated in Europe because recent road test

data showed significantly higher emissions than in regulatory

compliance tests [17]. In this paper, we identify and describe

a timer-based defeat device used in the Fiat 500X automobile.

We believe we are the first to publicly identify this defeat

device.

Both the Volkswagen and Fiat vehicles use the EDC17

diesel ECU manufactured by Bosch. Using a combination

of manual reverse engineering of binary firmware images

and insights obtained from manufacturer technical documen-

tation traded in the performance tuner community (i. e., car

enthusiasts who modify their software systems to improve

performance), we identify the defeat devices used, how they

inferred when the vehicle was under test, and how that

inference was used to change engine behavior. Notably, we

find strong evidence that both defeat devices were created
by Bosch and then enabled by Volkswagen and Fiat for their

respective vehicles.

To conduct a larger study, we used static code analysis

techniques to track the evolution of the defeat device across

hundreds of versions of vehicle firmware. More precisely,

we developed a static analysis system, called CURVEDIFF,

to automatically discover the Volkswagen defeat device in a

given firmware image and extract the parameters determining

its operation. Overall, we analyzed 926 firmware images and

successfully identified 406 potential defeat devices inside these

images. Further, we automatically verified the effects on one

particular subsystem.

In summary, our contributions are as follows:

� We provide a detailed technical analysis of defeat devices

present in vehicles marketed by two independent automo-

bile manufactures, Volkswagen Group and Fiat Chrysler

Automobiles, whose effect is to circumvent emission tests

in the US and Europe.

� We design and implement a static binary analysis tool

called CURVEDIFF for identifying such defeat devices in

a given firmware image, which enables us to track the

evolution and behavior of circumvention code across a

large number of firmware images.

� We use our tool to study the evolution of the defeat devices

and its effect on engine behavior across eight years and

over a dozen vehicle models.

However, more than these detailed technical contributions,

we believe the broader impact of our work is to articulate the

challenge of certifying regulatory compliance in the cyber-

physical environment. Today’s black box testing is costly and

time consuming and, as these cases show, can be easily cir-

cumvented by defeat device software that “tests for the tester.”

The gap between black box testing and modern software

assurance approaches drives a critical research agenda going

forward that will only become more important as regulators are

asked to oversee and evaluate increasingly complex vehicular

systems (e. g., autonomous driving). We believe that concrete

examples, such as those we describe in this paper, are key to

ground this discussion and make clear the realistic difficulties

faced by regulators.

The remainder of this paper is organized as follows. Sec-

tion II provides the necessary technical background for the rest

of the paper, followed by a discussion of the available data sets

in Section III, and a detailed description of the defeat devices

we found in Section IV. We explain how we implement this

detection at scale in Section V followed by a summary of

the results we find using this tool. Finally, we discuss the

implications of our finding in Section VII and then conclude

with Section VIII.

II. TECHNICAL BACKGROUND

In the following, we provide a brief overview of the

technical concepts needed to understand the rest of this paper.

A. Diesel Engines

The distinguishing difference between a gasoline and diesel

engine is the manner in which combustion is initiated. In

a gasoline engine, a mixture of air and fuel is drawn into

232

the combustion cylinder and ignited by a spark. In a diesel

engine, air is drawn into the combustion cylinder and, at a

critical point in the compression cycle, fuel is injected into the

cylinder, igniting in the compressed air. Thus, in a gasoline

engine, fuel and air are mixed before being drawn into the

cylinder and ignited, whereas in a diesel engine, fuel and air

are mixed at the time of ignition, resulting in an imperfect and

inhomogeneous mixture. This is responsible for many of the

diesel engine’s distinctive characteristics, including the black

smoke and heavy knocking sound known as “diesel knock.”

The black smoke, made up of particulate matter, also called

soot, results from the incomplete combustion of the fuel and

is subject to strict limits in light-duty diesel vehicles. The

second major pollutant in diesel exhaust are nitrogen oxides

(NO and NO2, abbreviated NOx). Current emission standards

impose tight limits on the amount of particulate matter and

NOx emitted and require special steps to limit their levels. The

vehicles that are the subject of this work rely on the following

emission control devices to achieve regulatory conformance.

EGR. Exhaust Gas Recirculation (EGR) is an emission control

scheme where exhaust gas is recirculated back into the engine

intake. EGR significantly reduces the amount of NOx in the

exhaust [12], [16]. Unfortunately, EGR also increases the

amount of particulate matter in the exhaust, leading to a trade-

off between NOx and particulate matter.

NSC. A NOx Storage Catalyst (NSC), also called a Lean

NOx Trap (LNT), works by oxidizing NO to NO2 and then

storing NO2 in the catalyst itself. The storage capacity of

the catalyst is limited, lasting from 30 to 300 seconds, after

which it must be regenerated. To regenerate the catalyst, the

engine switches to a rich fuel-air mixture for 2 to 10 seconds.

During regeneration, the engine is less efficient, decreasing

fuel economy [16]. A rich fuel-air mixture also increases

particulate matter production, again trading off NOx emissions

for particulate emissions.

SCR. Selective Catalyst Reduction (SCR) is an alternative

to NSC for reducing NOx emissions that works by injecting

urea into the exhaust stream. SCR is more effective than NSC

(described above) and is usually used in 3-liter diesel engines

and larger. The drawback of SCR is its increased complexity

and the need to carry and replenish the urea fluid (als known

by its trademark name AdBlue). Several Volkswagen vehicles

implicated in the emission cheating scandal are reported to

limit urea injection levels outside of a test cycle. Except for

results reported in Table II, this paper does not cover defeat

devices that manipulate SCR.

DPF. A Diesel Particulate Filter (DPF) traps particulates

(soot), greatly reducing the amount of black smoke leaving

the tailpipe. While the DPF is highly effective at trapping

particulates, as the amount of particulates accumulates, the

resistance to air flow increases also, increasing the load on

the engine. To purge the DPF of accumulated deposits, it

must undergo a regeneration cycle approximately every 500

km, lasting 10 to 15 minutes. DPF regeneration requires high

exhaust temperatures that are usually only achieved at full

load. If the vehicle is operated at full load, the DPF will

Fig. 1: FTP-75 (Federal Test Procedure) driving cycle depicting the speed
over time. Image taken from EPA [20].

regenerate on its own. Unfortunately, these conditions may not

arise in normal urban driving, requiring the ECU to perform

active regeneration. In this mode, the ECU adjusts engine

operation to increase exhaust temperature to regenerate the

DPF; however, if the vehicle is only driven for short distances,

such a temperature may never be reached. At sufficiently high

soot load, the vehicle will illuminate a special warning lamp,

prompting the driver to drive the vehicle at increased speed

to allow active regeneration to take place. If this does not

happen, the DPF will require service [21]. Thus, while the

DPF is highly effective at reducing particulate emissions, it

imposes a performance penalty and can become a hassle for

the owner who drives the vehicle for short distances. Moreover,

according to the New York Attorney General’s complaint [15],

at normal load Volkswagen’s DPF could only last 50,000

miles before needing replacement, far short of the 120,000

mile standard Volkswagen was required to meet, compelling

Volkswagen to reduce wear on the DPF.

B. Emission Test Cycles and Emission Standards

An emission test cycle defines a protocol that enables

repeatable and comparable measurements of exhaust emissions

to evaluate emission compliance. The protocol specifies all

conditions under which the engine is tested, including lab

temperature and vehicle conditions. Most importantly, the test

cycle defines the speed and load over time that is used to

simulate a typical driving scenario. An example of a driving

cycle is shown in Figure 1. This graph represents the FTP-75

(Federal Test Procedure) cycle that has been created by the

EPA and is used for emission certification and fuel economy

testing of light-duty vehicles in the US [7]. The cycle simulates

an urban route with frequent stops, combined with both a cold

and a hot start transient phase. The cycle lasts 1,877 seconds

(about 31 min) and covers a distance of 11.04 miles (17.77

km) at an average speed of 21.2 mph (34.12 km/h).

Table IV in the Appendix lists the main test cycles used

for exhaust emission tests of light-duty vehicles in different

233

regions of the world. Besides urban test cycles such as FTP-

75, there are also cycles that simulate driving patterns under

different conditions.

To assess conformance, several of these tests are carried out

on a chassis dynamometer, a fixture that holds a car in place

while allowing its drive wheel to turn with varying resistance.

Emissions are measured during the test and compared to an

emission standard that defines the maximum pollutant levels

that can be released during such a test. In the US, emissions

standards are managed on a national level by the EPA. In

addition, California has its own emissions standards defined

and enforced by the California Air Resources Board (CARB).

California standards are also used by a number of other states,

together with California covering a significant fraction of the

US market, making them a de facto second national standard.

In Europe, the emission standards are called Euro 1 through

Euro 6, where Euro 6 is the most recent standard in effect

since September 2014.

C. Electronic Engine Control

In a typical modern car, there are 70-100 electronic control

units [4], [8] that are responsible for tasks such as the human-

machine interface as part of the infotainment system, a speed

control unit, a telematic control unit, or brake control modules.

Among these is the Engine Control Unit (ECU), which is

responsible for the operation of the engine. The subject of

this work is the Bosch EDC17 ECU used in many diesel

light passenger vehicles, and in all of the vehicles implicated

in the Volkswagen diesel emissions scandal. At its core, the

ECU implements a closed control loop by periodically reading

sensor values, evaluating a control function, and controlling

actuators based on the control signal.

Sensors. To control engine behavior, the ECU relies on a

multitude of sensors readings, including crankshaft position;

air pressure and temperature at several points in the intake;

intake air mass; fuel, oil, and coolant temperature; vehicle

speed; exhaust oxygen content (lambda probe); as well as

driver inputs such as the accelerator pedal position, brake pedal

position, cruise control setting, and selected gear.

Control functions. Based on the sensor inputs, the ECU

implements different functions to control and influence the

combustion process by interpreting the input data. In a diesel

engine, one of the most important control values is the fuel

injection timing that defines when and for how long the fuel

injectors remain open in the engine cycle. As noted earlier,

injection timing affects engine power, fuel consumption, and

the composition of the exhaust gas. The ECU also determines

how much of the exhaust gas should be recirculated and how

much urea should be injected into the exhaust to catalyze

nitrogen oxides.

Actuators. The ECU uses the computer control signals to

directly control several actuators, most notably the fuel injector

valves and air system valves, including the EGR valve.

Communication. The ECU also communicates with other sys-

tems inside the car, for example to display the current engine

speed RPM signal or light up diagnosis lamps. Furthermore,

status information about the ECU is sent via an interface such

as the On-Board-Diagnostics (OBD-II) system and the ECU

can also communicate with other control units via the CAN

bus.

