
SoK: Cryptographically Protected Database Search

Benjamin Fuller∗, Mayank Varia†, Arkady Yerukhimovich‡, Emily Shen‡, Ariel Hamlin‡,
Vijay Gadepally‡, Richard Shay‡, John Darby Mitchell‡, and Robert K. Cunningham‡

∗University of Connecticut

Email: benjamin.fuller@uconn.edu

†Boston University

Email: varia@bu.edu

‡MIT Lincoln Laboratory

Email: {arkady, emily.shen, ariel.hamlin, vijayg, richard.shay, mitchelljd, rkc}@ll.mit.edu

Abstract—Protected database search systems cryptographically
isolate the roles of reading from, writing to, and administering the
database. This separation limits unnecessary administrator access
and protects data in the case of system breaches. Since protected
search was introduced in 2000, the area has grown rapidly;
systems are offered by academia, start-ups, and established
companies.
However, there is no best protected search system or set of

techniques. Design of such systems is a balancing act between
security, functionality, performance, and usability. This challenge
is made more difficult by ongoing database specialization, as
some users will want the functionality of SQL, NoSQL, or
NewSQL databases. This database evolution will continue, and
the protected search community should be able to quickly provide
functionality consistent with newly invented databases.
At the same time, the community must accurately and clearly

characterize the tradeoffs between different approaches. To ad-
dress these challenges, we provide the following contributions:
1) An identification of the important primitive operations
across database paradigms. We find there are a small
number of base operations that can be used and combined
to support a large number of database paradigms.

2) An evaluation of the current state of protected search
systems in implementing these base operations. This evalu-
ation describes the main approaches and tradeoffs for each
base operation. Furthermore, it puts protected search in
the context of unprotected search, identifying key gaps in
functionality.

3) An analysis of attacks against protected search for different
base queries.

4) A roadmap and tools for transforming a protected search
system into a protected database, including an open-source
performance evaluation platform and initial user opinions
of protected search.

Index Terms—searchable symmetric encryption, property pre-
serving encryption, database search, oblivious random access
memory, private information retrieval

I. INTRODUCTION

The importance of collecting, storing, and sharing data is

widely recognized by governments [1], companies [2], [3],

This material is based upon work supported under Air Force Contract
No. FA8721-05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings,
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the U.S. Air Force. The
work of B. Fuller was performed in part while at MIT Lincoln Laboratory.
The work of M. Varia was performed under NSF Grant No. 1414119 and
additionally while a consultant at MIT Lincoln Laboratory.

and individuals [4]. When these are done properly, tremendous

value can be extracted from data, enabling better decisions,

improved health, economic growth, and the creation of entire

industries and capabilities.

Important and sensitive data are stored in database manage-

ment systems (DBMSs), which support ingest, storage, search,

and retrieval, among other functionality. DBMSs are vital to

most businesses and are used for many different purposes. We

distinguish between the core database, which provides mecha-
nisms for efficiently indexing and searching over dynamic data,

and the DBMS, which is software that accesses data stored in
a database. A database’s primary purpose is efficient storage

and retrieval of data. DBMSs perform many other functions

as well: enforcing data access policies, defining data struc-

tures, providing external applications with strong transaction

guarantees, serving as building blocks in complex applications

(such as visualization and data presentation), replicating data,

integrating disparate data sources, and backing up important

sources. Recently introduced DBMSs also perform analytics

on stored data. We concentrate on the database’s core functions

of data insertion, indexing, and search.

As the scale, value, and centralization of data increase, so

too do security and privacy concerns. There is demonstrated

risk that the data stored in databases will be compromised.

Nation-state actors target other governments’ systems, cor-

porate repositories, and individual data for espionage and

competitive advantages [5]. Criminal groups create and use

underground markets to buy and sell stolen personal informa-

tion [6]. Devastating attacks occur against government [7] and

commercial [8] targets.

Protected database search technology cryptographically

separates the roles of providing, administering, and accessing

data. It reduces the risks of a data breach, since the server(s)

hosting the database can no longer access data contents.

Whereas most traditional databases require the server to be

able to read all data contents in order to perform fast search

and retrieval, protected search technology uses cryptographic

techniques on data that is encrypted or otherwise encoded, so

that the server can quickly answer queries without being able

to read the plaintext data.

2017 IEEE Symposium on Security and Privacy

© 2017, Benjamin Fuller. Under license to IEEE.

DOI 10.1109/SP.2017.10

172

A. Protected Search Systems Today
Protected database search has reached an inflection point in

maturity. In 2000, Song, Wagner, and Perrig provided the first

scheme with communication proportional to the description

of the query and the server performing (roughly) a linear

scan of the encrypted database [9]. Building on this, the field

quickly moved from theoretical interest to the design and

implementation of working systems.

Protected database search solutions encompass a wide vari-

ety of cryptographic techniques, including property-preserving

encryption [10], searchable symmetric encryption [11], private

information retrieval by keyword [12], and techniques from

oblivious random access memory (ORAM) [13]. Like the

cryptographic elements used in their construction, protected

search systems provide provable security based on the hardness

of certain computational problems. Provable security comes

with several other benefits: a rigorous definition of security,

a thorough description of protocols, and a clear statement of

assumptions.

Many of these systems have been implemented. Protected

search implementations have been tested and found to scale

moderately well, reporting performance results on datasets of

billions of records [14]–[22].

In the commercial space, a number of established and

startup companies offer products with protected search func-

tionality, including Bitglass [23], Ciphercloud [24], Cipher-

Query [25], Crypteron [26], IQrypt [27], Kryptnostic [28],

Google’s Encrypted BigQuery [29], Microsoft’s SQL Server

2016 [30], Azure SQL Database [31], PreVeil [32], Sky-

high [33], StealthMine [34], and ZeroDB [35]. While not

all commercial systems have undergone thorough security

analysis, their core ideas come from published work. For

this reason, this paper focuses on systems with a published

description.

Designing a protected search system is a balance between

security, functionality, performance, and usability. Security

descriptions focus on the information that is revealed, or

leaked, to an attacker with access to the database server.

Functionality is primarily characterized by the query types

that a protected database can answer. Queries are usually

expressed in a standard language such as the structured query

language (SQL). Performance and usability are affected by the

database’s data structures and indexing mechanisms, as well

as required computational and network cost.

There are a wide range of protected database systems that

are appropriate for different applications. With such a range

of choices, it is natural to ask: Are there solutions for every

database setting? If so, which solution is best?

B. Our Contribution
The answers to these questions are complex. Protected

search replicates the functionality of some database paradigms,

but the unprotected database landscape is diverse and rapidly

changing. Even for database paradigms with mature protected

search solutions, making an informed choice requires under-

standing the tradeoffs.

The goal of this work is twofold: first, to inform protected

search designers on the current and future state of database

technology, enabling focus on techniques that will be useful

in future DBMSs, and second, to help security and database

experts understand the tradeoffs between protected search

systems so they can make an informed decision about which

technology, if any, is most appropriate for their setting.

We accomplish these goals with the following contributions:

1) A characterization of database search functionality

in terms of base and combined queries. Traditional

databases efficiently answer a small number of queries,

called a basis. Other queries are answered by combining
these basis operations [36]. Protected search systems

have implicitly followed this basis and combination
approach.

Although there are many database paradigms, the num-

ber of distinct bases of operations is small. We advocate

for explicitly adopting this basis and combination ap-

proach.

2) An identification of the bases of current protected search

systems and black-box ways to combine basis queries

to achieve richer functionality. We then put protected

search in the context of unprotected search by identify-

ing basis functions currently unaddressed by protected

search systems.

3) An evaluation of current attacks that exploit leakage of
various protected search approaches to learn sensitive

information. This gives a snapshot of the current security

of available base queries.

4) A roadmap and tools for transforming a protected search

system into a protected DBMS capable of deployment.

We present an open-source software package developed

by our team that aids with performance evaluation; our

tool has evaluated protected search at the scale of 10TB

of data. We also present preliminary user opinions of

protected search. Lastly, we summarize systems that

have made the transition to full systems, and we chal-

lenge other designers to think in terms of full DBMS

functionality.

C. Organization
The remainder of this work is organized as follows:

Section II introduces background on databases and protected

search systems, Section III describes protected search base

queries and leakage attacks against these queries, Section IV

describes techniques for combining base queries and discusses

remaining functionality gaps, Section V shows how to trans-

form from queries to a full system, and Section VI concludes.

II. OVERVIEW OF DATABASE SYSTEMS

This section provides background on the databases and

protected search systems that we study in this paper. We

first describe unprotected database paradigms and their query

bases. Next we define the types of users and operations of

a database. We then describe the protected search problem,

including its security goals and the security imperfections

173

known as leakage that schemes may exhibit. Finally, we give

examples of common leakage functions found in the literature.

A. Database Definition and Evolution
A database is a partially-searchable, dynamic data store that

is optimized to respond to targeted queries (e.g., those that

return less than 5% of the total data). Database servers respond

to queries through a well established API. Databases typically

perform search operations in time sublinear in the database

size due to the use of parallel architectures or data structures

such as binary trees and B-trees.

Several styles of database engines have evolved over the past

few decades. Relational or SQL-style databases dominated the

database market from the 1970s to the 1990s. Over the past

decade, there has been a focus on databases systems that sup-

port many sizes of data management workloads [37]. NoSQL

and NewSQL have emerged as new database paradigms,

gaining traction in the database market [38], [39].

1) SQL: Relational databases (often called SQL databases)

typically provide strong transactional guarantees and have

a well known interface. Relational databases are vertically

scalable: they achieve better performance through greater hard-

ware resources. SQL databases comply with ACID (Atomicity,

Consistency, Isolation, and Durability) requirements [40].

2) NoSQL: NoSQL (short for “not only SQL”) databases

emerged in the mid 2000s. NoSQL optimizes the architec-

ture for fast data ingest, flexible data structures, and relaxed

transactional guarantees [41]. These changes were made to ac-

commodate increasing amounts of unstructured data. NoSQL

databases, for the most part, excel at horizontal scaling and

when data models closely align with future computation.

3) NewSQL: NewSQL systems bring together the scalabil-

ity of NoSQL databases and the transactional guarantees of

relational databases [42]. Several NewSQL variants are being

developed, such as in-memory databases that closely resemble

the data models and programming interface of SQL databases,

and array data stores that are optimized for numerical data

analysis.

4) Future Systems: We expect the proliferation of cus-

tomized engines that are tuned to perform a relatively small

set of operations efficiently. While these systems will have

different characteristics, we believe that each system will

efficiently implement a small set of basis operations. There are

several federated or polystore systems being developed [43]–

[45].

The heterogeneous nature of current and future databases

demands a variety of protected search systems. While provid-

ing such variety is challenging, there are a small number of

base operations that can be combined to provide much of the

functionality of the aforementioned systems.

B. Query Bases
To reduce the space of possible queries that must be

secured, we borrow an approach from developers of software

specifications and mathematical libraries [46]. In these fields,

it is common to determine a core set of low-level kernels and

then express other operations using these kernels. Similarly,

many database technologies have a query basis: a small set

of base operations that can be combined to provide complex

search functionality. Furthermore, multiple technologies share

the same query basis. In some cases the basis was not explicit

in the original design but was formalized in later work. Apache

Accumulo’s native API does not have a rigorous mathematical

design, but frameworks such as D4M [47], [48] and Pig [49]

used to manipulate data in Accumulo do.

Leveraging an underlying query basis will allow the pro-

tected search community to keep pace with new database

systems. We discuss three bases found in database systems.

First, relational algebra forms the backbone of many SQL

and NewSQL systems [42]. Second, associative arrays provide

a mathematical basis for SQL, NoSQL, and NewSQL sys-

tems [50]. Third, linear algebraic operations form a basis for

some NewSQL databases. These bases and database paradigms

are summarized in Table I.

1) Relational Algebra: Relational algebra, proposed by

Codd in 1970 as a model for SQL [36], consists of the fol-

lowing primitives: set union, set difference, Cartesian product

(joins), projection, and selection. Complex queries can typi-

cally be generated by composing these operations. Relational

algebra and the composability of operations allow a server-

side query planner to optimize query execution by rearranging

operations to still produce the same result [68].

2) Associative Arrays: Associative arrays are a mathe-

matical basis for several styles of database engines [50].

They provide a mathematical foundation for key-value store

NoSQL databases. Associative array algebra consists of the

following base operations: construction, find, associative array

addition, associative array element-wise multiplication, and

array multiplication [47]. Associative arrays are built on top of

the algebraic concept of a semiring (a ring without an additive

inverse). Addition or multiplication in an associative array can

denote any two binary operations from an algebraic semiring.

Usually, these two operations are the traditional × and +, but
in the min-plus algebra the two operations are min and + (in

the max-plus algebra the two operations are max and +).
3) Linear Algebra: A number of newer NewSQL databases

support linear algebraic operations. GraphBLAS is a current

standardization effort underway for graph algorithms [69].

In GraphBLAS, graph data is stored using sparse matrices,

and the linear algebraic base operations of construction, find,

matrix addition, matrix multiplication, and element-wise mul-

tiplication are composed to create graph algorithms. Examples

of how the GraphBLAS can be applied to popular graph

algorithms are given in [70], [71].

C. Database Roles and Operations
We consider five important database roles, analogous to

roles in database systems like Microsoft SQL Server 2016

[72]:

∙ A provider, who provides and modifies the data.

∙ A querier, who wishes to learn things about the data.

∙ A server, who handles storage and processing.

174

Query Basis Technology Fundamental characteristics Strengths Weaknesses Examples

Rel. Algebra
Set Union
Set Difference

SQL [36]:
Relational

Transaction support,
ACID guarantees,
Table representation of data

Popular interface,
Common data model [51]

Upfront schema design,
Low insert & query rate

MySQL [52]
Oracle DB [53]
Postgres [54]

Products/Joins
Projection
Selection

NewSQL [42]:
Relational

Use of in-memory,
new system arch.
or simplified data model

Popular interface,
Transactional support,
ACID guarantees

Req. expensive hardware,
Often only relational data
model

Spanner [55]
MemSQL [56]
Spark SQL [57]

Federated [58] Relational model,
Partitioned/replicated tables

Transactional support,
High performance,
ACID guarantees

Upfront schema design,
Often only relational data
model

Garlic [58]
DB2 [59]

Assoc. Array Alg.
Construct
Find
Array (+,×)
Element-wise ×

NoSQL [41]:
Key-value

Horizontal scalability,
Data rep. as key-value pairs,
BASE guarantees [60]

High insert rates,
Cell-level security
Flexible schema

Sacrifice one of the fol-
lowing: consistency, avail-
ability, or partition toler-
ance

BigTable [41]
Accumulo [61]
HBase [62]
mongoDB [63]

Linear Algebra
Construct
Find
Matrix (+,×)

NoSQL [64]:
Graph
Databases

Data represented as adjacency
or incidence matrix,
Horizontal scalability,
Graph operation API

Natural data representation,
Amenable to graph algs.

Performance,
Diverse data models,
Difficult to optimize

Neo4j [64]
System G [65]

Element-wise × NewSQL [66]:
Array
Databases

ACID guarantees,
Data represented as arrays
(dense or sparse)

High performance,
Transactional support,
Good for scientific comp.

Data model restrictions,
Lack of iterator support

SciDB [66]
TileDB [67]

Multiple bases Polystore [43] Disparate DBMSs High performance,
Flexible data stores,
Diverse data/programming
models

Requires middleware BigDAWG [43]
Myria [45]

TABLE I
SUMMARY OF A (NOT EXHAUSTIVE) SET OF POPULAR CURRENT AND EMERGING QUERY BASES TOGETHER WITH THEIR CORRESPONDING DATABASE

TECHNOLOGIES. CHARACTERISTICS, STRENGTHS, WEAKNESSES, AND EXAMPLES REFER TO THE TECHNOLOGIES, NOT THE QUERY BASES.

∙ An authorizer, who specifies data- and query-based rules.
∙ An enforcer, who ensures that rules are applied.

Databases provide an expressive language for representing

permissions, or rules. Rules are enforced by authenticating the
roles possessed by a valid user and granting her the appropriate
powers. In general, each user may perform multiple roles, and

each role may be performed by multiple users.

While databases offer a wide range of features, we focus on

four operations: 𝐈𝐧𝐢𝐭, 𝐐𝐮𝐞𝐫𝐲, 𝐔𝐩𝐝𝐚𝐭𝐞, and 𝐑𝐞𝐟𝐫𝐞𝐬𝐡. These op-
erations are common across the database paradigms described

above; we describe them below in the context of protected

search.

∙ 𝐈𝐧𝐢𝐭: The initialization protocol occurs between the

provider (who has data to load) and the server. The server

obtains a protected database representing the loaded data.

∙ 𝐐𝐮𝐞𝐫𝐲: The query protocol occurs between the querier

(with a query), the server (with the protected database),

the enforcer (with the rules), and possibly the provider.

The querier obtains the query results if the rules are

satisfied.

∙ 𝐔𝐩𝐝𝐚𝐭𝐞: The update protocol occurs between the provider
(with a set of updates) and the server. The server obtains

an updated protected database. Updates include insertions,

deletions, and record modifications.

∙ 𝐑𝐞𝐟𝐫𝐞𝐬𝐡: The refresh protocol occurs between the

provider and the server. The server obtains a new pro-

tected database that represents the same data but is

designed to achieve better performance and/or security.

All systems considered in this work support 𝐈𝐧𝐢𝐭 and 𝐐𝐮𝐞𝐫𝐲,
but only some systems support 𝐔𝐩𝐝𝐚𝐭𝐞 and 𝐑𝐞𝐟𝐫𝐞𝐬𝐡; see

Tables II and V for details.

D. Protected Database Search Systems
Informally, a protected search system is a database system

that supports the roles and operations defined above, in which

each party learns only its intended outputs and nothing else. In

particular, a protected search system aims to ensure that the

server learns nothing about the data stored in the protected

database or about the queries, and the querier learns nothing

beyond the query results. These security goals can be formal-

ized using the real-ideal style of cryptographic definition. In
this paradigm, one imagines an ideal version of a protected

search system, in which a trusted external party performs

storage, queries, and modifications correctly and reveals only

the intended outputs to each party. The real system is said

to be secure if no party can learn more from its real world

interactions than it can learn in the ideal system.

We restrict our attention in this work to protected database

search systems that provide formally defined security guaran-

tees based upon the strength of their underlying cryptographic

primitives. Some of the commercial systems mentioned in the

introduction lack formal security reductions; although they

are based on techniques with proofs of security, analysis is

required to determine whether differences from those proven

techniques affect security.

Scenarios: Only a few existing protected search systems

consider the enforcement of rules (i.e., include an authorizer

and enforcer). Therefore, in this paper we focus primarily on

two scenarios: a three-party scenario comprising a provider,

a querier, and a server, and a two-party scenario in which a

single user acts as both the provider and the querier (we denote

175

this combined entity as the client). The latter scenario models a
cloud storage outsourcing application in which a client uploads

files to the cloud that she can later request. In the two-party

setting, the client has the right to know all information in the

database so it is only necessary to consider security against an

adversarial server. In this work, we focus on protected search

in the case of a single provider and a single querier; for the

more general setting in which multiple users can perform a

single role, see Section V and [73].

We stress that a secure search system for one scenario does

not automatically extend to another scenario. Additionally,

despite the limited attention in the literature thus far, we

believe that the authorizer and enforcer roles are an important

aspect of the continued maturation of protected search systems;

see Section V-A for additional discussion.

Threats: There are two types of entities that may pose

security threats to a database: a valid user known as an insider
who performs one or more of the roles, and an outsider who
can monitor and potentially alter network communications

between valid users. We distinguish between adversaries that

are semi-honest (or honest-but-curious), meaning they follow

the prescribed protocols but may passively attempt to learn

additional information from the messages they observe, and

those that are malicious, meaning they are actively willing to

perform any action necessary to learn additional information

or influence the execution of the system. An outsider adversary

(even a malicious one) can be thwarted using secure point-to-

point channels. Furthermore, we distinguish between adver-

saries that persist for the lifetime of the database and those

that obtain a snapshot at a single point in time [74]. The bulk
of active research in protected search technology considers

semi-honest security against a persistent insider adversary.

Performance and Leakage: While unprotected databases

are often I/O bound, protected systems may be compute

or network bound. We can measure the performance of a

protected operation by calculating the computational overhead

and the additional network use (in both the number of mes-

sages and the total amount of data transmitted). The type of

cryptographic operations matters as well: whenever possible,

slower public-key operations should be avoided or minimized

in favor of faster symmetric-key primitives.

In order to improve performance, many protected search

systems reveal or leak information during some or all oper-

ations. Leakage should be thought of as an imperfection of

the scheme. The real-ideal security definition is parameterized

by the system’s specific leakage profile, which comprises a

sequence of functions that formally describe all information

that is revealed to each party beyond the intended output. A

security proof demonstrates that the claimed leakage profile is

an upper bound on what is actually revealed to an adversary.

Protected search systems’ security is primarily distinguished

by their leakage profile; our security discussion focuses on

leakage.

While leakage profiles are comprehensive, it is often diffi-

cult to interpret them and to assess their impact on the security

of a particular application (see Section III-B). To help with

this task, the next section identifies common types of leakage.

E. Common Leakage Profiles
This section provides a vocabulary (partially based on

Kamara [75]) to describe common features of leakage system-

atically. While the exact descriptions of leakage profiles are

often complex, their essence can mostly be derived from four

characteristics: the objects that leak, the type of information

leaked about them, which operation leaks, and the party that

learns the leakage.

The following types of objects within a protected search

system are vulnerable to leakage.

1) Data items, and any indexing data structures.

2) Queries.

3) Records returned in response to queries, or other rela-

tionships between the data items and the queries (e.g.,

records that partially match a conjunction query).

4) Access control rules and the results of their application.

Next, we categorize the information leaked from each

object. The leakage may occur independently for each query or

response, or it may depend upon the prior history of queries

and responses. For complex queries like Booleans, leakage

may also depend on the connections between the clauses of a

query. While the details of leakage may depend on the specific

data structures used for representing and querying the data, we

list five general categories of information that may be leaked

from objects, ranked from the least to most damaging. We use

this ranking throughout our discussion of base queries.

� Structure: properties of an object only concealable via

padding, such as the length of a string, the cardinality of

a set, or the circuit or tree representation of an object.

◔ Identifiers: pointers to objects so that their past/future

accesses are identifiable.�� Predicates: identifiers plus additional information on ob-

jects. Examples include “matches the intersection of 2

clauses within a query” and “within a common (known)

range.”

◕ Equalities: which objects have the same value.� Order (or more): numerical or lexicographic ordering of

objects, or perhaps even partial plaintext data.

Each of the four database operations may leak information.

During 𝐈𝐧𝐢𝐭, the server may receive leakage about the initial

data items. Every party may receive leakage during a 𝐐𝐮𝐞𝐫𝐲:
the querier may learn about the rules and the current data

items; the server may learn about the query, the rules, and the

current data items; the provider may learn about the query and

rules; and the enforcer may learn about the query and current

data items. During 𝐔𝐩𝐝𝐚𝐭𝐞, the server may receive leakage

about the prior and new data records. During a 𝐑𝐞𝐟𝐫𝐞𝐬𝐡, the
server may receive leakage about the current data items.