D. Business Relationships

The EDC17 ECU is manufactured by Bosch and bought by

automakers, including Volkswagen and Fiat, to control their

diesel engines. The exact details of the business relationship

between Bosch and its customers is not public; however, media

reports, court filings [15], and the documentation we have

obtained indicates the following basic structure: Bosch builds

the ECU hardware and develops the software running on the

ECU. Manufacturers then specialize an ECU for each vehicle

model by calibrating characteristic firmware constants whose

semantics are explained in the ECU documentation. We have

found no evidence that automobile manufacturers write any of

the code running on the ECU. All code we analyzed in this

work was documented in documents copyrighted by Bosch

and identified automakers as the intended customers.

E. Related Work

Unfortunately, there is little technical documentation about

defeat devices that is publicly available. Domke and Lange

were the first to present several technical insights into the

defeat device used in a Volkswagen Sharan [9], [10]. We lever-

age these analysis results and adopted a similar methodology

to identify defeat devices. The New York Attorney General’s

compaint against Volkswagen AG [15] contains several general

insights into defeat devices, but does not provide any technical

details. Fiat Chrysler Automobiles (FCA) is currently being

investigated in Europe [17] and to the best of our knowledge,

we are the first to document how this defeat device is imple-

mented.

III. DATASET

In this paper, we focus on the EDC17 ECU manufactured by

Bosch. This diesel engine ECU was used in the cars implicated

in the Volkswagen emission scandal as well as the Fiat 500X.

We rely on three data sources for our analysis of ECUs and

affected vehicles which we describe below.

A. Function Sheets

Function sheets (called Funktionsrahmen in German) doc-

ument the functional behavior of a particular release of the

ECU firmware. The function sheets describe each software

functional unit of the ECU using a formal block diagram lan-

guage that precisely specifies its input/output behavior, along

with some additional explanatory text. The block diagram and

text documentation also names the variables and calibration

constants used by the functional unit. Car makers tune the

behavior of the ECU by changing these calibration constants.

In the Bosch function sheets, scalar calibration constants are

identified by the C suffix, one-dimensional array constants

by the CA suffix, and higher-dimensional arrays by the MAP
suffix. Further, curve definitions use the suffix CUR.

234

Function sheets are generally not available to the public,

however, many make their way into the automobile perfor-

mance tuning community. All of the function sheets used in

this work have been obtained from such tuner sites. All figures

throughout the paper are derived from these function sheets

that are already publicly available.

Authenticity. Since we did not obtain the function sheets

directly from the ECU manufacturer (Bosch), we cannot

be absolutely certain of their authenticity. Nevertheless, all

function sheets used in this work bear a “Robert Bosch GmbH”

copyright and show no evidence of alteration by a third party.

Indeed, we have not encountered any function sheets that

show any signs of content tampering in the wild. We have

also explicitly verified that key functional elements, like the

Volkswagen “acoustic condition” described in Section IV-A,

match the code in the firmware.

B. A2L and OLS Files

The automotive industry uses the ASAM MCD-2 MC [1]

file format, commonly called A2L, to communicate elements

of a firmware image that a car manufacturer must modify in

the calibration process. Generally speaking, an .a2l file is

comparable to a .map or .pdb file used by developers on the

Linux or Windows platform, respectively. While all of these

file types map debugging symbols to concrete addresses, .a2l
files can also give contextual information beyond mere symbol

names. The format is developed to “support . . . automotive-

specific processes and working methods” [1]. Consequently,

additional metadata used to describe an address (i. e., an ECU

variable) may include axis descriptions for lookup tables,

information about the byte order, or unit conversion formulas.

An example is given in Listing 1 in the Appendix.

Given that .a2l files contain lots of details and insights

into a given ECU, they are typically only available for people

working on engine development, calibration, and maintenance.

However, car tuning enthusiasts also regularly get hold of these

files and trade them at online forums. In order to understand

the inner workings of certain ECU firmware images in more

detail, we obtained access to such files. When we were not

able to obtain a .a2l file for a given firmware image, we

focused on binary code only and leveraged insights gained

from similar ECUs to bootstrap our analysis.

In some cases, we relied on OLS files, an application format

used by the WinOLS software used to change configuration

values in firmware. The OLS format contains both a firmware

image and elements of the A2L file annotating calibration

constants.

Authenticity. As with function sheets, we did not obtain A2L

files used in this work from Bosch or the car maker, and

so cannot guarantee their authenticity with absolute certainty.

Each A2L file is paired with a specific firmware image;

we confirmed their match before using the A2L to extract

values from the image. We used A2L to identify variables and

constants in code extracted from the firmware. Examining the

context in which a value thus served as a kind of sanity check.

C. Firmware images
We also obtained firmware images from various sources.

Similar to .a2l files, firmware images are also circulated

in the car tuning community. We obtained several images

from the tuner community. We also obtained images from the

erWin portal (“electronic repair and workshop information”),

a platform operated by Volkswagen that provides access to

official firmware images for car repair shops. The portal

provides archives containing firmware updates up to a certain

date. Every image is named after its software part number and

revision, allowing us to uniquely identify it. The timestamp is

roughly equivalent to the release date of the firmware.
Unfortunately, the images contain no additional metadata

such as the actual model in which the firmware is deployed.

We used online portals offered by aftermarket automobile part

vendors to determine which vehicles a firmware image was

used on.
Authenticity. Firmware data for VW, Audi, Seat and Skoda

is obtained from the erWin portal, operated by Volkswa-

gen. The newest image is dated October 11, 2016. We also

obtained Volkswagen group images dated 2009–2010 from

various online sources. We only included images for which

Freigabeschein (street release certification) documents allowed

us to obtain information about both release date and car model.

We obtained the Fiat 500X OLS file from a tuning site. It

was sold to us as an original (unmodified) image. Our main

findings based on this OLS file align with the test results of

the German KBA [22].

IV. DEFEAT DEVICES

A defeat device is a mechanism that causes a vehicle to

behave differently during an emission test than on the road.1

Conceptually, a defeat device has two components:

◦ Monitor. Determine if observed conditions rule out an

emission test, and

◦ Modify. Alter vehicle behavior when not under test.

Defeat devices rely on any number of external or internal

variables to detect that a test is taking place. From 1991

to 1995, for example, General Motors used the fact that air

conditioning was turned on in its Cadillac automobiles to rule

out a test cycle—at the time, emission testing was done with

air conditioning turned off—making the air-fuel mixture richer

to address an engine stalling problem, but also exceeding CO

emission limits [14]. General Motors was fined $11 million

and forced to recall all affected vehicles.
As the Cadillac example suggests, the monitoring element

of a defeat device does not need to be perfect, so long as

1More precisely, the US Code of Federal Regulations defines a defeat device
as “an auxiliary emission control device (AECD) that reduces the effectiveness
of the emission control system under conditions which may reasonably be
expected to be encountered in normal vehicle operation and use, unless:
(1) Such conditions are substantially included in the Federal emission test
procedure; (2) The need for the AECD is justified in terms of protecting the
vehicle against damage or accident; (3) The AECD does not go beyond the
requirements of engine starting; or (4) The AECD applies only for emergency
vehicles . . . ” (40 CFR § 86.1803-01). European regulations follow a very
similar definition.

235

Min Max Unit Signal Description

−50 140 °C InjCrv tClntEngNs mp Coolant temperature
−50 140 °C FuelT t Fuel temperature
−50 140 °C Oil tSwmp Oil temperature
795 — hPa EnvP p Atmospheric pressure

true StSys stStrt Engine starting

TABLE I: Initial conditions activating the acoustic condition in the EDC17C54
firmware. parameters taken from firmware part number 03L906012F. If all
conditions hold, the set signal to the outer (topmost) flip-flop in Figure 2 is
asserted.

its error is one-sided. Like the Cadillac device, the defeat

devices we found assume that the vehicle is under test unless

some internal or external variable allows it to rule out an

ongoing test. Then, when the monitoring element signals that

the observed variables are not consistent with any known test

cycle, the vehicle can switch to an operating regime favored by

the manufacturer for real driving rather than the clean regime

necessary to pass the emission test.

In the remainder of this section, we describe the defeat

devices used by Volkswagen and Fiat to circumvent emission

testing and their effect on vehicle behavior. Our description is

based on function sheets for the ECU, reverse engineering of

the firmware, and publicly available information, notably the

Complaint filed by the State of New York against Volkswagen

and its US subsidiaries [15].

A. The Volkswagen Device: Test Detection

The Volkswagen defeat device is a continually evolving

family of devices. All instances are organized around a single

condition monitoring block that determines if the vehicle

is undergoing testing and points throughout emission-related

ECU modules where the result of this determination can affect

the behavior of the module. The monitoring element of the

Volkswagen defeat device is encapsulated in a function block

that computes the status of the kundenspezifische Akustikbe-
dingung, which translates to “customer-specific acoustic con-

dition.” (Here, customer refers to the automaker, namely,

Volkswagen.) The outcome of the computation is represented

by the signal/variable InjCrv stNsCharCor (stNsCharCor
for short). This signal is then used at many points in the

ECU to alter the behavior of the engine. Figure 2 shows the

logic block responsible for computing the acoustic condition.

(The Figure is taken from the function reference sheet created

by Bosch.) The value stNsCharCor = 0 means that the

ECU considers itself to be in normal driving mode, while

stNsCharCor = 1 indicates testing (emmissions-compliant)

mode.

Activating conditions. The state of the acoustic condition is

stored in the top flip-flop in the figure �. The set signal to the

flip-flop is true if all of a set of five conditions are true. These

conditions are shown in Table I. Note that the last condition,

engine starting, is only true when the engine is starting and is

false during normal operations. If the engine runs in normal

mode (i. e., has not recently been started), has exceeded a

velocity of, e. g., 9.5 km/h at some point, and pressure

and temperature match the aforementioned boundaries, the

function proceeds with the actual cycle checking. Otherwise,

the engine stays in the same mode. The effect of this is that

the acoustic condition can only be set if coolant temperature,

fuel temperature, oil temperature, and atmospheric pressure are

within the prescribed limits when the car starts �. If any of

the four parameters is outside the required range, an ongoing

emissions test is ruled out and the acoustic condition is never

activated. However, we note that these conditions are easily

satisfied in both testing and real-world scenarios.

If the acoustic condition is set at startup, it may be canceled

by meeting several conditions that rule out a test. We call

these the deactivating conditions. If any of these conditions

are met, the inner flip-flop is set �. The output of the inner

flip-flop asserts the reset signal of the outer flip-flop, setting

the acoustic condition variable stNsCharCor to zero. There

are four deactivating conditions any one of which, if true,

sets the inner flip-flop that in turn sets stNsCharCor to zero,

indicating the vehicle is in normal driving mode.