In a two-party protected search system without 𝐔𝐩𝐝𝐚𝐭𝐞 or
rules it suffices to describe the leakage to the server during 𝐈𝐧𝐢𝐭
and 𝐐𝐮𝐞𝐫𝐲. In this setting, common components of leakage

profiles include: equalities of queries (often called search
patterns); identifiers of data items returned across multiple

176

queries (often called access patterns); the circuit topology of

a boolean query; and cardinalities and lengths of data items,

queries, and query responses. Dynamic databases must also

consider leakage during 𝐔𝐩𝐝𝐚𝐭𝐞 and 𝐑𝐞𝐟𝐫𝐞𝐬𝐡. Three-party
databases with access restrictions must also consider leakage

to the provider and querier about any objects they didn’t

produce themselves.

F. Comparison with Other Approaches
We intentionally define protected database search by its

objective rather than the techniques used. As we will see

in Section III, many software-based techniques suffice to

construct protected database search. Many hardware-based

solutions like [76] are viable and valuable as well; however,

they use orthogonal assumptions and techniques to software-

only approaches. To maintain a single focus in this SoK, we

restrict our attention to software-only approaches.

Within software-only approaches, the cryptographic com-

munity has developed several general primitives that address

all or part of the protected database search problem.

∙ Secure multi-party computation [77]–[79], fully homo-

morphic encryption [80]–[82], and functional encryp-

tion [83] hide data while computing queries on it.

∙ Private information retrieval [12], [84], [85] and oblivious

random-access memory (ORAM) [13] hide access pat-

terns over the data retrieved. On their own, they typically

do not support searches beyond a simple index retrieval;

however, several schemes we discuss in the next section

use ORAM in their protocols to hide access patterns while

performing expressive database queries.

Protected search techniques in the literature often draw heavily

from these primitives, but rarely rely exclusively on one of

them in its full generality. Instead, they tend to use specialized

protocols, often with some leakage, with the goal of improving

performance.

Another related area of research known as authenticated data

structures ensures correctness in the presence of a malicious

server but does not provide confidentiality (e.g., [86]–[90]). In

general, authenticated data structures do not easily compose

with protected database search systems.

III. BASE QUERIES

In this section, we identify basis functions that currently

exist in protected search. The section provides systematic

reviews of the different cryptographic approaches used across

query types and an evaluation of known attacks against them.

Due to length limitations, we focus on the Pareto frontier of
schemes providing the currently best available combinations of

functionality, performance, and security. This means that we

omit any older schemes that have been superseded by later

work. For a historical perspective including such schemes, we

refer readers to relevant surveys [73], [91].

We categorize the schemes into three high-level approaches.

The Legacy Index (or 𝙻𝚎𝚐𝚊𝚌𝚢) approach can be used with an
unprotected database server; it merely modifies the provider’s

data insertions and the querier’s requests. However, this

backwards compatibility comes at a cost to security. The

Custom Index (or 𝙲𝚞𝚜𝚝𝚘𝚖) approach achieves lower leakage

at the expense of designing special-purpose protected indices

together with customized protocols that enable the querier and

server to traverse the indices together. We highlight a third

approach Oblivious Index (or 𝙾𝚋𝚕𝚒𝚟), which is a subset of

𝙲𝚞𝚜𝚝𝚘𝚖 that provides stronger security by obscuring object

identifiers (i.e., hiding repeated retrieval of the same record).

A. Base Query Implementations

Cryptographic protocols have been developed for several

classes of base queries. The most common constructions

are for equality, range, and boolean queries (which evalu-

ate boolean expressions over equality and/or range clauses),

though additional query types have been developed as well.

Here, we summarize some of the techniques for providing

these functionalities, splitting them based on the approach

used.

The text below focuses on the distinct benefits of each

base query mechanism; Table II systematizes the common

security, performance, and usability dimensions along which

each scheme can be measured. From a security point of view,

we list the index approach, threat model (cf. Section II-D), and

the amount of leakage that the server learns about the data

items during 𝐈𝐧𝐢𝐭 and 𝐐𝐮𝐞𝐫𝐲 (cf. Section II-E). Performance

and usability are described along three dimensions: the scale
of updates and queries that each scheme has been shown

to support, the type and amount of cryptography required

to support updates and queries, and the network latency and

bandwidth characteristics.

1) 𝙻𝚎𝚐𝚊𝚌𝚢: Property-preserving encryption [10] produces

ciphertexts that preserve some property (e.g., equality or order)

of the underlying plaintexts. Thus, protected searches (e.g.,

equality or range queries) can be supported by inserting cipher-

texts into a traditional database, without changing the indexing

and querying mechanisms. As a result, 𝙻𝚎𝚐𝚊𝚌𝚢 schemes

immediately inherit decades of advances and optimizations in

database management systems.

Equality: Deterministic encryption (DET) [15], [92] ap-

plies a randomized-but-fixed permutation to all messages so

equality of ciphertexts implies equality of plaintexts, enabling

lookups over encrypted data. All other properties are obscured.

However, deterministic encryption typically reveals equalities

between data items to the server even without the querier

making any queries.

Range: Order-preserving encryption (OPE) [93]–[95]

preserves the relative order of the plaintexts, enabling range

queries to be performed over ciphertexts. This approach re-

quires no changes to a traditional database, but comes at

the cost of quite significant leakage: roughly, in addition to

revealing the order of data items, it also leaks the upper

half of the bits of each message [94]. Improving on this,

Boldyreva et al. [95] show how to hide message contents until

queries are made against the database. Mavroforakis et al. [96]

further strengthen security using fake queries. Finally, mutable

177

OPE [97] reveals only the order of ciphertexts at the expense

of added interactivity during insertion and query execution.

Many 𝙻𝚎𝚐𝚊𝚌𝚢 approaches can easily be extended to perform
boolean queries and joins by simply combining the results

of the equality or range queries over the encrypted data.

CryptDB [15] handles these query types using a layered or

onion approach that only reveals properties of ciphertexts as

necessary to process the queries being made. They demonstrate

at most 30% performance overhead over MySQL, though this

value can be much smaller depending on the networking and

computing characteristics of the environment.

𝙻𝚎𝚐𝚊𝚌𝚢 approaches have been adopted industrially [98] and
deployed in commercial systems [23]–[35]. However, as we

will explain in Section III-B and Table III, even the strongest

𝙻𝚎𝚐𝚊𝚌𝚢 schemes reveal substantial information about queries

and data to a dedicated attacker.

2) 𝙲𝚞𝚜𝚝𝚘𝚖 Inverted Index: Several works over the past

decade support equality searches on single-table databases

via a reverse lookup that maps each keyword to a list of

identifiers for the database records containing the keyword

(e.g., [11], [99]). Newer works provide additional features and

optimizations for such equality searches. Blind Storage [100]

shows how to do this with low communication and a very

simple server, while Sophos [101] shows how to achieve a

notion of forward security hiding whether new records match

older queries (this essentially runs 𝐑𝐞𝐟𝐫𝐞𝐬𝐡 on every 𝐈𝐧𝐬𝐞𝐫𝐭).
OSPIR-OXT [18]–[21] additionally supports boolean

queries: the inverted index finds the set of records matching

the first term in a query, and a second index containing a list of

(record identifier, keyword) pairs is used to check whether the

remaining terms of the query are also satisfied. Cryptographi-

cally, the main challenge is to link the two indices obliviously,

so that the server only learns the connections between terms in

the same query. Going beyond boolean queries, Kamara and

Moataz [102] intelligently combine several inverted indices

in order to support the selection, projection, and Cartesian

product operations of relational algebra with little overhead

on top of the underlying inverted index (specifically, only

using symmetric cryptography). They do so at the expense

of introducing additional leakage. Moataz’s Clusion library

implements many inverted index-based schemes [103], [104].

Cash and Tessaro demonstrate that secure inverted indices

must necessarily be slower than their insecure counterparts,

requiring extra storage space, several non-local read requests,

or large overall information transfer [105].

3) 𝙲𝚞𝚜𝚝𝚘𝚖 Tree Traversal: Another category of 𝙲𝚞𝚜𝚝𝚘𝚖
schemes uses indices with a tree-based structure. Here a query

is executed (roughly) by traversing the tree and returning

the leaf nodes at which the query terminates. The main

cryptographic challenge here is to hide the traversal pattern

through the tree, which can depend upon the data and query.

For equality queries, Kamara and Papamanthou [106] show

how to do this in a parallelizable manner; with enough parallel

processing they can achieve an amortized constant query cost.

Stefanov et al. [107] show how to achieve forward privacy

using a similar approach.

The BLIND SEER system [16], [17] supports boolean

queries by using an index containing a search tree whose

leaves correspond to records in the database, and whose

nodes contain (encrypted) Bloom filters storing the set of

all keywords contained in their descendants. A Bloom filter

is a data structure that allows for efficient set membership

queries. To execute a conjunctive query, the querier and

server jointly traverse the tree securely using Yao’s garbled

circuits [108], a technique from secure two-party computation,

following branches whose Bloom filters match all terms in the

conjunction. Chase and Shen [109] design a protection method

based on suffix trees to enable substring search.

Tree-based indices are also amenable to range searches. The

Arx-RANGE protocol [110] builds an index for answering

range queries without revealing all order relationships to the

server. The index stores all encrypted values in a binary

tree so range queries can be answered by traversing this

tree for the end points. Using Yao’s garbled circuits, the

server traverses the index without learning the values it is

comparing or the result of the comparison at each stage. Roche

et al.’s partial OPE protocol [111] provides a different tradeoff

between performance and security with a scheme optimized

for fast insertion that achieves essentially free insertion and

(amortized) constant time search at the expense of leaking a

partial order of the plaintexts.

4) Other 𝙲𝚞𝚜𝚝𝚘𝚖 Indices: We briefly mention protected

search mechanisms supporting other query types: ranking

results of boolean queries [112], [113], calculating the inner

product with a fixed vector [114], [115], and computing the

shortest distance on a graph [116]. These schemes mostly work

by building encrypted indices out of specialized data structures

for performing the specific query computation. For example,

Meng et al.’s GRECS system [116] provides several different

protocols with different leakage/performance tradeoffs that

encrypt a sketch-based (graph) distance oracle to enable secure

shortest distance queries.

5) 𝙾𝚋𝚕𝚒𝚟: This class of protected search schemes aims

to hide common results between queries. Oblivious RAM

(ORAM) has been a topic of research for twenty years [117]

and the performance of ORAM schemes has progressed

steadily. Many of the latest implementations are based on

the Path ORAM scheme [118]. However, applying ORAM

techniques to protected search is still challenging [119].

𝙾𝚋𝚕𝚒𝚟 schemes typically hide data identifiers across queries
by re-encrypting and moving data around in a data structure

(e.g., a tree) stored on the server. Several equality schemes

use the 𝙾𝚋𝚕𝚒𝚟 approach. Roche et al.’s vORAM+HIRB

scheme [120] observes that search requires an ORAM capable

of storing varying size blocks since different queries may

result in different numbers of results. They design an efficient

variable-size ORAM (vORAM) and combine it with a history

independent data structure to build a keyword search scheme.

Garg et al.’s TWORAM scheme [121] focuses on reducing the

number of rounds required by an ORAM-type secure search.

They use a garbled RAM-like [122] construction to build a

two-round ORAM resulting in a four-round search scheme

178

for equality queries. Moataz and Blass [123] design oblivious

versions of suffix arrays and suffix trees to provide an 𝙾𝚋𝚕𝚒𝚟
scheme for substring queries. While offering greater security,

these schemes still tend to be slower than the constructions in

the other classes.

An alternative approach is to increase the number of par-

ties. This approach is taken by Faber et al.’s 3PC-ORAM

scheme [124] and Ishai et al.’s shared-input shared-output sym-

metric private information retrieval (SisoSPIR) protocol [22]

to support range queries. 3PC-ORAM shows how by adding a

second non-colluding server, one can build an ORAM scheme

that is much simpler than previous constructions. SisoSPIR

uses a distributed protocol between a client and two non-

colluding servers to traverse a (per-field) B-tree in a way

that neither server learns anything about which records are

accessed. By deviating from the standard ORAM paradigm,

these schemes are able to approach the efficiency typically

achieved by Custom Index schemes that do not hide access

patterns.

6) Supporting Updates: Another important aspect of secure
search schemes is whether they support 𝐔𝐩𝐝𝐚𝐭𝐞. While update

functionality is critical for many database applications, it is not

supported by many protected search schemes in the 𝙲𝚞𝚜𝚝𝚘𝚖
and 𝙾𝚋𝚕𝚒𝚟 categories. Those that support updates do so in

one of two ways. For ease of presentation, consider a newly

inserted record. In most 𝙻𝚎𝚐𝚊𝚌𝚢 schemes the new value is im-

mediately inserted into the database index, allowing for queries

to efficiently return this value immediately after insertion. In

many 𝙲𝚞𝚜𝚝𝚘𝚖 schemes, e.g., [16], new values are inserted

into a side index on which a less efficient (typically, linear

time) search can be used. Periodically performing 𝐑𝐞𝐟𝐫𝐞𝐬𝐡
incorporates this side index into the main index; however,

due to the cost of 𝐑𝐞𝐟𝐫𝐞𝐬𝐡 it is not possible to do this

very frequently. Thus, depending on the frequency and size

of updates, update capability may be a limiting functionality

of protected search. In particular, a major open question is

to build protected search capable of supporting the very high

ingest rates typical of NoSQL databases. We return to this

open problem in Section V. Roche et al. [111] take a step in

this direction with a 𝙲𝚞𝚜𝚝𝚘𝚖 scheme for range queries capable
of supporting very high insert rates.

Table II systematizes the protected search techniques dis-

cussed in this section along with some basic information

about the (admittedly nuanced) leakage profiles that they have

been proven to meet. There are several correlations between

columns of the table; some of these connections reveal funda-

mental privacy-performance tradeoffs whereas others simply

reflect the current state of the art. To provide one example in

the latter category: most 𝙻𝚎𝚐𝚊𝚌𝚢 systems leak information at

ingestion, whereas most 𝙲𝚞𝚜𝚝𝚘𝚖 only leak information after

queries have been made against the system. The recent Arx-

EQ [14] bucks this trend by requiring the client to remember

the frequency of each keyword.

B. Leakage Inference Attacks
In this subsection and Table III, we summarize leakage

inference attacks that can exploit the leakage revealed by a

protected search system in order to recover some information

about sensitive data or queries. Hence, this section details the

real-world impact of the leakage bounds and threat models

depicted in Table II. The two tables are connected via a JOIN

on the “𝑆 leakage” columns: a protected search scheme is

affected by an attack if the scheme’s leakage to the server is

at least as large as the attack’s required minimum leakage.

We stress that leakage inference is a new and rapidly

evolving field. As a consequence, the attacks in Table III

only cover a subset of leakage profiles included in Table II.

Additionally, this section merely provides lower bounds on the

impact of leakage because attacks only improve over time.

We start by introducing the different dimensions that char-

acterize attack requirements and efficacy. Then, we sketch a

couple representative attacks from the literature. Finally, we

describe how the provider and querier should use these attacks

to inform their choice of a search system that adequately

protects their interests.
1) Attack Requirements: We classify attacks along four

dimensions: attacker goal, required leakage, attacker model,

and prior knowledge. The attacker is the server in all of the

attacks we consider, except for the Communication Volume

Attack of [125], which can be executed by a network observer

who knows the size of the dataset. We expect future research

on attacks using leakage available to other insiders.
a) Attacker Goal: Current attacks try to recover either

a set of queries asked by the querier (query recovery) or the
data being stored at the server (data recovery).

b) Required Leakage: This is the leakage function that

must be available to the attacker. We focus on the common

leakage functions on the dataset and responses identified in

Section II-E. Examples include the cardinality of a response

set, the ordering of records in the database, and identifiers

of the returned records. Some attacks require leakage on the

entire dataset while others only require leakage on query

responses.
c) Attacker Model: Current inference attacks assume one

of two attacker models. The first is a semi-honest attacker as
discussed in Section II-D. The second is an attacker capable

of data injection: it can create specially crafted records and

have the provider insert them into the database. Note that

this capability falls outside the usual malicious model for the

server. The attacker’s ability to perform data injection depends

on the use case. For example, if a server can send an email to

a user that automatically updates the protected database, this

model is reasonable. On the other hand, it might be harder to

insert an arbitrary record into a database of hospital medical

records.
d) Attacker Prior Knowledge: All current attacks assume

some prior knowledge, which is usually information about the

stored data but may include information about the queries

made. Attack success is judged by the ability to learn informa-

tion beyond the prior knowledge. The following types of prior

179

knowledge (ordered from most to least information) help to

execute attacks.

� Contents of full dataset: the data items contained in the

database. The only possible attacker goal in this case is

query recovery.

◕ Contents of a subset of dataset: a set of items contained

in the database. Both attacker goals are interesting in this

case.�� Distributional knowledge of dataset: information about the

probability distribution from which database entries are

drawn. For example, this could include knowledge of the

frequency of first names in English-speaking countries.

This type of knowledge can be gained by examining

correlated datasets.

◔ Distributional knowledge of queries: information about

the probability distribution from which queries are drawn.

As above, this might be knowledge that names will

be queried according to their frequency in the overall

population.� Keyword universe: knowledge of the possible values for

each field.

Naturally, attacks that require full knowledge of the data are

more effective; the reasonableness of this assumption should

be evaluated for each use case.
2) Attack Efficacy: We evaluate attack efficacy qualitatively

in terms of three metrics: 1) the runtime of the attack,

including time required to create any inserted records; 2)

the sensitivity of the recovery rate to the amount of prior

knowledge; and 3) the keyword universe size attacked. Note

that the strength of an attack is strongly application-dependent;

an attack that is devastating on one dataset may be completely

ineffective on another dataset.

Table III characterizes currently known attacks based upon

their requirements and efficacy. All of the attacks described in

the table only require modest computing resources.
3) Attack Techniques: Leakage inference attacks against

protected search systems have evolved rapidly over the last

few years, with Islam et al. [132] in 2012 inspiring many

other papers. Most of the attacks in Table III rely on the

following two facts: 1) different keywords are associated with

different numbers of records, and 2) most systems reveal

keyword identifiers for a record either at rest (e.g., DET [15]

reveals during 𝐈𝐧𝐢𝐭 if records share keywords) or when it is

returned across multiple queries (e.g., Blind Seer [16] reveals

during 𝐐𝐮𝐞𝐫𝐲 which returned records share keywords). To

give intuition for how these attacks work we briefly summarize

two entries of Table III.

Cash et al.’s [128] Count Attack is a conceptually simple

way to exploit this information. Assume the attacker has full

knowledge of the database and is trying to learn the query.

The attacker sees how many records are returned in response

to a query. If that number is unique it can identify the query.

Furthermore, by identifying the query, the attacker learns that

every returned record is associated with that keyword.

For example, suppose the attacker learns the first query was

for LastName = ‘Smith’. Now consider a second query for

an unknown first name. The query does not return a unique

number of records, so the method above cannot be used.

Suppose that FirstName=‘John’ and FirstName=‘Matthew’

both return 1000 records. The attacker can also check how

many records are in common with the previous query. This

creates an additional constraint, for example there may be

100 records with name ‘John Smith’ but only 10 records

with name ‘Matthew Smith’. By checking record overlap with

the previously identified query, the attacker can identify the

queried first name. This attack iteratively identifies queries

and uses them as additional constraints to identify unknown

queries.

Cash et al.’s attack is fairly simple and performs well if the

keyword universe sizes is at most 5000. However, it requires a
large portion of the dataset to be known to the attacker. With

80% of the dataset known to the attacker, Cash et al. [128]

yield a 40% keyword recovery rate.

Zhang et al. [127] extend the Count Attack to a malicious

adversary setting, allowing a server to inject a set of con-

structed records. This capability greatly improves keyword

recovery. By carefully constructing a small number of these

records (e.g., nine records for a universe of 5000 keywords),

it is possible to search the keyword universe and identify

the keyword. Although the records are fairly large, the attack

extends if the database only allows a limited number of

keywords per data record. This attack recovers more keywords

than the attack of Cash et al.: 40% of the data must be leaked

to obtain a 40% keyword recovery rate.
4) Discussion: The provider and querier rely upon pro-

tected search to protect themselves against the server, or

anyone who compromises the server. Our systemization of

attacks shows that they should consider the following four

questions before choosing a protected search technique to use.

∙ How large is the keyword universe?

∙ How much of the dataset or query keyword universe (and

corresponding frequency) can the attacker predict?

∙ Can an attacker reasonably insert crafted records?

∙ Does the adversary have persistent access to the server,

or merely a snapshot of it at a single point in time?

Answers to the first three questions depend upon the intended

use case. For example, a system with a smaller leakage profile

may be necessary in a setting where the keyword universe is

small and the attacker has the ability to add records. A system

with a larger leakage profile may suffice in a setting where the

keyword universe is very large.

The fourth question pertains to adversaries who compromise

the server. 𝙻𝚎𝚐𝚊𝚌𝚢 schemes tend to leak information about the
entire database to the server. Thus, using the terminology of

Grubbs et al. [74], they are susceptible to an adversary who

only gets a snapshot of the database at some point in time.

In contrast, 𝙲𝚞𝚜𝚝𝚘𝚖 schemes tend to reveal information about

records only during record retrieval or index modification as

part of the querying process, so they require a persistent
adversary who can observe the evolution of the database state

over time. (We note however that many Boolean schemes have

additional leakage about data statistics for the entire database.)

180

Threats 𝑆 leakage Scale Crypto Network
Q
u
er
y
ty
p
e

Scheme (References) Approach #
o
f
p
ar
ti
es

A
d
v
er
sa
ri
al

𝑄

A
d
v
er
sa
ri
al

𝑆

In
it

Q
u
er
y

U
p
d
at
ab
le
?

Im
p
le
m
en
te
d
?