Deactivating conditions. There are four deactivating con-

ditions �. The first deactivates the acoustic condition if

the engine has started and a configurable time period

InjCrv tiNsAppVal C has elapsed since the accelera-

tor pedal position first exceeded a configurable threshold

InjCrv rNsAppVal C. The second deactivates the acoustic

condition if the engine revolution counter exceeds a config-

urable threshold InjCrv ctNsStrtExtd C. The third de-

activation condition, if the acoustic condition is inhibited, is

never triggered.

Until about May 2007, there were only three deactiva-

tion conditions, as described above. Of the firmware im-

ages available to us, the fourth condition first appears in a

firmware image dated May 2007 for EDC17CP04 P 617. It

starts by computing a time and distance measurement. The

time measurement, call it t, is computed by measuring the

time since the vehicle first exceeded a configurable velocity

InjCrv vThres C. The distance measurement is the dis-

tance in the current driving cycle, call it d.
Test cycle curves. The acoustic condition logic computes a

pair of points dlower and dupper using two linearly interpolated

curves. These curves, which define a function of t using a

small number of points, are configurable by the manufacturer.

In this case, there are seven pairs of curves, giving seven pairs

of values dlower and dupper computed for the current value t.
If d is ever less than dlower or greater than dupper, the flip-

flop corresponding to the pair of curves is set and remains set

indefinitely �.

The output of this flip-flop indicates that the vehicle has

strayed outside the prescribed time-distance profile defined by

the pair of curves. Hence, the curves describe an upper and

lower bound on the covered distance. The flip-flop allows the

logic to remember this, and at any given time, the state of

the flip-flops indicate whether the vehicle has so far stayed

within the prescribed time-distance profile defined by the pair

of curves. If all seven flip-flops are set, then the vehicle has

strayed outside the profile of each of the curves at least once

236

�

� � � � � � � � �

� � � � � � � 	
 � � � � 	 � � � � � � � � �

� � � � � � � 	
 � � � � 	 � � � � � � � � �

� � � � � � � � �

� � � � � � � 	
 � � � � � � � � � � � �

� � � � � � � 	
 � � � � � � � � � � � �

� � � � � 	

� � � � � � � � �

� � � � � � � 	
 � � � � � � � � � � � � �

� � � � � � � 	
 � � � � � � � � � � � � �

� � � � 	 � � � �

� � � � � � � �
 � � � � � � � � � �

� � � � � �

� 	 � � � � � 	 � 	 � 	

� � � � �

� � � � � � � �
 � � � � � � � � �

 � � � �

� � � � � � � 	 �
 � � � � � � � � �

� � � � � � � 	 ! � � � 	 � 	 � � 	 "

� � � � � � � 	
 � ! � � � 	 � 	 � � 	 " � �

� � " � � � � � � �
 � � � � � � # � $ % & & '

� � � � � � � � 	
 � � � � � � # �

�

� 	 � � � � � 	 � 	 � 	

'

�

� � � � � �

� � � � � � � � � � � � � �

�

�

� � � � � � � �
 � () � � �) !

�

�

�

�

�

�

� � � � � � � �
 � (* � � � �) !

� � � � � � � �
 � +) � � �) !

� � � � � � � �
 � ,) � � �) !

� � � � � � � �
 � -) � � �) !

� � � � � � � �
 � + * � � � �) !

� � � � � � � �
 � , * � � � �) !

� � � � � � � �
 � - * � � � �) !

� � � # " � � � � � � � � � 	

�

(' ' '

. �

	/

	/

	/

	/

�

	/

� � � � � � � � � 	
 � ! � � � 	 � � � �

�

�

�

�

�

�

�

�

�

� � � � � � � � 	
 � ! � � � 	 $ '

� � � � � � � � 	
 � ! � � � 	 $ (

� � � � � � � � 	
 � ! � � � 	 $ +

� � � � � � � � 	
 � ! � � � 	 $,

� � � � � � � � 	
 � ! � � � 	 $ -

� � � � � � � � 	
 � � � � 0 � � �

� � � � � � � 	 �
 � ! � �

'

�
 1 � ! � � ! �
 � � 2 � ! � � ! � � 3

� � 3 � � � ! * �
 �

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 ' 6

�

 � � � �

9 � � 4 : ; (% < � � � 4 � � � 	 � � � � � � � � � � = 4 > � � � �

" � � � 4 � � � 	 4 # � � � � � � 4 ? � � 4 ? � � �

� 	 � � � � @ � � A 	 � � # � � � � > 4 � � > # � @ 	

� # � � @ � � 	

� � �
 B � !)

 �
 B

4 4 � � � � � � � 	 �
 # � � � � ! � " � 	 � 	 � 	 # �

�
� � ; � �

� � � � C � ? � 	 # � � 	 �

� � 3 � � � ! 4 4

� 	 � � � � � 	 � 	 � 	

� � 3 � � � ! 4 4

� � � � � 3

� # � � @ � 	 �
 # � � � � ! � "

� � � � � 3

� � � � � � � � � � � � @ � � � � � �
 � � �

�

� � � � � � � 	 � � � 	 � � @
 � � � �

� � @ * � � 	 � � "

Fig. 2: Acoustic condition activation logic from function sheet EDC17C54 P 874 for, e. g., VW Passat, dated December 2009. The portion shaded light blue
disables the so-called “customer-specific acoustic condition” if the distance traveled as a function of time falls outside of all 7 possible test cycle speed
profiles. The highlighted portion does not appear in function sheets prior to EDC17C04 P 617, dated May 2007. Copyright Robert Bosch GmbH. Diagram
cut at fourth test curve, continues up to seven below. Blue shading and numbers � through � added by authors.

since start. If this happens, the acoustic condition is canceled.

In the firmware we examined, these curves are used to

define the precise time-distance profile of known emission

tests. In general, we note that the number of profiles has been

increasing with time. As shown in Table II, the number of

curves checked has increased from 0 in EDC17CP04 P 531

to 7 in EDC17CP44 P 859.

Figure 3 shows several curve pairs found in the firmware

of an EDC17C54 ECU (software part number 03L906012,

revision 7444; remaining curves found in Figure 14 in the

Appendix). The area outside of the upper and lower boundaries

dlower and dupper as defined by curves is shaded. If the com-

puted time and distance value (t, d) ever enters this gray area,

the test is considered to be ruled out, and the corresponding

flip-flop is set. In addition to the boundaries, we have plotted

the test cycles of known emission tests given in Table IV. Test

cycles matching the profile are shown using heavy lines; all

others using light lines. As our results show, several of the

configured boundaries match a known test cycle quite closely.

In particular, profile 1 matches the FTP-75 test cycle to within

4.2 km and profile 5 the HWFET test cycle to within 16.1 km

(not fully shown in the figure).

237

0 200 400 600 800 1000 1200 1400 1600 1800
seconds

0

1

2

3

4

5

6

7

8

9

10
km

(t
ot

al
)

80187214, profile 1

FTP-75

0 200 400 600 800 1000 1200 1400 1600 1800
seconds

0

1

2

3

4

5

6

7

8

9

10

km
(t

ot
al

)

80187214, profile 7

EUDC
EUDCL

0 200 400 600 800 1000 1200 1400 1600 1800
seconds

0

1

2

3

4

5

6

7

8

9

10

km
(t

ot
al

)

80187214, profile 8 ⊗

FTP-75
CADC-RURAL
IM240

0 200 400 600 800 1000 1200 1400 1600 1800
seconds

0

1

2

3

4

5

6

7

8

9

10

km
(t

ot
al

)

80187214, profile 9 ⊗

NEDC
ECE-15
JP10
WLTP-1
WLTP-2
WLTP-3
RTS-95
J1015
CADC-URBAN
LA92

Fig. 3: Selection of curve checks testing against various emissions test cycles in the firmware for a VW Passat, released 12/2014 (EDC17C54, software part
number 03L906012, revision 7444). The area in which the software reports the driving profile to match is colored white. As evident from the graphs, this
area tends to follow a test cycle closely. The legend lists the known matching test cycles. ⊗ indicates an additional steering wheel check. Figure 14 in the
Appendix depicts the remaining curves.

Steering wheel checks. Starting 2009, the EDC firmware used

in Volkswagen automobiles increased the number of profiles

check from 7 to 10. As noted, the profiles shown in Figure 3

were extracted from an EDC17C54 firmware image, VW part

number 03L906012, that has 10 profiles, four of which are

shown in the figure. (The acoustic condition illustrated in

Figure 2, from an older EDC17C54 function sheet, shows only

7 profiles.)

Note that profiles 8 and 9 are considerably less precise than

profiles 1 and 7. In fact, profile 9 matches a total of 10 known

emissions test cycles. In addition to checking the time-distance

relation shown in Figure 3, profiles 8, 9, and 10 also included

a steering wheel angle check: in addition to deviating from

a prescribed time-distance profile, the flip-flop corresponding

to profiles 8, 9, and 10 would be reset if the steering wheel

angle deviated by more than 20° from the neutral position.

Unfortunately, we could not obtain a function sheet containing

this improved acoustic condition. The following code is our

reconstruction of the logic used to determine if a steering

wheel angle deviation should cancel the acoustic condition.

if (-20 /* deg */ < steeringWheelAngle &&
steeringWheelAngle < 20 /* deg */) {
lastCheckTime = 0;
cancelCondition = false;

} else {
if (lastCheckTime < 1000000 /* microsec */) {

lastCheckTime = lastCheckTime + dT;
cancelCondition = false;

} else
cancelCondition = true;

}

In the updated firmware, the signal cancelCondition
computed as above is applied as a third input to the ≥ 1 gates

that lead into the flip-flops corresponding to each profile.

238

� � � � � �

�

� " � � � � 4 & 4 �
 1 � ! � � � � � '

� � � � � � � � 	
 � � � � � � # �

� � 3 � � � ! * �
 �

�

D � # �

�

� � � � � � � D
 � � � � (� " " � # � (� �

� � � � � � � @

�
 1 � 3 � � ; � � * � � ! � �

D � # �

�

� � � � � � � D
 � � � � + � " " � # � � �

� � � � � � � @

�
 1 � 3 � � ; � � * � � ! � �

D � # �

D � # �

� � � I

� � � � � � � D
 � � � � (� " " � # � (� � � �

� � � (

� � � +

� � � ,

� � � � � � � D
 � � � � + � " " � # � � � � �

� � � � � � � � 	 � � � � � � � � 	 � � � $ �
 1 � ! � � � � � + 4 & & 4 (

�

�

�� � � � � � � @

�
 1 � 3 � � ; � � * � � ! � �

� � � � � � � D
 � � � � (� " " � # � + � � � �

� � � � � � � D
 � � � � (� " " � # � + � �

Fig. 4: Acoustic condition (signal InjCrv stNsCharCor) used to modify
the desired injection quantity correction qCor. From the EDC17C54 P 874
function sheet. Copyright Robert Bosch GmbH.