S
ca
le
te
st
ed

C
ry
p
to

ty
p
e

In
se
rt
:
#
o
p
s

Q
u
er
y
:
#
o
p
s

#
ro
u
n
d
tr
ip
s

D
at
a
se
n
t

Unique feature

E
q
u
al
it
y

Arx-EQ [14] 𝙻𝚎𝚐𝚊𝚌𝚢 2 — �� � ◔ � � �� � � � � � legacy compliant
Kamara-Papamanthou [106] 𝙲𝚞𝚜𝚝𝚘𝚖 2 — �� � ◔ � — — � � � � � parallelizable
Blind Storage [100] 𝙲𝚞𝚜𝚝𝚘𝚖 2 — �� � ◔ � � �� � �� � �� � low 𝑆 work
Sophos (Σo𝜙o𝜍) [101] 𝙲𝚞𝚜𝚝𝚘𝚖 2 — �� � ◔ � � �� � �� � � � 𝐑𝐞𝐟𝐫𝐞𝐬𝐡 w/ 𝐈𝐧𝐬𝐞𝐫𝐭
Stefanov et al [107] 𝙲𝚞𝚜𝚝𝚘𝚖 2 — �� � ◔ � � �� � � � � � 𝐑𝐞𝐟𝐫𝐞𝐬𝐡 w/ 𝐈𝐧𝐬𝐞𝐫𝐭
vORAM+HIRB [120] 𝙾𝚋𝚕𝚒𝚟 2 — �� � � � � � � � � � ◔ history independ.
TWORAM [121] 𝙾𝚋𝚕𝚒𝚟 2 — �� � � � — — �� � � �� ◔ const round
3PC-ORAM [124] 𝙾𝚋𝚕𝚒𝚟 3 �� �� � � � � ◔ � � � � ◔ dual 𝑆

B
o
o
le
an

DET [15], [92] 𝙻𝚎𝚐𝚊𝚌𝚢 2 — �� ◕ ◕ � � � � �� �� � � supports JOINs
BLIND SEER [16], [17] 𝙲𝚞𝚜𝚝𝚘𝚖 3 � � � �� �� � � �� �� � � ◔ hide field, 𝑟𝑖’s
OSPIR-OXT [18]–[21], [104] 𝙲𝚞𝚜𝚝𝚘𝚖 3 � �� � �� � � � �� �� �� ◕ � excels w/ small 𝑟1
Kamara-Moataz [102] 𝙲𝚞𝚜𝚝𝚘𝚖 2 — �� � �� � — — �� �� � � ◔ relational SPC

R
an
g
e

OPE [93]–[95] 𝙻𝚎𝚐𝚊𝚌𝚢 2 — �� � � � � � � � � � � leak some content
Mutable OPE [97] 𝙻𝚎𝚐𝚊𝚌𝚢 2 — �� � � � � �� � � � � �� interactive
Partial OPE [111] 𝙲𝚞𝚜𝚝𝚘𝚖 2 — �� � � � � �� � � � �� � fast insertions
Arx-RANGE [110] 𝙲𝚞𝚜𝚝𝚘𝚖 2 — �� � �� � � �� �� � � � � non-interactive
SisoSPIR [22] 𝙾𝚋𝚕𝚒𝚟 3 �� �� � � � � � � � � � ◔ split, non-colluding 𝑆

O
th
er

GraphEnc1 [116] 𝙲𝚞𝚜𝚝𝚘𝚖 2 — �� �� ◔ � � �� � � � � ◔ approx. graph dist.
GraphEnc3 [116] 𝙲𝚞𝚜𝚝𝚘𝚖 2 — �� �� �� � � �� � � � � � approx. graph dist.
Chase-Shen [109], [126] 𝙲𝚞𝚜𝚝𝚘𝚖 2 — � � �� � � ◔ � � � �� � substring search
Moataz-Blass [123] 𝙾𝚋𝚕𝚒𝚟 2 — �� � � � � � � � � � ◔ substring search

TABLE II
SUMMARY OF THE SECURITY, PERFORMANCE, AND USABILITY OF BASE QUERIES. 𝑄 AND 𝑆 DENOTE THE QUERIER AND THE SERVER, RESPECTIVELY. WE PRESUME THAT THE

ADVERSARY KNOWS THE DATABASE SIZE 𝑑 AND THE LENGTH OF EACH RECORD. FOR SYSTEMS THAT EITHER DO NOT SUPPORT INSERT OR USE A SIDE INDEX, THE INSERT COST IS

THE AMORTIZED COST OF ADDING A SINGLE RECORD DURING 𝐈𝐧𝐢𝐭. LEGENDS FOR EACH COLUMN FOLLOW. IN ALL COLUMNS EXCEPT “INIT/QUERY LEAKAGE,” BUBBLES THAT ARE

MORE FILLED IN REPRESENT PROPERTIES THAT ARE BETTER FOR THE SCHEME.

SCALE TESTED UPDATABLE THREATS DATA SENT INIT/QUERY LEAKAGE�– BILLIONS��– MILLIONS

◔– THOUSANDS

�– INSERT IN MAIN INDEX��– BUILD SIDE INDEX�– NOT SUPPORTED

�– MALICIOUS��– SEMI-HONEST
(BEYOND RESULTS)�– CONSTANT��– ADDITIVE POLYLOG(𝑑)
◔– MULT. POLYLOG(𝑑)�– EVEN MORE

(SEE SECTION II-E)�– ORDER/CONTENTS
◕– EQUALITY��– PREDICATE

◔– IDENTIFIER�– STRUCTURE

TYPE OF CRYPTO CRYPTO OPS PER RECORD ROUND TRIPS�– SYMMETRIC��– BATCHED OR PRE-
COMPUTED PUBLIC-KEY�– PUBLIC-KEY

�– CONSTANT��– # KEYWORDS�– LOGARITHMIC

�– 1
◕– 2��– CONSTANT�– LOGARITHMIC

Required
𝑆 leakage

Required attack
conditions

Attack efficacy

Attacker goal Init Query Ability
to inject
data

Prior
knowledge

Runtime Sensitivity
to prior
knowledge

Keyword
universe
tested

Attack name

Q
ue
ry
R
ec
ov
er
y

� � — ◔ � ? � Communication Volume Attack [125]� ◔ � � � � � Binary Search Attack [127]� ◔ — ◔ � ? � Access Pattern Attack [125]� ◔ — ◕ �� � � Partially Known Documents [128]� ◔ � ◕ �� � � Hierarchical-Search Attack [127]� ◔ — � �� � � Count Attack [128]

D
at
a
R
ec
ov
er
y � ◔ — �� � � �� Graph Matching Attack [129]

◕ — — �� � ? � Frequency Analysis [130]
◕ — � �� � ? � Active Attacks [128]
◕ — — ◕ � ? � Known Document Attacks [128]� — — �� � � � Non-Crossing Attack [131]

TABLE III
SUMMARY OF CURRENT LEAKAGE INFERENCE ATTACKS AGAINST PROTECTED SEARCH BASE QUERIES. 𝑆 IS THE SERVER AND THE ASSUMED ATTACKER FOR ALL ATTACKS LISTED.

𝑆 LEAKAGE SYMBOLS HAVE THE SAME MEANING AS IN TABLE II. EACH ATTACK IS RELEVANT TO SCHEMES IN TABLE II WITH AT LEAST THE 𝑆 LEAKAGE SPECIFIED IN THIS

TABLE. SOME ATTACKS REQUIRE THE ATTACKER TO BE ABLE TO INJECT DATA BY HAVING THE PROVIDER INSERT IT INTO THE DATABASE. LEGENDS FOR THE REST OF THE

COLUMNS FOLLOW. IN ALL COLUMNS EXCEPT “KEYWORD UNIVERSE TESTED,” BUBBLES THAT ARE MORE FILLED IN REPRESENT PROPERTIES THAT ARE BETTER FOR THE SCHEME

AND WORSE FOR THE ATTACKER.

PRIOR KNOWLEDGE RUNTIME (IN # OF KEYWORDS) SENSITIVITY TO PRIOR KNOWLEDGE KEYWORD UNIVERSE TESTED�– CONTENTS OF FULL DATASET

◕– CONTENTS OF A SUBSET OF DATASET��– DISTRIBUTIONAL KNOWLEDGE OF DATASET

◔– DISTRIBUTIONAL KNOWLEDGE OF QUERIES�– KEYWORD UNIVERSE

�– MORE THAN QUADRATIC��– QUADRATIC�– LINEAR
�– HIGH�– LOW
? – UNTESTED

�– > 1000��– 500 TO 1000�– < 500

181

In summary, each protected search approach has a distinct

leakage profile that results in qualitatively different attacks. If

queries only touch a small portion of the dataset or the adver-

sary only has a snapshot, the impact of leakage from 𝙲𝚞𝚜𝚝𝚘𝚖
systems is less than from 𝙻𝚎𝚐𝚊𝚌𝚢 schemes. If queries regularly
return a large fraction of the dataset, this distinction disappears

and an 𝙾𝚋𝚕𝚒𝚟 scheme may be appropriate. Recently, Kellaris

et al. [125] showed an attack on 𝙾𝚋𝚕𝚒𝚟 schemes, but it requires
significantly smaller database and keyword universe sizes than

attacks against non-𝙾𝚋𝚕𝚒𝚟 schemes.

Open Problems: The area of leakage attacks against pro-
tected search is expanding. Published attacks consider attack-

ers who insert specially crafted data records but have not

considered an attacker who may issue crafted queries. Fur-

thermore, all prior attacks have considered the leakage profile

of the server. Future attacks should consider the implications

of leakage to the querier and provider. Current attacks have

targeted Equality and Range queries; we encourage the study

of leakage attacks on other query types such as Boolean

queries.

On the reverse side, it is important to understand what

these leakage attacks mean in real-world application scenarios.

Specifically, is it possible to identify appropriate real-world

use-cases where the known leakage attacks do not disclose too

much information? Understanding this will enable solutions

that better span the security, performance, and functionality

tradeoff space.

Lastly, on the defensive side we encourage designers to

implement 𝐑𝐞𝐟𝐫𝐞𝐬𝐡 mechanisms. 𝐑𝐞𝐟𝐫𝐞𝐬𝐡 mechanisms have

only been implemented for Equality systems.

IV. EXTENDING FUNCTIONALITY

A. Query Composition
We now describe techniques to combine the base queries

described in Section III (equality, Boolean, and range queries)

to obtain richer queries. We restrict our attention to techniques

that are black box (i.e., they do not depend on the implemen-

tation of the base queries).

As a general principle, schemes that support a given query

type by composing base queries tend to have more leakage

than schemes that natively support the same query type as

a base query. However, using query composition, a scheme

that supports the necessary base queries can be extended

straightforwardly to support multiple query types, whereas

supporting those all as base queries requires significant effort.

Thus, we see value in advancing both base and composed

queries.

Table IV summarizes the techniques we describe below.

In the table and the text, we cite the first work proposing

each approach, though we note that several ideas appear to

have been developed independently and concurrently. We defer

the description of string queries (substrings and wildcards) to

Appendix A.

1) Equality using range: Equality queries can be supported
using a range query scheme. To obtain the records equal to 𝑎,

the querier performs a range query for the range [𝑎, 𝑎].

2) Disjunction of equalities/ranges using equality/range:
Disjunctions of equalities or ranges can be supported using

an equality or a range scheme, respectively. To obtain the

records that equal any of a set of 𝑘 keywords 𝑤1,… , 𝑤𝑘, the

querier can perform an equality query for each keyword 𝑤𝑖

and combine the results. Similarly, to retrieve all records that

are in any of 𝑘 ranges, the querier can perform a range query

for each range and combine the results. This approach reveals

to the server the leakage associated with each equality or

range query, e.g., the exact or approximate number of records

matching each clause (not just the number of records matching

the disjunction overall).

3) Conjunction of equalities using equality: Conjunctions

of equalities can be supported using an equality scheme. To

supporting querying for records that match all of the keywords

𝑤1,… , 𝑤𝑘, one builds an equality scheme containing 𝑘-tuples

of keywords. The querier then performs an equality search on

the 𝑘-tuple representing her query to retrieve the records that

contain all of those keywords. The storage for this approach

grows exponentially with 𝑘 but is viable for targeted keyword

combinations or a small number of fields.

4) Stemming using equality: Stemming reduces words to

their root form; stemming queries allow matching on word

variations. For example, a stemming query for ‘run’ will also

return results for ‘ran’ and ‘running’. The Porter stemmer

is a widely used algorithm [135], [136]. Stemming can be

supported easily by using the stemmed version of keywords

at both initialization and query time, and thus performing the

match using a single equality query.

5) Proximity using equality: Proximity queries find values

that are ‘close’ to the search term. Li et al. [137] support

proximity queries by building an equality scheme associating

each neighbor of any record with its set of neighbors in the

dataset at initialization; a proximity query is then an equality

query, which will return a record if it matches the queried value

or is a neighbor of it. Boldyreva and Chenette [133] improve

on the security of this scheme by revealing only pairwise

neighbor relationships instead of neighbor sets. They also pad

the number of inserted keywords to the maximum number of

neighbors. This solution multiplies storage by the maximum

number of neighbors of a record. If disjunctive searches are

permitted, one can trade off storage space with the number of

terms in the search.

Another approach uses locality-sensitive hashing [138],

[139], which preserves closeness by mapping ‘close’ inputs

to identical values and ‘far’ inputs to uncorrelated values.

Proximity queries can be supported by inserting the output of

a locality-sensitive hash as a keyword in an equality scheme.

Returning only ‘close’ records requires matching the output

of multiple hashes. Parameters vary widely depending on the

notion of closeness. This approach has been demonstrated for

Jaccard distance [140] and Hamming distance [137], [141]–

[144].

6) Small-domain range query using equality [134]: To

support range queries on a searchable attribute 𝐴 with domain

𝐷, we build two equality-searchable indices. The first index

182

Composed Query Base Query Calls Additional Storage Leakage Work

1. Equality (EQ) 1 range none Same as range —

2. Disjunction (OR) of 𝑘 EQs (or
ranges)

𝑘 EQs (or ranges) none Identifiers of records matching each clause, if EQ leaks
≥ ◔

—

3. Conjunction (AND) of 𝑘 EQs 1 EQ
(𝛽
𝑘

)
Same as EQ —

4. Stemming 1 EQ 1 Identifiers of records sharing stem, if EQ leaks ≥ ◔ —

5. Proximity 1 EQ 𝓁 Identifiers of neighbor pairs, if EQ leaks ≥ ◔ [133]

6. Range w/ small domain (2 + 𝑟) EQs 1 No leakage if refresh between queries [134]

7. Range OR of (2 log𝑚) EQs log𝑚 Distributional info, if EQ leaks ≥ ◔ [16]

8. Negation AND of 2 ranges 1 Same as OR of ranges [16]

9. Substring (𝜌 = 𝜅) 1 EQ 𝛼 − 𝜅 + 1 Identifiers of records sharing 𝜅-grams, if EQ leaks ≥ ◔ [22]

10. Substring (𝜌 ≤ 𝜅) 1 range 𝛼 − 𝜅 + 1 Same as range, on 𝜅-grams [22]

11. Anchored Substring (𝜌 ≥ 𝜅) AND of (𝜌 − 𝜅 + 1) EQs 𝛼 − 𝜅 + 1 If EQ leaks ≥ ◔, rec. ids. w/ 𝜅-grams in same positions;
if AND leaks # clauses, 𝜌

[18]

12. Substring OR of (𝛼 − 𝜅 + 1) ANDs
of (𝜌 − 𝜅 + 1) EQs

𝛼 − 𝜅 + 1 If EQ leaks ≥ ◔, rec. ids. w/ 𝜅-grams in same positions;
if AND leaks # clauses, 𝜌

[18]

13. Anchored Wildcard AND of (𝜌 − 𝜅 + 1) EQs 𝛼 − 𝜅 + 1 If EQ leaks ≥ ◔, rec. ids. w/ 𝜅-grams in same positions;
if AND leaks # clauses, 𝜌

[18]

14. Wildcard OR of (𝛼 − 𝜅 + 1) ANDs
of (𝜌 − 𝜅 + 1) EQs

𝛼 − 𝜅 + 1 If EQ leaks ≥ ◔, rec. ids. w/ 𝜅-grams in same positions;
if AND leaks # clauses, 𝜌

[18]

TABLE IV
SUMMARY OF QUERY COMBINERS USING EQUALITY (EQ), CONJUNCTION (AND), DISJUNCTION (OR), AND RANGE BASE QUERY TYPES. STORAGE IS GIVEN

AS ADDITIONAL STORAGE BEYOND THAT REQUIRED FOR THE BASE EQUALITY OR RANGE QUERIES, AS A MULTIPLICATIVE FACTOR OVER THE BASE STORAGE.
COMPOSED QUERY LEAKAGE DEPENDS ON THE LEAKAGE OF THE BASE QUERIES USED; THE TABLE GIVES THE COMPOSED QUERY LEAKAGE IF THE BASE

EQUALITY SCHEME LEAKS IDENTITIES. “ANCHORED” REFERS TO A SEARCH THAT OCCURS AT EITHER THE BEGINNING OR THE END OF A STRING.

BOOLEAN NOTATION PROXIMITY, RANGE NOTATION STRING NOTATION

𝑘 = # OF CLAUSES IN BOOLEAN 𝓁 = MAX # OF NEIGHBORS OF A RECORD 𝜅 = LENGTH OF GRAMS

𝛽 = MAX # OF KEYWORDS PER RECORD 𝑚 = SIZE OF DOMAIN 𝜌 = LENGTH OF QUERY STRING

𝑟 = # QUERY RESULTS 𝛼 = MAX LENGTH OF DATA STRING

(PADDED IF NECESSARY)

maps each value 𝑎 ∈ 𝐷 to the number of records in the

database smaller than 𝑎 and the number of records larger than

𝑎. With two equality queries into this index, the querier can

learn the location of the lower and upper bounds of a range

query. The second index is an ordered list of records sorted

by 𝐴, from which the client reads the relevant subset.

This approach requires blinding factors to prevent the client

from learning the positions of the results while still being able

to search the second index [134]. Also, this approach only

works for attributes with small domain, since the first index

has size proportional to the domain size.

7) Large-domain range using equality and disjunction [16],
[134]: Range queries can be performed over exponential size
domains via range covers, which are a specialization of set

covers that effectively pre-compute the results of canonical

range queries that would be asked during a binary search of

each record. For instance, consider the domain 𝐷 = [0, 8) with
size 𝑚 = 8. To insert a record with attribute 𝐴 = 3, we insert
keywords corresponding to each of the canonical ranges [0, 8),
[0, 4), [2, 4), and [3, 4). Range queries are split into canonical
ranges; for instance, the range [2, 5) would be split into [2, 4)
and [4, 5). Combining this technique with disjunctions yields

range queries [16].

Demertzis et al. [145] provide a variety of range cover

schemes with different tradeoffs between leakage, storage,

and computation. At the extremes, they can support constant

storage with query cost linear in the range size, or 𝑚2

multiplicative storage with constant-sized keyword queries.

They recommend a balanced approach similar to [16], [134],

although their recommended scheme has false positives.

8) Negations using range and disjunction [16]: As above

consider an ordered domain 𝐷 with minimum and maximum

values 𝑎𝑚𝑖𝑛 and 𝑎𝑚𝑎𝑥, respectively. To search for all records

not matching 𝐴 = 𝑎, compute a disjunction of the queries

[𝑎𝑚𝑖𝑛, 𝑎) and (𝑎, 𝑎𝑚𝑎𝑥].

B. The Functionality Gap

We now review gaps in query functionality based on cur-

rent protected base and combined queries. Our discussion is

divided among the three query bases from Section II-A.

a) Relational Algebra: Cartesian product, which corre-

sponds to the JOIN keyword in SQL, has been demonstrated

in 𝙻𝚎𝚐𝚊𝚌𝚢 schemes. The one 𝙲𝚞𝚜𝚝𝚘𝚖 scheme that supports

Cartesian product is the work of Kamara and Moataz [102],

but their scheme does not support updates.

The JOIN keyword makes a system relational. Secure JOIN
is a crucial capability for protected search systems. The key

challenge is to create a data structure capable of linking

different values that reveals no information to any party. This

challenge also arises in Boolean 𝙲𝚞𝚜𝚝𝚘𝚖 systems. Systems

overcome this challenge by placing values that could be linked

in a single joint data structure. It is difficult to scale this

approach to the JOIN operation as the columns involved

are not known ahead of time (and there are many more

possibilities).

Open Problem: Support secure Cartesian product using

𝙲𝚞𝚜𝚝𝚘𝚖 and 𝙾𝚋𝚕𝚒𝚟 approaches.

183

b) Associative Arrays: The main workhorse of associa-

tive arrays is the ability to quickly add and multiply arrays.

𝙻𝚎𝚐𝚊𝚌𝚢 schemes have shown how to support limited addition

through the use of somewhat homomorphic encryption. There

is extensive work on private addition and multiplication using

secure computation. However, this problem has not received

substantial attention in the protected search literature. We

see adaptation of (parallelizable) arithmetic techniques into

protected search as a key to supporting associative arrays.

Open Problem: Incorporate secure computation into pro-

tected search systems to support array (+,×).
In addition, associative arrays are often constructed for

string objects. In this setting, multiplication and addition

are usually replaced with the concatenate function and an

application-defined ‘minimum’ function that selects one of the

two values. Finding the minimum is connected to the compar-

ison operation. The comparison operation has been identified

as a core gadget in the secure computation literature [146],

[147]. We encourage adaptation of this gadget to protected

search.

Open Problem: Support protected queries to output the

minimum of two strings.

c) Linear Algebra: The main gap in supporting linear al-
gebra is how to privately multiply two matrices. This problem

is made especially challenging as for different data types the

addition (+) and multiplication (×) operations may be defined
arbitrarily. Furthermore, linear algebra databases store data as

sparse matrices. Access patterns to a sparse matrix may leak

about the contents. This problem has begun to receive attention

in the learning literature [148] as matrix multiplication enables

many linear classification approaches. However, current work

requires specializing storage to a particular algorithm, such as

shortest path [116], [149].

Open Problem: Support efficient secure matrix multiplica-
tion and storage.

V. FROM QUERIES TO DATABASE SYSTEMS

In addition to search, a DBMS enforces rules, defines

data structures, and provides transactional guarantees to an

application. In this section, we highlight important components

that are affected by security and need to be addressed to enable

a protected search system to become a full DBMS. We then

discuss current protected search systems and their applicability

for different DB settings.

A. Controls, Rules and Enforcement
Classical database security includes a broad set of control

measures, including access control, inference control, flow

control, and data encryption [150].

Access control assigns a principal such as a user, role,

account, or program privileges to interact with objects like

tables, records, columns, views, or operations in a given

context [151]. Discretionary access control balances usability
with security and is used in most applications. Mandatory
access control is used where a strict hierarchy is important

and available for individuals and data. Inference control is used

with statistical databases and restricts the ability of a principal

to infer a fact about a stored datum from the result returned by

an aggregate function such as average or count. Flow control
ensures that information in an object does not flow to another

object of lesser privilege. Data encryption in classical systems
is used for transmitting data from the database back to the

client and user. Some systems also encrypt the data at rest

and use fine-grained encryption for access control [152]. These

techniques are covered in most database textbooks.

A new complementary approach is called query con-
trol [153]. Query control limits which queries are acceptable,

not which objects are visible by a user. As an example, a

user may be required to specify at least five columns in a

query, ensuring the query is sufficiently “targeted.” It enables

database designers to match legal requirements written in this

style. Query control can be expressed using a query policy,
which regulates the set of query controls.

Most current protected search designs do not consider either

an authorizer or enforcer. Integrating this functionality is an
important part of maturing protected search and complements

the cryptographic protections provided by the basic protocols.

B. Performance Characterization
Database system adoption depends on response time on the

expected set of queries. Databases are highly tuned, often

creating indices on the fly in response to queries. This makes

fair and fast evaluation difficult. To address this challenge, we

developed a performance evaluation platform. Our platform

has been open-sourced with a BSD license (https://github.com/

mitll-csa/). Design details can be found in [154]–[156]. It has

been used to test protected search systems at scales of 10TB.