If the sophisticated test cycle detection logic encoded above

sets the acoustic condition to one, a number of behavior

changes take place in the vehicle. These changes are ef-

fected by using the value of the acoustic condition variable

stNsCharCor to switch between configurable variables or

parameters, allowing the vehicle to operate with one set of

calibration values in the normal driving mode and using

another set in testing mode, as if two distinct personalities

took turns controlling the vehicle. Next, we describe the two

contrasting personalities that emerge depending on the state

of the acoustic condition.

B. The Volkswagen Device: Effect on Injection

As described in Section II-A, the operation of a diesel

engine is controlled through fuel injection timing. The start

and duration of injections not only affects engine power output

but also exhaust emissions. Based on its naming and first use,

the acoustic condition was introduced to alter engine injection

behavior [15]. We identified several points in the firmware we

analyzed manually where the acoustic condition can modify

fuel injection behavior. Here, we describe how the acoustic

condition can be used to adjust the quantity of injection.

Figure 4 shows how the fuel injection quantity (additive)

correction (qCor) is modified by the acoustic condition. If

the acoustic condition is true (under test), qCor is modi-

fied by adding a constant (InjCrv qNsPiI1AddCor{1,2} C
or InjCrv qNsPiI2AddCor C). Otherwise, qCor is mod-

ified by adding a value computed based on engine speed

(Epm nEng). The function sheet describes this logic block as

“Berechnung zusätzlicher (kundenspezifischer) Korrekturen für
die Voreinspritzungen” (Calculation of additional (customer-

specific) corrections for the pilot injections.).

C. The Volkswagen Device: Effect on EGR

As noted earlier, Exhaust Gas Recirculation (EGR) is a very

effective means of reducing NOx levels in the exhaust gas.

Unfortunately, the beneficial effect on NOx has the opposite

effect on particulate matter: decreasing NOx emissions by

increasing the amount of exhaust gas recirculated increases

the amount of soot in the exhaust. This, in turn, increases

load on the Diesel Particulate Filter (DPF) used to reduce

soot emissions. The acoustic condition can also be used to

alter the amount of exhaust gas recirculated (see Figure 11

in the Appendix). The logic block shown in the figure is

used to compute mDesVal1Cor, a correction value to the total

desired air mass. The correction may be applied additively or

multiplicatively, based on a configurable parameter, to the base

amount to arrive at the desired air mass value (this calculation

is not shown in the figure).

D. The Fiat 500X Device

The Volkswagen emission scandal brought attention not

only to Volkswagen itself, but also to other automakers of

diesel vehicles. Among them was Fiat Chrysler Automobiles

(FCA), which on February 2, 2016 issued a press release

stating: “FCA diesel vehicles do not have a mechanism to

either detect that they are undergoing a bench test in a

laboratory or to activate a function to operate emission controls

only under laboratory testing. [...] [W]hen tested following

the only testing cycle prescribed by European law (NEDC)

[FCA diesel vehicles] perform within the regulatory limits and

comply with the relevant regulatory requirements.” [11]. On

February 9, 2016, a week after FCA issued the press release, it

was accused by German environmental protection organization

Deutsche Umwelthilfe (DUH) of exceeding emission limits on

their Fiat 500X cross-over SUV equipped with a 2-liter Fiat

MultiJet II diesel engine. DUH used a chassis dynamometer

for testing. As of this writing, FCA has not acknowledged that

its car has a defeat device.

Like other vehicles in this study, the diesel engine of the Fiat

500X uses the Bosch EDC17 ECU. Its exhaust after-treatment

system includes an NOx Storage Catalyst (NSC) and a Diesel

Particulate Filter (DPF). To investigate the claim, we obtained

a Fiat 500X function sheet (EDC17C69 P 1264) and firmware

image (55265162). We examined both for the presence of the

Volkswagen defeat device, but found neither mention of the

acoustic condition in the function sheet nor any evidence of

curve-checking logic in the firmware image.

However, we found that Fiat 500X contained what amounts

to a defeat device in the logic governing NSC regeneration.

Unlike the Volkswagen defeat device, the FCA mechanism

relies on time only, reducing the frequency of NSC regener-
ations 26 minutes 40 seconds after engine start. Recall that

the primary role of the NSC (Section II-A) is to reduce NOx

emissions by trapping NO2 in the catalyst during the loading

239

Fig. 5: NOx regeneration release logic combining the start and release signals from the homologation and real driving logic to compute the single regeneration
release signal stRlsDNOx. Demand and release conditions are computed separately for the homologation and real driving logic �. The output of the
Kind of Request block is non-zero if either of the homologation or real driving signals is true �. The final release signal stRlsDNOx is only asserted �
if either the homologation or real driving release signals is true. Blue numbers � through � added by authors. From function sheet EDC17C69 P 1264 for
Fiat 500X. Copyright Robert Bosch GmbH.

phase (lasting from 30 to 300 seconds) and purging it during

the regeneration phase (lasting 2 to 10 seconds). Regeneration

reduces fuel economy and increases the load on the DPF. By

reducing the frequency of NSC regeneration, a manufacturer

can improve fuel economy and increase DPF service life, at

the cost of increased NOx emissions.

In the Fiat 500X ECU, the logic controlling NSC regenera-

tion is divided into demand logic and release logic. The former

determines when NSC regeneration should take place, while

the latter imposes constraints on when regeneration is allowed

to start. For regeneration to start, the demand logic must re-

quest regeneration, asserting the NSCRgn stDNOxStrt signal

while the release signal NSCRgn stRlsDNOx must be asserted

by the release logic. (DNOx refers to NSC regeneration, which

purges stored NOx from the catalyst.) In the EDC17C69 func-

tion sheet we examined, both the demand and release logic was

duplicated into two parallel blocks. The first pair of demand

and release blocks applies to a “homologation cycle” while

the second pair to “real driving.” (Homologation refers to the

process or act of granting approval by an official body, for

example, of a vehicle for sale in a particular jurisdiction. The

terms “homologation” and “real driving” are taken from the

EDC17C69 function sheet.) Names of signals and logic blocks

used in the homologation logic contain Hmlg in their name,

while those used in the real driving logic contain Rd in the their

name. The demand logic for the homologation and real driving

blocks are very similar, using the total estimated NOx load,

catalyst temperature, and other variables to determine when to

trigger regeneration. The homologation and real driving logic,

however, uses different calibration parameters, allowing the

manufacturer to supply completely different models for the

test cycle and real driving.

Both homologation and real driving logic blocks can request

a regeneration. Similarly, the release signal is also controlled

by two parallel logic blocks. Figure 5 shows how the signals

are joined. The homologation release signal is AND-combined

stTiCoEngHmlg
tiSnceFrstRunngRed

NSCRgn_stTiCoEngHmlg_mp

NSCRgn_tiCoEngMaxHmlg_C

Fig. 6: The stTiCoEngHmlg signal logic required to set stDNOxHmlg,
allowing NOx regeneration to proceed under the “homologation” sched-
ule. In the 55265162 Fiat 500X firmware image we examined,
NSCRgn tiCoEngMaxHmlg C is set to 1600 seconds. Copyright Robert
Bosch GmbH.

with the homologation demand signal, and likewise the real

driving signal demand and release signals (marked � in

Figure 5). The homologation release signal is delayed by

NSCRgn tiDlyRlsDNOxHmlg C, which is set to 300 seconds

in the 55265162 firmware image. The resulting release signal

out of the block is asserted if either the homologation or the

real driving signal is true.
The logic controlling the homologation regeneration release

signal is shown in Figure 12, and the corresponding logic

block for real driving in Figure 13 in the Appendix. The

important feature of the homologation release block is that

all conditions defined by the blocks shown in the figure must

be met, because their outputs are AND-combined to produce

the output signal stDNOxHmlg. In particular, this means that

the stTiCoEngHmlg output of the first sub-block must be

true. The bottom of Figure 12 shows how this signal is

computed: stTiCoEngHmlg is set if the running time since

engine start, tiSnceFrstRunngRed, is less than or equal to

the constant NSCRgn tiCoEngMaxHmlg C. In the Fiat 500X

firmware image we examined, this constant was calibrated to

1600 seconds. Thus, the homologation regeneration release
signal stDNOxHmlg will be inhibited if the engine has been
running longer than 1600 seconds. In addition, stDNOxHmlg
also requires that the total driving cycle fuel consumption be

at most NSCRgn volFlConsMaxHmlg C, which is configured

to 1.3 liters in our firmware image.

240

This means that regeneration requested by the homologation

demand block will only be allowed to start a regeneration
during the first 1600 seconds (26 minutes 40 seconds) of
engine operation. After that, only NSC regeneration requested

by the “real driving” logic will be allowed to start regeneration.

We note that this coincides with the runtime of standardized

emissions test cycles.

The logic blocks described above include several switches

that may disable this dual path behavior. In the Fiat 500X

firmware image we examined, we found that both paths were

enabled (NSCRgn swt{Hmlg,Rd}HmlgActv C = true). The

homologation release delay NSCRgn tiDlyRlsDNOxHmlg C
was set to 300 seconds, which limited the frequency of

homologation-requested regeneration to once every five min-

utes. We also examined the demand logic for homologation

and real driving.

V. DETECTING DEFEAT DEVICES

Based on the insights obtained in our case studies, we

designed a static analysis tool that helps us to identify a defeat

device in a given firmware image. We implemented a prototype

of this approach in a tool called CURVEDIFF for EDC17 ECUs

that enables us to track the evolution and behavior of such

a device across a large number of firmware images. In the

following, we discuss design considerations and the general

workflow together with implementation details.

A. Design Considerations

Our method aims to automatically identify potential defeat

devices which actively try to detect an ongoing emissions test

based on the car’s driving profile during the test cycle. More

specifically, we try to identify code regions in a given firmware

image that attempt to determine if the car currently follows one

of the standardized test cycles and whose behavior influence

the operation of the engine. We thus focus on the type of defeat

devices implemented by Volkswagen since they represent more

sophisticated defeat devices compared to the time-based ones

implemented by FCA.