Prior works [16], [17], [19], [22] report performance numbers

generated by our platform. While the platform has been used to

evaluate SQL-style databases it was designed with reusability

and extensibility in mind to allow generalization to other types

of databases.

Our platform evaluates: 1) integrity of responses and

modifications (when occurring individually and while other

operations are being performed) and 2) query latency and

throughput under a wide variety of conditions. The system can

vary environmental characteristics, the size of the database,

query types, how many records will be returned by each

query, and query policy. Each of these factors can be measured

independently to create performance cross-sections.

In our experiments, we found protected search response time

depends heavily on:

1) Network capacity, load, and number of records returned

by a query. Protected search systems often have more

rounds of communication and network traffic than un-

protected databases.

2) The ordering of terms and subclauses within a query.

Query planning is difficult for protected search systems

as they do not know statistics of the data. Protected

search generates a plan based on only query type.

3) The existence and complexity of rules (query policy and

access control). Protected search systems use advanced

184

cryptography like multi-party computation to evaluate

these rules, resulting in substantial overhead.

C. User Perceptions of Performance
We conducted a human-subjects usability evaluation to

further the understanding of current protected search usabil-

ity. This evaluation considered the performance of multiple

protected search technologies and the perception of perfor-

mance by human subjects (our procedure was approved by

our Institutional Review Board). In this evaluation, subjects

interacted with different protected search systems through an

identical web interface. Here, we focus on thoughts shared by

participants during discussion. (An informal overview of our

procedure is in Appendix B.)

Our participants discussed several themes that are salient

for furthering the usability of protected search:

∙ Participants cared more about predictability of response

times than minimizing the mean response time. When re-

sponse times were unpredictable, participants were unsure

whether they should wait for a query to complete or do

something else.

∙ Participants felt the protected technologies were slower

than an unprotected system. Participants felt this perfor-

mance was acceptable if it gave them access to additional

data, but did not want to migrate current databases to

a protected system. Note that this feedback is from end

users, not administrators.

∙ Participants expected performance to be correlated with

the number of records returned and the length of the

query. Participants were surprised that different types of

queries might have different performance characteristics.

D. Current Protected Search Databases
Some protected search systems have made the transition

to full database solutions. These systems report performance

analysis, perform rule enforcement, and support dynamic data.

These systems are summarized in Table V. CryptDB repli-

cates most DBMS functionality with a performance overhead

of under 30% [15]. This approach has been extended to NoSQL

key-value stores [157], [158]. Arx is built on a NoSQL key-

value store called mongoDB [63]. Arx reports a performance

overhead of approximately 10% when used to replace the

database of a web application (ShareLatex). Blind Seer [16]

reports slowdown of between 20% and 300% for most queries,

while OSPIR-OXT [18] report they occasionally outperform a

baseline MySQL 5.5 system with a cold cache and are an order

of magnitude slower than MySQL with a warm cache. The

SisoSPIR system [22] reports performance slowdown of 500%

compared to a baseline MySQL system on keyword equality

and range queries.

Given these performance numbers, we now ask which

solution, if any, is appropriate for different database settings.

1) Relational Algebra without Cartesian product:
CryptDB, Blind Seer, OSPIR-OXT, and SisoSPIR all provide

functionality that supports most of relational algebra except

for the Cartesian product operation. These systems offer

different performance/leakage tradeoffs. CryptDB is the

fastest and easiest to deploy. However, once a column is used

in a query, CryptDB reveals statistics about the entire dataset’s

value on this column. The security impact of this leakage

should be evaluated for each application (see Section III-B).

Blind Seer and OSPIR-OXT also leak information to the

server but primarily on data returned by the query. Thus,

they are appropriate in settings where a small fraction of

the database is queried. Finally, SisoSPIR is appropriate if

a large fraction of the data is regularly queried. However,

SisoSPIR does not support Boolean queries, which is limiting

in practice.

2) Full Relational Algebra: CryptDB is the only system for

relational algebra that supports Cartesian product. (As stated,

while Kamara and Moataz [102] support Cartesian product,

but do not support dynamic data.)

3) Associative Array - NoSQL Key-Value: The Arx sys-

tem built on mongoDB provides functionality necessary to

support associative arrays. In addition, other commercial sys-

tems (e.g., Google’s Encrypted BigQuery [29]) and academic

works [157], [158] apply 𝙻𝚎𝚐𝚊𝚌𝚢 techniques to build a NoSQL
protected system.

Blind Seer, OSPIR-OXT, and SisoSPIR have sufficient

query functionality to support associative arrays. However,

their techniques concentrate on query performance. Associa-

tive array databases often have insert rates of over a million

records per second. The insert rates of Blind Seer, OSPIR-

OXT, and SisoSPIR are multiple orders of magnitude smaller.

Suppose a record is being updated. In an unprotected system

this causes a small change to the primary index structure.

However in the protected setting, if only a few locations

are modified the server may learn about the statistics of

the updated record. This creates a tension between efficiency

and security. Efficient updates are even more difficult if the

provider does not have the full unprotected dataset.

Open Problem: Construct 𝙲𝚞𝚜𝚝𝚘𝚖 and 𝙾𝚋𝚕𝚒𝚟 techniques

that can handle millions of inserts per second.

To support very large insert rates, NoSQL key-value stores

commonly distribute the data across many machines. This

introduces the challenge of synchronizing queries, updates, and

data across these machines. This synchronization is difficult

as none of the servers are supposed to know what queries,

updates, or data they are processing!

Open Problem: Construct protected search systems that

leverage distributed server architectures.

4) Linear Algebra and Others: No current protected search
system supports the linear algebra basis used to implement

complex graph databases. In addition, as federated and poly-

store databases emerge it will be important to interface be-

tween different protected search systems that are designed for

different query bases.

Inherent Limitations: Protected search systems are still in

development, so it is important to distinguish between tran-

sient limitations and inherent limitations of protected search.

Protected search inherently reduces data visibility in order

to prevent abuse. To achieve high performance under these

185

E
q
u
al
it
y

B
o
o
le
an

K
ey
w
o
rd

R
an
g
e

S
u
b
st
ri
n
g

W
il
d
ca
rd

S
u
m

Jo
in

U
p
d
at
e

A
p
p
ro
ac
h

#
o
f
p
ar
ti
es

C
o
d
e
av
ai
la
b
le

M
u
lt
i-
cl
ie
n
t

U
se
r
au
th
.

A
cc
es
s
co
n
tr
o
l

Q
u
er
y
p
o
li
cy

L
ea
k
ag
e

P
er
fo
rm

an
ce

System Supported Operations Properties Features

CryptDB [15] � � � � � � � � � 𝙻𝚎𝚐𝚊𝚌𝚢 2 � � � � � ◕ �
Arx [14] � � � � � � � � � 𝙲𝚞𝚜𝚝𝚘𝚖 2 � � � � � �� ��
BLIND SEER [16], [17] � � � � � � � � � 𝙲𝚞𝚜𝚝𝚘𝚖 3 � � � � � �� ��
OSPIR-OXT [18]–[21], [103], [104] � � � � � � � � � 𝙲𝚞𝚜𝚝𝚘𝚖 3 � � � � � �� ◕
SisoSPIR [22] � � � � � � � � � 𝙾𝚋𝚕𝚒𝚟 3 � � � � � � ��

TABLE V
THIS TABLE SUMMARIZES PROTECTED SEARCH DATABASES THAT HAVE BEEN DEVELOPED AND EVALUATED AT SCALE. THE Supported Operations COLUMNS

DESCRIBE THE QUERIES NATURALLY SUPPORTED BY EACH SCHEME. Properties AND Features COLUMNS DESCRIBE THE SYSTEM AND AVAILABLE

FUNCTIONALITY. FINALLY Leakage AND Performance DESCRIBE THE WHOLE, COMPLEX SYSTEM, AND ARE THEREFORE RELATIVE (VS. THE MORE PRECISELY

DEFINED VALUES FOR INDIVIDUAL OPERATIONS USED EARLIER).

conditions, many design decisions such as the schema and the

choice of which indices to build must be made before data is

ingested and stored on the server. In particular, if an index has

not been built for a particular field, then it simply cannot be

searched without returning the entire database to the querier.

In general, it is not possible to dynamically permit a type of

search without retrieving the entire dataset.

Additionally, if the database malfunctions, debugging efforts

are complicated by the reduced visibility into server processes

and logs. More generally, protected search systems are more

complicated to manage and don’t yet have an existing com-

munity of qualified, certified administrators.

Throughout this work we’ve identified a few transient limita-

tions that can (and should!) be mitigated with future advances.

Each potential user must make her own judgment as to whether

the value of improved security outweighs the performance

limitations.

VI. CONCLUSION AND OUTLOOK

Several established and startup companies have commercial-

ized protected search. Most of these products today use the

𝙻𝚎𝚐𝚊𝚌𝚢 technique, but we believe both 𝙲𝚞𝚜𝚝𝚘𝚖 and 𝙾𝚋𝚕𝚒𝚟
approaches will find their way into products with broad user

bases.

Governments and companies are finding value in lacking
access to individuals’ data [159]. Proactively protecting data

mitigates the (ever-increasing) risk of server compromise,

reduces the insider threat, can be marketed as a feature, and

frees developers’ time to work on other aspects of products

and services. The recent HITECH US Health Care Law [160]

establishes a requirement to disclose breaches involving more

than 500 patients but exempts companies if the data is en-

crypted: “if your practice has a breach of encrypted data [...]

it would not be considered a breach of unsecured data, and

you would not have to report it” [161].

Protected database technology can also open up new mar-

kets, such as those cases where there is great value in recording

and sharing information but the risk of data spills is too high

For example, companies recognize the value of sharing cyber

threat and attack information [162], but uncontrolled sharing

of this information presents a risk to reputation and intellectual

property.

This paper provides a snapshot of current protected search

solutions. There is currently no dominant solution for all use

cases. Adopters need to understand system characteristics and

tradeoffs for their use case.

Protected databases will see widespread adoption. Protected

search has developed rapidly since 2000, advancing from linear

time equality queries on static data to complex searches on

dynamic data, now within overhead between 30%-500% over

standard SQL.

At the same time, the database landscape is rapidly chang-

ing, specializing, adding new functionality, and federating

approaches. Integrating protected search in a unified design

requires close interaction between cryptographers, protected

search designers, and database experts. To spur that integra-

tion, we describe a three pronged approach to this collabora-

tion: 1) developing base queries that are useful in many appli-

cations, 2) understanding how to combine queries to support

multiple applications, and 3) rapidly applying techniques to

emerging database technologies.

DBMSs are more than just efficient search systems; they

are highly optimized and complex systems. Protected search

has shown that database and cryptography communities can

work together. The next step is to transform protected search

systems into protected DBMSs.

ACKNOWLEDGMENTS

The authors thank David Cash, Carl Landwehr, Konrad

Vesey, Charles Wright, and the anonymous reviewers for

helpful feedback in improving this work.

REFERENCES

[1] R. Powers and D. Beede, “Fostering innovation, creating jobs, driving
better decisions: The value of government data,” Office of the Chief
Economist, Economics and Statistics Administration, US Department
of Commerce, July 2014.

[2] G. S. Linoff and M. J. Berry, Mining the Web: Transforming Customer
Data into Customer Value. New York, NY, USA: John Wiley & Sons,
Inc., 2002.