Our design decision to focus on test cycle detection is due to

two important factors. First, this approach requires relatively

little previous domain knowledge about firmware specifics and

is thus rather unlikely to be subject to syntactical changes in

the checking logic. In turn, this also means that we do not

have to rely on additional data such as .a2l files, which may

be hard to obtain for a given firmware image (even though

it would significantly simplify the analysis). Second, this

approach provides higher means of non-repudiation: Because

we do not rely on accurately determining ECU variables but

try to generically detect matches against well-known emissions

test cycles, the fact that the software actively checks against

the latter is hard to refute in general.

B. General Workflow

We use static code analysis to implement our approach

because we cannot easily execute a given ECU firmware image

in an emulator to perform a dynamic analysis. Furthermore,

static analysis enables us to obtain high code coverage by

analyzing each function individually. Our analysis framework

called CURVEDIFF is based on the IDA Pro 6.9 [13] dis-

assembler, which includes support for the Infineon TriCore

processor used in Bosch’s EDC17 ECU. The framework is

fully automated and takes a binary firmware image as input.

When analyzing a firmware image, we perform the following

steps:

1) Generate and pre-process the IDA database,

2) Build core structures and lift to static single assignment

(SSA) form,

3) Analyze curve function invocations,

4) Match curve checks against test cycles.

In the following sections, we describe each step in more detail

and provide information about implementation details.

C. Preliminaries

The curve function SrvX IpoCurveS16 is a vital part of

the defeat device used by Volkswagen. It is also a core function
provided by the operating system itself and thus present in all

firmware images using the same OS. Further, we found that

it is widely used throughout the code of a firmware image.

Basically, it returns the y coordinate for a given x coordinate

on curve c, i. e., y ← SrvX IpoCurveS16(c, x). Since c
might be represented by a few data points only, the function

interpolates linearly.

Matching the current driving profile against predefined

emissions test cycles is performed by posing two curve queries

using SrvX IpoCurveS16: one yields the upper boundary on

y corresponding to the given x value, whereas the other yields

the lower boundary. Specifically, the boundaries fit a known

test cycle that the real driving profile (seconds since engine

startup x and covered distance y) is checked against.

D. Pre-Processing

For our analysis, in order to resolve memory accesses, we

need to obtain the small data regions (for global variables,

via TriCore’s system global register a0) and literal data
regions (for read-only data, via register a1) as well as the

function vector table (accessed via register a9), which stores

data associated with a certain function. The system global

registers are architecture and OS dependent and initialized

during startup, as all functions operate on them to access

the specific memory regions. Further, we need to obtain the

address of the curve function, which can be easily detected by

matching on parts of the function semantics (namely, linear

interpolation of two curve points) and verifying the result using

its call graph. Since this function is not customer-dependent

but provided by the OS, it does not change significantly.

Note that there are a few things we need to consider.

As the curve function may be wrapped, we need to detect

such instances to avoid having to perform inter-procedural

analyses later. In practice, wrappers can easily be detected

using the function’s call graph. In addition, we need to take

peculiarities of the architecture into account: TriCore supports

scratch pad RAM (SPRAM for short), which mirrors parts

241

of the firmware’s code in faster memory. As this is done on

startup (i. e., at runtime), we need to extract the mapping of

mirrored regions, as we otherwise might miss calls targeting

this memory area.

E. Lifting to Static Single Assignment Form and Optimization

In order to facilitate a robust static analysis suitable for

our task, we operate on an intermediate language (IL) in

Static Single Assignment (SSA) form. SSA was introduced

by Cytron et al. in 1991 [6] and describes the property of an

IL in which there is only one single definition for each variable

and each definition dominates its uses. This, in turn, enables

the design of efficient data-flow analysis algorithms.

The TriCore assembly language is expressive enough to

diminish the need for a full-fledged IL, e. g., side effects are

rare and nearly all data flow is explicit. Hence, rather than

developing a new IL from scratch, we modify the assembly

representation slightly in order to conform with requirements

assumed when transforming to SSA form. More precisely,

for instructions containing an operand that is both read and

written, we duplicate the operand such that use and definition
are properly distinguished. Similarly, for instructions defining

more than one variable, we add one single definition (a tem-

porary register), and insert helper instructions that extract the

correct definition from the temporary register, and store them

into the target variable. For example, calls may, amongst

others, return results in both registers a2 and d2. As SSA

form does not allow multiple definitions for one instructions,

we introduce the temporary register re that stores the return

values of the call. Right after the call instruction, we add

artificial cconv.w instructions that read from re and store

the corresponding part of the return value into a2 and d2,
respectively. Further, we encode other particularities of the

TriCore calling convention explicitly. For example, we add

uses of parameter-passing registers a4 and d4 to calls and,

in a similar vein, uses of a2 and d2 to return instructions. We

transform the resulting assembly into pruned SSA form [5]

using liveness analysis. Finally, in order to coalesce memory

access via system global registers a0, a1, and a9, we optimize

each function using constant propagation.

F. Relating Curve Queries

Having transformed all functions into an intermediate rep-

resentation, each function is analyzed separately in order to

construct a list of candidates potentially checking against

emissions test cycles. To this end, we extract all invocations

of the curve function and try to group them into pairs of two,

where each call queries either the upper or lower boundary for

a given data point. This allows us to programmatically extract

the curves defining both boundaries and match them to well-

known cycles in a later step. We define two such calls to the

curve function as being related.
Section V-C explained how two calls to the curve function

SrvX IpoCurveS16 are made in order to match the current

driving profile against predefined emissions test cycles. This

phi d11_5 [d11_1 d11_4 d11_4 d11_4]

d11_5 d11_5

mov16 d4_17 d11_5

d11_5

80187510 mov16 d4_5 d11_5

d11_5

801875d8 mov16 d4_10 d11_5

d11_5

80187688 mov16 d4_15 d11_5

d11_5

80187544 mov16 d4_6 d11_5

d11_5 d11_5

8018751c call32 re_5 #800b64f0 a4_2 d4_5

d4_5

801875f0 call32 re_10 #800b64f0 a4_7 d4_10

d4_10

80187694 call32 re_15 #800b64f0 a4_12 d4_15

d4_15

Fig. 7: Excerpt of a data-flow graph used to verify property P-1. Curve calls
can be grouped by the origin of input coordinate x (passed via register d4,
originating from register d11).

801876ca lea a4_13 [a15_101]#368

801876ce call32 re_16 #800b64f0 a4_13 d4_16

a4_13

801876be ld32.a a15_101 [a9_0]#9a4

a15_101

801876d4 lea a4_14 [a15_101]#3a6

a15_101

801876de call32 re_17 #800b64f0 a4_14 d4_17

a4_14

Fig. 8: Example for data-flow graph for verifying property P-2. Both calls to
the curve function are passed a different target curve via register a4.

observation allows us to identify several important properties

that must hold for two related curve queries:

P-1 Both curve queries in a related check have to take the

same variable as query point x (parameter d4). This

requirement follows from the fact that both curves use

the same axis. Concretely, x corresponds to the time since

engine start.

P-2 Both curve queries have to operate on distinct curves (pa-

rameter a4). This is because both curves encode multiple

possible driving profiles and allow for some deviation

from the exact test cycles due to potential imprecisions

during the emission testing.

P-3 The results ylow, yhigh (register d2) of both curves have

to be related in the sense that they implement a range

check on the actual y value (i. e., the distance driven since

engine start).

Properties P-1 and P-2. Effectively, property P-1 allows us to

group several calls to the curve function together, based on the

value provided for parameter x. In order to achieve this, for

each call, we backtrack register d4 and build a data-flow graph,

where nodes are instructions and edges connect a variable’s

(necessarily unique) definition and its uses. An example for

the resulting graph can be seen in Figure 7. Evidently, all

curve calls take d115 as parameter x. Similarly, we can

backtrack register a4 in order to find out the actual curves

the functions operate on. Figure 8 visualizes this approach.

Note that both leave nodes are connected via a15101, which

is the function vector entry holding all data associated with the

current function. However, both calls still operate on different

curves with offsets 0x368 and 0x3a6, respectively.

Property P-3. Property P-3 effectively states that the resulting

ys of two distinct curve calls are related if they end up in the

same “meaningful” expression; an expression is meaningful,

for example, if it implements an interval check by comparing

a given value with upper and lower boundaries as specified by

the curves.

In order to check P-3, we begin by building a forest

242

of data-flow graphs by tracking forwards the return values

of all curve calls that lie in the same group, according to

property P-2. Note that in the data-flow graphs, not all uses

of an instruction are considered. Each connected component

then either corresponds to the data-flow graph arising from one

single curve call or it connects data-flow graphs of multiple

curve calls together. While the first case does not provide any

useful information, the latter case tells us that both curve calls

are in fact related. Even though this fact already is useful as-is,

we can further inspect how two calls are related.

Intuitively, the type of relation between two curve calls

is described by the node where the data flows for each

return value meet. We call these nodes (forward) join nodes.
They can be computed by calculating the lowest common
ancestor (LCA) [2] of the vertex-induced subgraph of every

possible pair of curve calls. Figure 10 in the Appendix depicts

a part of the (single) connected component that reveals the

relations of all curve calls in the acoustic function. This

statement implements an interval check that could further be

confirmed by, e. g., symbolically executing the path up to the

join node. Similarly, we can define (backward) join nodes as

the LCAs in the reverse data-flow graph (more precisely, in the

subgraphs induced by all pairs of leafs). Figure 10 contains an

example for a backward join node, the phi node defining d93.

Unsurprisingly, this definition equals to the distance covered

so far.

In order to cover cases where, e. g., the lower boundary

check is control-dependent on the upper boundary check (i. e.,

might not be executed based on the result of the other check)

but not directly data-dependent, we enrich the data-flow graphs

by control-dependency edges, i. e., build a reduced program

dependency graph. The introduced concepts, however, apply

to this extension as well.

G. Matching Test Cycles

Given two related curve calls, we can extract the curves

they operate on by backtracking the parameter register a4.
Thus, we obtain a curve representing the upper boundary

of matched driving profiles c� and the lower boundary c⊥.

Roughly speaking, a specific driving profile is matched if its

data points lie within said boundaries.

Note that we can perform a sanity check of the extracted

curves before processing them further. Namely, we want a

curve to be monotonically increasing because the covered dis-

tance obviously cannot decrease. This requirement is relaxed

for the last data points of a boundary, as there are cases where

c� drops below c⊥ to effectively reject all driving profiles

after this point. In a similar vein, we can detect what we call

invalidated checks. These are characterized by having all y
values set to a constant value (0x7fff for c⊥ and 0 for c� in

the firmware images we analyzed) such that the check rejects

any driving profile. Using this method, the manufacturer can

parameterize a profile check such that it is not actually used.

The reference test cycles as used for emissions testing

are available either free of charge [20] or tied to a small

subscription fee [7]. In most cases, the cycles are given in the

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420
#Images

0

1

2

3

4

5

6

7

8

9

10

11

#
Pr

ofi
les

matched
unmatched
invalidated

Fig. 9: Coverage of profiles in all firmware images in which a defeat device
has been found. Matched profiles are highlighted using backward diagonal
lines, unmatched ones use forward diagonal lines and invalidated curves are
shaded gray.

form of two-dimensional data points, containing information

about the elapsed time in seconds and the speed at this point

(given either in mph or km/h). In order to actually match test

cycles to the boundaries extracted from the firmware images,

both representations need to be normalized first. For the latter,

we scale the y axis by factor 0.1 to obtain the distance in

kilometers, and the x axis by 6.25 to obtain the engine run-

time since startup in seconds (corresponding to unit TimeRed
in the A2L file). As the test curves provide speed instead of the

covered distance, we integrate them and convert from mph to

km/h, if applicable. Finally, to match a curve, each data point

has to lie in the interval as defined by c� and c⊥, respectively.

Still, some checks cut off the driving profile near the end of

a particular test cycle, where the emissions effects would most

likely not be picked up by an ongoing emissions test any more.

The corresponding test cycle would not match by comparing

all its data points due to the premature mode switch. To

account for this, we do not check the interval for the last

10% of a given test cycle.

VI. EVALUATION

Based on the prototype implementation of CURVEDIFF,

we performed a larger study of Volkswagen firmware images

to investigate which of them contain a defeat device. In the

following, we present the evaluation results together with some

highlights we found.

We analyzed 963 firmware images and configured the

analysis system with a timeout of seven minutes to avoid long-

running analysis tasks. 924 images were successfully analyzed

according to the steps outlined in the previous section, while

20 tasks timed out and 19 tasks failed to be processed by

IDA. In total, we found that 406 (44%) of the analyzed images

contained a defeat device, out of which 333 contained at least

one active (i. e., non-invalidated) profile.

Performance. The static analysis is fully automated and the

fastest analysis task finished after 55 seconds, while several

tasks also timed out (see above). The geometric mean for the

analysis of all successful tasks is 105 seconds, hence we can

analyze a given image on average in less than two minutes.

243

TABLE II: Acoustic condition logic and affected systems, based on function
sheets. The Model column shows the ECU model (prefix EDC omitted). The
Version column shows the ECU version for which the function sheet was
generated. The Date column gives the date given in the function sheet. Column
N shows the number of profiles checked by the acoustic condition or “—”
if the acoustic condition logic block was not included in the function sheet.
The Affected Subsystems column shows the subsystems where the acoustic
condition was referenced, extracted from the variable cross-reference table in
the function sheet.

Model Version Date N Affected Subsystems

16CP P 397 A.V.0 2005-06-24 0 InjCrv, Rail
17CP04 P 531 2.F.0 2005-10-28 0 InjCrv

16CP P 397 A.V.9 2006-03-02 0 InjCrv, Rail
17CP04 P 617 3.K.0 2006-11-06 0 InjCrv
17CP04 P 617 3.N.0 2006-12-22 0 InjCrv

17CP24
17CP24
17CP24
17CP04
17CP14
17CP14

P 628 3.K.1
P 628 3.U.0
P 703 3.V.5
P 617 3.U.0
P 531 3.U.0
P 617 3.U.5

2007-03-29
2007-05-02
2007-07-12
2007-05-14
2007-05-24
2007-08-30

—
—
—
5
5
5

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

InjCrv

17CP24 P 628 3.W.5 2007-09-18 — AirCtl, InjCrv
17CP14 P 714 3.U.A 2007-10-12 5 InjCrv
17CP24 P 703 3.W.A 2007-11-05 — AirCtl, InjCrv

17CP24 P 628 3.W.G 2008-02-12 5 AirCtl, PFlt, InjCrv
17CP24 P 703 3.W.G 2008-02-14 5 AirCtl, PFlt, InjCrv
17CP24 P 628 3.W.H 2008-03-04 5 AirCtl, PFlt, InjCrv
17CP14 P 804 4.F.0 2008-03-26 5 InjCrv, Rail
17CP24 P 703 3.W.K 2008-04-23 5 AirCtl, PFlt, InjCrv
17CP24 P 628 3.W.L 2008-05-17 5 AirCtl, SCRFFC, PFlt,

InjCrv
17CP24 P 859 4.F.0 2008-05-30 5 AirCtl, PFlt, InjCrv, Rail
17CP24 P 628 3.W.M 2008-06-27 5 AirCtl, SCRFFC, PFlt,

InjCrv
17CP44 P 804 4.P.0 2008-08-05 — AFS, AirCtl, ASMod, InjCrv,

PCR, Rail
17CP24 P 859 4.P.0 2008-09-18 — AFS, AirCtl, ASMod, InjCrv,

PCR, PFlt, Rail
17CP44 P 930 4.P.5 2008-11-13 — AFS, AirCtl, ASMod, InjCrv,

PCR, PFlt, PFltPOp, Rail

17CP44
17CP44

P 804 5.A.0
P 804 5.A.5

2009-01-22
2009-02-04

7
7

⎫⎬
⎭

AFS, AirCtl, ASMod,
InjCrv, InjSys,
PCR, PFltPOp,
Rail, SmkLim

17CP44
17CP44

P 859 5.A.0
P 859 5.F.5

2009-03-16
2009-07-13

7
7

⎫⎬
⎭

AFS, AirCtl, ASMod,
InjCrv, InjSys,
PCR, PFlt, PFltPOp,
Rail, SmkLim

Compared to an analysis with a chassis dynamometer, such an

approach is at least two orders of magnitude faster.

Results. Table III shows the results of our analysis. Results

above the double line contain firmware from the dump ob-

tained from the chiptuning scene (years 2009 and 2010). Dates

and software part numbers are taken from the street release

certification next to the firmware images. Results below the

double line are based on firmware obtained via the erWin
portal, which provides official firmware images for car shops

(years 2012 to 2016). Dates are taken from the firmware’s

time stamp. For both data sources, the models have been

matched by querying an online database for spare parts, which

yields metadata for a given part number (in this case, the part

numbers specify the ECU). This mapping may not be 100%

accurate, as disclaimed by said sites as well. For part numbers

where multiple model names were returned (due to varying

model naming schemes in different regions), we chose the

European name, as most firmware images check for European

emissions test cycles. In cases where multiple firmware images

in a month matched the same model, we denoted the number

of images analyzed for a specific model in parentheses. Finally,

for all the images released in the same month, we took the

union of test cycles they check for to give an impression of

the number and variety of matched cycles. Figure 9 depicts

our coverage in terms of identified test cycles. For firmware

images with 5 profiles, we were able to match a test cycle

to each profile. However, for later images checking 5 and 7

profiles, respectively, we were unable to find a matching test

cycle for some of the profiles.

Effects on EGR. Based on the results in Table III, we

automatically identified a lower bound of firmware images in

which the acoustic condition affects the AirCtl subsystem,

responsible for calculating the amount of recirculated exhaust

gas (EGR). We did not use A2L files for this, as we do not

have matching files for all firmware images. We found that in

at least 268 images (66%), the acoustic condition can affect

EGR. Based on the parameters we extracted, we can confirm

that in 247 (92%) of these images, the acoustic condition

actually influences the choice of parameters. Note that the

AirCtl detection can be improved upon as well as extended to

other subsystems as listed in Table II to fully confirm further

defeat devices in Table III.

We also manually analyzed some of the defeat devices detected

by CURVEDIFF to verify our results, and in the following we

highlight some of the findings.

Steering wheel check. We found that the 2014’s EDC17C54

P1169 firmware image with part number 03L906012DE and

revision 8401 has started checking the steering wheel angle

in addition to the time-distance profiles, as described in

Section IV-A. An automatic scan for the steering wheel check

yielded three more images, namely 03L906012, revision 7444

(depicted in Figure 3); 03L906012DD, revision 8400; and

03L906012BP, revision 7445. The images seemingly have

been released on December 3, 2014, 22:55 and are used in VW

Passat cars according to an online database. This refinement

of the defeat device is noteworthy given that at that point in

time, the CARB had already started to investigate emission

abnormalities in Volkswagen cars [15] (cf. facts 140, 141).

As evident from Table III, these images are responsible for

the largest set of test cycle matches across nearly 400 images,

further highlighting the necessity of the check. Other firmware

images released the same month (for Audi A4 and A6) do not

contain this additional logic and only match a subset of the

listed test cycles.

VII. DISCUSSION

Our empirical evaluation results demonstrate that our ap-

proach to detect Volkswagen-style defeat devices is viable

across a large number of firmware images. Nevertheless, there

are certain open challenges and potential limitations of our

approach that we discuss in the following.

244

TABLE III: Results for 363 of 406 firmware images in which CURVEDIFF detected a potential Volkswagen-style defeat device. For firmwares not listed in
this table either the release date or the model are unknown. The number in parentheses depicts the number of firmware images analyzed for this model. The
lower part of the table, below the double line, shows the result based on erWin data; the upper part is drawn from a chip tuning dump.

Matched emissions test cycles are listed as the union of matched cycles in all firmware images in that row. The last column shows whether firmware images
in this row were found to contain additional steering wheel checks that guard individual curves. The affected models in that row are printed in bold. Note
that model data in this table is retrieved from external (non-VW) sources. Further conditions may affect the defeat device’s operation.

Rls. Date Models (number of images) Matched Cycles (upper bound) St.W.
2009-01 Golf, Passat (2) ECE-15, EUDC(L), NEDC 	
2009-07 A3 ECE-15, FTP-75, HWFET, LA92, NEDC, SC03, US06 	
2009-08 Passat Blue Motion ECE-15, EUDC(L), NEDC 	
2009-09 Golf (2), Passat (3) ECE-15, EUDC(L), NEDC 	
2009-10 Golf+, Passat ECE-15, EUDC(L), NEDC 	
2009-11 A3 (8), Golf Blue Motion, Golf (2), Passat ECE-15, EUDC(L), NEDC
2009-12 A3 (5), Golf Variant (2), Golf+ (2), Golf (7), Jetta (3), Passat (4) ECE-15, EUDC(L), FTP-75, HWFET, LA92, NEDC, SC03,

US06
	

2010-01 Jetta, Passat (2) ECE-15, EUDC(L), NEDC 	
2010-03 A3 (2), Golf (3), Jetta, Passat (3), Q5 (4) ECE-15, EUDC(L), FTP-75, HWFET, LA92, NEDC, SC03,

US06
	

2010-04 Jetta (2), Passat, Passat Coupe (4), Q5 ECE-15, EUDC(L), NEDC 	

2012-05 A3 (19), A4, A6, Alhambra (4), Altea, Eos (2), Golf, Ibiza (4), Leon,
Octavia (6), Q5 (2), Superb (2), TT, Tiguan, Yeti (4)

ECE-15, EUDC(L), FTP-75, HWFET, LA92, NEDC, SC03,
US06

	

2012-06 Amarok (8), CC, Eos (2), Golf (2), Jetta (2), Octavia (3), Q5 (2),
Sharan (7), Tiguan, Touran (2)

ECE-15, EUDC(L), NEDC 	

2012-07 A1 (3), Alhambra (4), Caddy (2), Sharan (8) ECE-15, EUDC(L), NEDC 	
2012-09 Golf (2), Passat, Yeti (6) ECE-15, EUDC(L), FTP-75, HWFET, LA92, NEDC, SC03,

US06
	

2012-10 A3, Alhambra (2), Tiguan, Yeti ECE-15, EUDC(L), FTP-75, HWFET, LA92, NEDC, SC03,
US06

	

2012-12 Eos (2), Golf Cabriolet, Tiguan (7), Touran, Yeti ECE-15, NEDC 	

2013-01 Leon, Passat ECE-15, EUDC(L), FTP-75, HWFET, LA92, NEDC, SC03,
US06

	

2013-04 Amarok (6) (deactivated) 	
2013-05 Amarok (4) ECE-15, EUDC(L), NEDC 	
2013-06 Amarok (5), Superb (3), Tiguan ECE-15, EUDC(L), NEDC 	
2013-07 Octavia ECE-15, EUDC(L), NEDC 	
2013-08 Yeti (3) ECE-15, NEDC 	
2013-11 Superb (3) ECE-15, EUDC(L), NEDC 	
2013-12 Superb (2), Yeti (4) ECE-15, EUDC(L), NEDC 	

2014-01 Caddy (4) ECE-15, NEDC 	
2014-03 Amarok (16), Eos, Tiguan, Yeti ECE-15, EUDC(L), NEDC 	
2014-04 Q5, Superb (2) ECE-15, EUDC(L), NEDC 	
2014-06 Amarok (6), Tiguan (4) ECE-15, EUDC(L), NEDC 	
2014-09 Alhambra ECE-15, EUDC(L), NEDC 	
2014-10 Sharan ECE-15, EUDC(L), NEDC 	
2014-12 A4 (3), A6, Passat (4) CADC-RURAL, CADC-URBAN, ECE-15, EUDC(L), FTP-

75, HWFET, IM240, J1015, JP10, LA92, NEDC, RTS-95,
SC03, US06, WLTP-1, WLTP-2, WLTP-3

2015-01 Superb ECE-15, NEDC 	
2015-02 A3 (3) ECE-15, FTP-75, HWFET, LA92, NEDC, SC03, US06 	
2015-03 Alhambra (2) ECE-15, EUDC(L), NEDC 	
2015-05 Alhambra (6), Sharan (6) ECE-15, EUDC(L), NEDC 	
2015-07 Q3 (2) ECE-15, NEDC 	
2015-10 Altea (2), Yeti (3) ECE-15, EUDC(L), NEDC 	
2015-11 Superb ECE-15, EUDC(L), NEDC 	

2016-02 Altea ECE-15, NEDC 	
2016-03 A4, Exeo (4) ECE-15, NEDC 	
2016-04 A6, Exeo, Q3 ECE-15, NEDC 	
2016-06 Altea (3), CC (3), Jetta, Leon (2), Superb, Tiguan (2) ECE-15, EUDC(L), NEDC 	
2016-07 Amarok, CC, Golf, Superb ECE-15, NEDC 	
2016-08 CC (3), Golf Cabriolet, Golf (2), Passat (2), Scirocco, Touran (3) ECE-15, EUDC(L), NEDC 	
2016-09 CC (14), Octavia (2), Passat (2), Tiguan (7) ECE-15, EUDC(L), NEDC 	
2016-10 Eos ECE-15, NEDC 	

245

Generally speaking, there are two approaches to distinguish

regular street driving conditions from those (rather special)

conditions exhibited during emission tests: active and passive
detection. Active detection techniques take characteristics of

the car during emission tests into account and hence are able

to target specific tests. Most notably, the Volkswagen defeat

device covered in this paper is able to detect an ongoing

emission test based on the car’s driving profile and comparing

it to well-known test curves. Our approach is based on this

insight and we propose a curve-agnostic method to detect

that the firmware attempts to match a certain driving profile.

CURVEDIFF can detect such defeat devices and we found

many instance of such devices. However, a car manufacturer

could also implement other active evasion approaches, for

example by matching on the profile of related parameters such

as speed or torque; another concrete example being the defeat

device found in the Opel Zafira [9].

On the other hand, passive detection techniques cover test-

agnostic methods that do not actively observe vehicle specifics

to detect an ongoing emission test, but rather target general

peculiarities of those tests. For example, emission tests are

comparably short, which opens up the possibility to simply

stay in a compliant mode for as long as the average emission

test is carried out and switch to a more harmful emissions

policy afterwards. The Fiat defeat device we discussed earlier

belongs to this category. In principle, an ECU can leverage

all available sensors in an attempt to fingerprint the testing

environment, for example by measuring the temperature or the

ambient pressure since both are also standardized. In addition

to software-based methods, hardware-based approaches such

as over-inflating tires for dynamometer tests also fall into

this category. Our coverage of such passive defeat devices is

limited since we focus on curve-based defeat devices. This is

mostly due to the fact that the latter approach provides higher

means of confidentiality. Still, tracking the data flow in the

code and analyzing whether certain sensor conditions influence

the Exhaust Gas Recirculation (EGR) or other subsystems

related to emission control might enable the detection of such

passive devices. As part of future work, we plan to study the

viability of such an approach and evaluate if we can detect

Fiat’s defeat device in an automated manner.

We implemented our approach in a tool called CURVEDIFF.

Given that we perform an intra-procedural analysis, we might

miss certain ways how a defeat device can be implemented

and an inter-procedural analysis could enhance the soundness

of our implementation. Furthermore, our analysis can be

extended to take more primitive building blocks such as timers

and multiplexers into account to deepen the knowledge about

the relation of various components in the detection logic.

VIII. CONCLUSION

As software control becomes a pervasive feature of complex

systems, regulators in the automotive domain (as well as many

others) will be faced with certifying software systems whose

manufacturers have an immense financial incentive to cheat.

In this paper, we described two families of defeat devices used

in the Bosch EDC17 ECU to circumvent US emission tests.

The first family of defeat devices was used by Volkswagen and

lies at the heart of the Volkswagen diesel emissions scandal.

The second device appears in the diesel Fiat 500X automobile

sold in Europe, and has not beed documented previously. We

also presented and evaluated an automated approach to detect

defeat devices in a given firmware image based on the insights

we obtained from manually analyzing the Volkswagen defeat

device.

ACKNOWLEDGMENTS

Part of this work was supported by the European Research

Council (ERC) under the European Union’s Horizon 2020

research and innovation programme (grant agreement No

640110 – BASTION). This work was funded in part by the

National Science Foundation through grant NSF-1646493.

REFERENCES

[1] Association for Standardisation of Automation and Measuring Systems
(ASAM e.V.). ASAM MCD-2 MC. https://wiki.asam.net/
display/STANDARDS/ASAM+MCD-2+MC.

[2] Michael A. Bender, Martı́n Farach-Colton, Giridhar Pemmasani, Steven
Skiena, and Pavel Sumazin. Lowest Common Ancestors in Trees and
Directed Acyclic Graphs. In Journal of Algorithms, 2005.

[3] Robert J. Blaszczak. EPA Technical Bulletin: Nitrogen Oxides (NOx)
– Why and How They are Controlled. https://www3.epa.gov/
ttncatc1/cica/other7_e.html, 1999.

[4] Robert N. Charette. This Car Runs on Code. IEEE Spectrum, 46(3),
2009.

[5] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. Automatic Con-
struction of Sparse Data Flow Evaluation Graphs. In ACM Symposium
on Principles of Programming Languages (POPL), 1991.

[6] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently Computing Static Single Assignment
Form and the Control Dependence Graph. In ACM Transactions on
Programming Languages and Systems (TOPLAS), 1991.

[7] DieselNet. Emission Test Cycles. https://www.dieselnet.com/
standards/cycles.

[8] Christof Ebert and Capers Jones. Embedded Software: Facts, Figures,
and Future. Computer, 42(4), 2009.

[9] Felix Domke. Software Defined Emissions, 33C3. https://media.
ccc.de/v/33c3-7904-software_defined_emissions.

[10] Felix Domke and Daniel Lange. The exhaust emissions scandal
(“Dieselgate”), 32C3. https://media.ccc.de/v/32c3-7331-the_
exhaust_emissions_scandal_dieselgate.

[11] Fiat Chrysler Automobiles. FCA on Real Driving Emissions. https://
www.fcagroup.com/en-US/media_center/fca_press_release/
2016/february/Pages/fca_on_real_driving_emissions.aspx,
2016.

[12] Ulrich Flaig, Wilhelm Polach, and Gerhard Ziegler. Common Rail
System (CR-System) for Passenger Car DI Diesel Engines; Experiences
with Applications for Series Production Projects. In SAE Technical
Paper. SAE International, 1999.

[13] Hex-Rays SA. Product Page for the Interactive Disassembler. https:
//www.hex-rays.com/products/ida.

[14] Laura Myers. GM Forced to Recall Cadilacs with Emission ‘Defeat
Device’. http://www.apnewsarchive.com/1995/GM-Forced-
to-Recall-Cadillacs-With-Emission-Defeat-Device-/id-
4b030c7601a14dcc8208fcc1d1bd30cc, 1995.

[15] New York State Office of the Attorney General. NY A.G. Schneiderman,
Massachusetts A.G. Healey, Maryland A.G. Frosh Announce Suits
Against Volkswagen, Audi And Porsche Alleging They Knowingly
Sold Over 53,000 Illegally Polluting Cars And Suvs, Violating State
Environmental Laws. http://www.ag.ny.gov/press-release/ny-
ag-schneiderman-massachusetts-ag-healey-maryland-ag-
frosh-announce-suits-against, 2016.

[16] Robert Bosch GmbH. Diesel Engine Management. John Wiley & Sons
Ltd., fourth edition, 2005.

246

801875c2 and.ge d2_19 d2_18 d9_3 d15_87

5_87

801875c8 xor32 d2_20 d2_19 #1

d2_19

z16 d2_20 #801875d8

d2_20

ge d2_18 d2_17 d9_3

d2_18

8018763a call32 re_12 #800b64f0 a4_9 d4_12

8018763a cconv.w d2_26 re_12

re_12

80187644 mov16 d15_105 d2_26

d2_26

80187656 and.ge d2_29 d2_28 d9_3 d15_105

d15_105

8018765c xor32 d2_30 d2_29 #1

d2_29

80187666 jz16 d2_30 #8018766c

d2_30

8018764a call32 re_13 #800b64f0 a4_10 d4_13

8018764a cconv.w d2_27 re_13

re_13

8018764e ge d2_28 d2_27 d9_3

d2_27

d2_28

80187684 call32 re_14 #800b64f0 a4_11 d4_14

80187684 cconv.w d2_31 re_14

re_14

8018768e mov16 d15_114 d2_31

d2_31

801876a0 and.ge d2_34 d2_33 d9_3 d15_114

d15_114

801876a6 xor32 d2_35 d2_34 #1

d2_34

801876b0 jz16 d2_35 #801876b6

d2_35

80187694 call32 re_15 #800b64f0 a4_12 d4_15

80187694 cconv.w d2_32 re_15

re_15

80187698 ge d2_33 d2_32 d9_3

d2_32

d2_33

801876fa jz1

 phi d9_3 [d9_1 d9_2 d9_2 d9_2]

d9_3

d9_3

d9_3

d9_3

d9_3

d9_3

d9_3

d9_3

Fig. 10: A part of a connected component in the data-flow forest of the defeat device. It can be seen how the boundaries obtained via two calls to the
SrvX IpoCurveS16 (at 0x800b64f0) are compared against the covered distance (in d93). Specifically, following the two leftmost curve calls (at 0x8018763a
and 0x8018764a), we end up with the forward join node at 0x80187656 (and.ge d2, d2, d9, d15), implementing the interval check. Similarly, the φ
node defining d93 is a backward join node, whose definition equals to the distance covered so far. Continuous lines represent data flow of the labeled variable,
whereas dotted lines show control dependencies.

TABLE IV: Overview of various test cycles used for emissions testing. The
first segment details tests following US EPA and CARB legislation, the second
segment is relevant to EU law, and the last segment shows international
standards. Information follows [7], [20].

Abbreviation Full Name

EPA IM-240 Inspection and Maintenance
FTP-75, EPA-75 Federal Test Procedure
EPA HWFET Highway Fuel Economy Driving Schedule
SFTP SC03 Speed Correction Driving Schedule, SC03 SFTP
CARB LA92 “Unified” Dynamometer Driving Schedule, Unified

Cycle

CADC-RURAL Common Artemis Driving Cycles, Rural Road Cycle
CADC-URBAN Common Artemis Driving Cycles, Urban Cycle
UN/ECE 15 ECE Elementary Urban Cycle
UN/EUDC ECE Extra-Urban Driving Cycle
UN/EUDCL ECE Extra-Urban Driving Cycle for Low-Powered

Vehicles
NEDC New European Driving Cycle

WLTP Worldwide Harmonized Light Vehicles Test Proce-
dure

[17] The Telegraph. Diesel emissions scandal: Fiat under inves-
tigation. http://www.telegraph.co.uk/cars/news/diesel-
emissions-scandal-fiat-under-investigation, 2016.

[18] United States Environmental Protection Agency. Notice of Vio-
lation. https://www.epa.gov/sites/production/files/2015-
10/documents/vw-nov-caa-09-18-15.pdf, 2015.

[19] US Code of Federal Regulations. 40 CFR §86.
[20] US Environmental Protection Agency (EPA). Dynamometer

Drive Schedules. https://www.epa.gov/vehicle-and-fuel-
emissions-testing/dynamometer-drive-schedules.

[21] Volkswagen of America, Inc. Self Study Program 826803: 2.0 Liter TDI
Common Rail BIN5 ULEV Engine. http://www.natef.org/natef/
media/natefmedia/vw\%20files/2-0-tdi-ssp.pdf, 2008.

[22] WirtschaftsWoche Online. Kommt der zweite Abgasskandal aus Italien?
http://www.wiwo.de/unternehmen/auto/fiat-500x-doblo-
und-jeep-renegade-kommt-der-zweite-abgasskandal-aus-
italien/14483066.html, 2016.

APPENDIX

/ begin MEASUREMENT
InjCrv stNsCharCor
" Status der Akustikbedingung "
UBYTE
OneToOne
1
100
0.00
255 .0

FORMAT "%5 .1"
ECU_ADDRESS 0 xC0000CDD

/end MEASUREMENT

/ begin CHARACTERISTIC
AirCtl numInjChar CA
" Abgasstrategie f Ã r AirCtl und VswCtl "
MAP
0 x801C5A34
Map_Xu8Yu8Wu8
255 .0
OneToOne
0.00
255 .0

FORMAT "%5 .1"
EXTENDED_LIMITS 0.00 255 .0

/ begin AXIS_DESCR
STD_AXIS
InjCrv_stNsCharCor
OneToOne
...

Listing 1: Excerpt from an A2L file, depicting metadata given for
the acoustic condition InjCrv stNsCharCor as well as the array
AirCtl numInjChar CA. In the latter case, it is evident how the x axis
is indexed by the acoustic condition. Akin to regular symbol files, the
ECU ADDRRESS entry identifies the address of the variable in the firmware
image.

247

Fig. 11: Acoustic condition (signal InjCrv stNsCharCor) used to modify the desired air mass correction mDesVal1Cor, which modifies the desired air
mass from which the amount of air recirculated is computed. AirCtl numInjChar CA is a two-dimensional array. The acoustic condition is used to select
either row. From the EDC17C54 P 874 function sheet. Shading added by the authors. Copyright Robert Bosch GmbH.

248

Figure 5444 NSCRgn_RlsLogic/NSCRgnRlsLogic/RegenerationReleaseLogic/ReleaseLogicDNOx/DNOx_during_Homologation [NSCRgn_RlsLogic.NSCRgn-
RlsLogic.RegenerationReleaseLogic.ReleaseLogicDNOx.DNOx_during_Homologation]

RlsDNOxEve

stHmlgOrRDDNOx

stDNOxEveHmlg
stNSC

tiDNOx
stDem

nEng
stNSC

tiNoNSCRgn
stTiNoNSCRgnHmlg

RlsEngT

tEng

stEngTHmlg

NSCRgn_stDem

NSCRgn_numEngTempRls1_C

RlsRunngTi

stTiCoEngHmlg

tiSnceFrstRunngRed

RlsClntT

tClnt

stCltTHmlg

RlsVolFl

stvolFlConsHmlg

volFlConsDrvCyc

NSCRgn_tiDNOx

CoEng_tiSnceFrstRunngRed

EngDa_tFld

NSCRgn_stNSC

EngDa_tFld

stDNOxHmlg

FlSys_volFlConsDrvCyc

NSCRgn tiNoNSCRgn
Epm_nEng

NSCRgn_numClntTempRls_C

NSCRgn_tEngRls1_mp

stHmlgOrRDDNOx

Fig. 12: Part of the NOx regeneration release logic “during homologation cycle” from function sheet EDC17C69 P 1264 for Fiat 500X. The homologation
release signal requires multiple signals to be asserted, including stTiCoEngHmlg (Section IV-D). It is only asserted if engine running time does not exceed
NSCRgn tiCoEngMaxHmlg C, set to 1600 seconds in the 55265162 Fiat 500X firmware image. Copyright Robert Bosch GmbH.

Figure 5456 NSCRgn_RlsLogic/NSCRgnRlsLogic/RegenerationReleaseLogic/ReleaseLogicDNOx/DNOx_during_real_driving [NSCRgn_RlsLogic.NSCRgnRls-
Logic.RegenerationReleaseLogic.ReleaseLogicDNOx.DNOx_during_real_driving]

NSCRgn_stNSC

NSCRGN_END_LOAD_BP

NSCRGN_END_TIME_BP

2

0

NSCRgn_stDem

TurnOnDelay_2

 compute

NSCRgn_stWaitNoNSCRgnRd_mp

NSCRgn_stRgnEndRd_mp

true

NSCRgn_stRgnRnngRd_mp

NSCRgn_stDNOxEveRd_mp

NSCRgn_tiWaitNoNSCRgnRd_C

SrvB_RSFF_6

out
R
S

CounterEnabled
 compute

 reset

stDNOxRd

stHmlgOrRDDNOx

NSCRgn_ctRgnRd

NSCRgn_ctRgnMaxRd_C

Edge_Rising_2

NSCRGN_STNSC_NONSCRGN_BP

NSCRGN_END_SENS_BP

SrvB_RSFF_4

out
R
S

NSCRgn_tiDNOxThresh1Rd_C

NSCRgn_tiDNOx

Fig. 13: Part of the NOx regeneration release logic “during real driving” from function sheet EDC17C69 P 1264 for Fiat 500X. First element controls release
based on engine running time. A parallel logic block controls release “during real driving.” Copyright Robert Bosch GmbH.

249

0 200 400 600 800 1000 1200 1400 1600 1800
seconds

0

1

2

3

4

5

6

7

8

9

10
km

(t
ot

al
)

80187214, profile 2

LA92

0 200 400 600 800 1000 1200 1400 1600 1800
seconds

0

1

2

3

4

5

6

7

8

9

10

km
(t

ot
al

)

80187214, profile 3

US06

0 200 400 600 800 1000 1200 1400 1600 1800
seconds

0

1

2

3

4

5

6

7

8

9

10

km
(t

ot
al

)

80187214, profile 4

SC03

0 200 400 600 800 1000 1200 1400 1600 1800
seconds

0

1

2

3

4

5

6

7

8

9

10

km
(t

ot
al

)

80187214, profile 5

HWFET

0 200 400 600 800 1000 1200 1400 1600 1800
seconds

0

1

2

3

4

5

6

7

8

9

10

km
(t

ot
al

)

80187214, profile 6

ECE-15

0 200 400 600 800 1000 1200 1400 1600 1800
seconds

0

1

2

3

4

5

6

7

8

9

10

km
(t

ot
al

)

80187214, profile 10 ⊗

CADC-RURAL
SC03

Fig. 14: Remaining curve checks testing against various emissions test cycles in the firmware for a VW Passat, released 12/2014 (EDC17C54, software part
number 03L906012, revision 7444), completing Figure 3. The area in which the software reports the driving profile to match is colored white. The legend
lists the known matching test cycles, ⊗ indicates an additional steering wheel check.

250