[3] “Big & fast data: The rise of insight-driven business,” 2015. [Online].
Available: https://www.capgemini.com/resource-file-access/resource/
pdf/big_fast_data_the_rise_of_insight-driven_business-report.pdf

186

[4] B. Mons, H. van Haagen, C. Chichester, P.-B. t. Hoen, J. T. den
Dunnen, G. van Ommen, E. van Mulligen, B. Singh, R. Hooft,
M. Roos, J. Hammond, B. Kiesel, B. Giardine, J. Velterop,
P. Groth, and E. Schultes, “The value of data,” Nat Genet,
vol. 43, no. 4, pp. 281–283, Apr 2011. [Online]. Available:
http://dx.doi.org/10.1038/ng0411-281

[5] Mandiant, http://intelreport.mandiant.com/Mandiant_APT1_Report.pdf,
Feb 2013.

[6] M. Motoyama, D. McCoy, K. Levchenko, S. Savage, and G. M.
Voelker, “An analysis of underground forums,” in Proceedings of the
2011 ACM SIGCOMM Conference on Internet Measurement Confer-
ence, ser. IMC ’11. New York, NY, USA: ACM, 2011, pp. 71–80.

[7] N. Y. Times, “Hacking linked to China exposes millions of U.S.
workers,” http://www.nytimes.com/2015/06/05/us/breach-in-a-federal-
computer-system-exposes-personnel-data.html, June 4, 2015, accessed:
2015-07-09.

[8] ——, “9 recent cyberattacks against big businesses,”
http://www.nytimes.com/interactive/2015/02/05/technology/recent-
cyberattacks.html, February 5, 2015, accessed: 2015-07-09.

[9] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in 2000 IEEE Symposium on Security
and Privacy. IEEE Computer Society Press, May 2000, pp. 44–55.

[10] O. Pandey and Y. Rouselakis, “Property preserving symmetric en-
cryption,” in EUROCRYPT 2012, ser. LNCS, D. Pointcheval and
T. Johansson, Eds., vol. 7237. Springer, Heidelberg, Apr. 2012, pp.
375–391.

[11] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient construc-
tions,” in ACM CCS 06, A. Juels, R. N. Wright, and S. Vimercati,
Eds. ACM Press, Oct. / Nov. 2006, pp. 79–88.

[12] B. Chor, N. Gilboa, and M. Naor, “Private information retrieval by
keywords,” Cryptology ePrint Archive, Report 1998/003, 1998, http:
//eprint.iacr.org/1998/003.

[13] O. Goldreich, “Towards a theory of software protection and simulation
by oblivious RAMs,” in 19th ACM STOC, A. Aho, Ed. ACM Press,
May 1987, pp. 182–194.

[14] R. Poddar, T. Boelter, and R. A. Popa, “Arx: A strongly encrypted
database system,” Cryptology ePrint Archive, Report 2016/591, 2016,
http://eprint.iacr.org/2016/591.

[15] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: processing queries on an encrypted database,” Commun.
ACM, vol. 55, no. 9, pp. 103–111, 2012. [Online]. Available:
http://doi.acm.org/10.1145/2330667.2330691

[16] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S. G. Choi,
W. George, A. D. Keromytis, and S. Bellovin, “Blind seer: A scalable
private DBMS,” in 2014 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, May 2014, pp. 359–374.

[17] B. A. Fisch, B. Vo, F. Krell, A. Kumarasubramanian, V. Kolesnikov,
T. Malkin, and S. M. Bellovin, “Malicious-client security in Blind Seer:
A scalable private DBMS,” in 2015 IEEE Symposium on Security and
Privacy. IEEE Computer Society Press, May 2015, pp. 395–410.

[18] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and
M. Steiner, “Highly-scalable searchable symmetric encryption with
support for Boolean queries,” in CRYPTO 2013, Part I, ser. LNCS,
R. Canetti and J. A. Garay, Eds., vol. 8042. Springer, Heidelberg,
Aug. 2013, pp. 353–373.

[19] S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and M. Steiner,
“Outsourced symmetric private information retrieval,” in ACM CCS
13, A.-R. Sadeghi, V. D. Gligor, and M. Yung, Eds. ACM Press,
Nov. 2013, pp. 875–888.

[20] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and
M. Steiner, “Dynamic searchable encryption in very-large databases:
Data structures and implementation,” in NDSS 2014. The Internet
Society, Feb. 2014.

[21] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M.-C. Rosu, and
M. Steiner, “Rich queries on encrypted data: Beyond exact matches,”
in ESORICS 2015, Part II, ser. LNCS, G. Pernul, P. Y. A. Ryan, and
E. R. Weippl, Eds., vol. 9327. Springer, Heidelberg, Sep. 2015, pp.
123–145.

[22] Y. Ishai, E. Kushilevitz, S. Lu, and R. Ostrovsky, “Private large-scale
databases with distributed searchable symmetric encryption,” in CT-
RSA 2016, ser. LNCS, K. Sako, Ed., vol. 9610. Springer, Heidelberg,
Feb. / Mar. 2016, pp. 90–107.

[23] “Bitglass.” [Online]. Available: http://www.bitglass.com/

[24] “Ciphercloud.” [Online]. Available: http://www.ciphercloud.com

[25] “Cipherquery.” [Online]. Available: https://privatemachines.com

[26] “Crypteron.” [Online]. Available: https://www.crypteron.com/

[27] “IQrypt.” [Online]. Available: http://iqrypt.com/

[28] “Kryptnostic.” [Online]. Available: https://www.kryptnostic.com/

[29] Google, “Encrypted BigQuery client.” [Online]. Available: https:
//github.com/google/encrypted-bigquery-client

[30] Microsoft Corporation, “Always Encrypted (Database Engine) - SQL
Server 2016.” [Online]. Available: https://msdn.microsoft.com/en-us/
library/mt163865.aspx

[31] ——, “Always Encrypted Cryptography - SQL Server 2016.” [Online].
Available: https://msdn.microsoft.com/en-us/library/mt653971.aspx

[32] “PreVeil.” [Online]. Available: https://www.preveil.com/

[33] “Skyhigh networks: Cloud security software.” [Online]. Available:
https://www.skyhighnetworks.com

[34] “StealthMine.” [Online]. Available: http://stealthmine.com/

[35] “ZeroDB.” [Online]. Available: https://zerodb.com/

[36] E. F. Codd, “A relational model of data for large shared data banks,”
Communications of the ACM, vol. 13, no. 6, pp. 377–387, 1970.

[37] M. Stonebraker and U. Cetintemel, “One size fits all: an idea whose
time has come and gone,” in 21st International Conference on Data
Engineering (ICDE’05). IEEE, 2005, pp. 2–11.

[38] J. D. Ullman, A first course in database systems. Pearson Education
India, 1982.

[39] M. Stonebraker and J. M. Hellerstein, Readings in database systems.
Morgan Kaufmann Publishers, 1988.

[40] T. Haerder and A. Reuter, “Principles of transaction-oriented database
recovery,” ACM Computing Surveys (CSUR), vol. 15, no. 4, pp. 287–
317, 1983.

[41] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Transactions on
Computer Systems (TOCS), vol. 26, no. 2, p. 4, 2008.

[42] A. Pavlo and M. Aslett, “What’s really new with NewSQL?” SIGMOD
Record, 2016.

[43] A. Elmore, J. Duggan, M. Stonebraker, M. Balazinska, U. Cetintemel,
V. Gadepally, J. Heer, B. Howe, J. Kepner, T. Kraska et al., “A
demonstration of the BigDAWG polystore system,” Proceedings of the
VLDB Endowment, vol. 8, no. 12, pp. 1908–1911, 2015.

[44] V. Gadepally, P. Chen, J. Duggan, A. Elmore, B. Haynes, J. Kepner,
S. Madden, T. Mattson, and M. Stonebraker, “The BigDAWG polystore
system and architecture,” in 2016 IEEE High Performance Extreme
Computing Conference (HPEC). IEEE, 2016, pp. 1–6.

[45] D. Halperin, V. Teixeira de Almeida, L. L. Choo, S. Chu, P. Koutris,
D. Moritz, J. Ortiz, V. Ruamviboonsuk, J. Wang, A. Whitaker et al.,
“Demonstration of the Myria big data management service,” in Pro-
ceedings of the 2014 ACM SIGMOD international conference on
Management of data. ACM, 2014, pp. 881–884.

[46] R. A. Van De Geijn and E. S. Quintana-Ortí, The science of program-
ming matrix computations, 2008.

[47] J. Kepner and V. Gadepally, “Adjacency matrices, incidence matrices,
database schemas, and associative arrays,” in International Parallel &
Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2014.

[48] V. Gadepally, J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun,
L. Edwards, M. Hubbell, P. Michaleas, J. Mullen et al., “D4M: Bringing
associative arrays to database engines,” in High Performance Extreme
Computing Conference (HPEC), 2015 IEEE. IEEE, 2015, pp. 1–6.

[49] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig
latin: a not-so-foreign language for data processing,” in Proceedings of
the 2008 ACM SIGMOD international conference on Management of
data. ACM, 2008, pp. 1099–1110.

[50] J. Kepner, V. Gadepally, D. Hutchison, H. Jananthan, T. Mattson,
S. Samsi, and A. Reuther, “Associative array model of SQL, NoSQL,
and NewSQL databases,” in 2016 IEEE High Performance Extreme
Computing Conference, 2016.

[51] D. J. Abadi, “Data management in the cloud: limitations and opportu-
nities.” IEEE Data Eng. Bull., vol. 32, no. 1, pp. 3–12, 2009.

[52] “MySQL.” [Online]. Available: https://www.mysql.com/

[53] K. Loney, Oracle database 10g: the complete reference. McGraw-
Hill/Osborne, 2004.

[54] M. Stonebraker and L. A. Rowe, The design of Postgres. ACM, 1986,
vol. 15, no. 2.

187

[55] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild et al., “Spanner:
Google’s globally distributed database,” ACM Transactions on Com-
puter Systems (TOCS), vol. 31, no. 3, p. 8, 2013.

[56] N. Shamgunov, “The MemSQL in-memory database system.” in
IMDM@ VLDB, 2014.

[57] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark SQL:
Relational data processing in spark,” in Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. ACM,
2015, pp. 1383–1394.

[58] M. J. Carey, L. M. Haas, P. M. Schwarz, M. Arya, W. F. Cody,
R. Fagin, M. Flickner, A. W. Luniewski, W. Niblack, D. Petkovic et al.,
“Towards heterogeneous multimedia information systems: The garlic
approach,” in Research Issues in Data Engineering, 1995: Distributed
Object Management, Proceedings. RIDE-DOM’95. Fifth International
Workshop on. IEEE, 1995, pp. 124–131.

[59] “IBM DB2.” [Online]. Available: http://www.ibm.com/analytics/us/en/
technology/db2/

[60] D. Pritchett, “BASE: An ACID alternative,” Queue, vol. 6, no. 3, pp.
48–55, 2008.

[61] J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun, V. Gadepally,
M. Hubbell, P. Michaleas, J. Mullen, A. Prout et al., “Achieving
100,000,000 database inserts per second using accumulo and D4M,”
in 2014 IEEE High Performance Extreme Computing Conference
(HPEC). IEEE, 2014, pp. 1–6.

[62] L. George, HBase: the definitive guide. " O’Reilly Media, Inc.", 2011.

[63] “mongoDB.” [Online]. Available: https://www.mongodb.com/

[64] J. Webber, “A programmatic introduction to Neo4j,” in Proceedings of
the 3rd annual conference on Systems, programming, and applications:
software for humanity. ACM, 2012, pp. 217–218.

[65] “IBM system G.” [Online]. Available: http://systemg.research.ibm.com/

[66] P. G. Brown, “Overview of sciDB: large scale array storage, processing
and analysis,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. ACM, 2010, pp. 963–968.

[67] N. Li, Scalable database query processing. Johns Hopkins University,
2012.

[68] J. M. Smith and P. Y.-T. Chang, “Optimizing the performance of a
relational algebra database interface,” Communications of the ACM,
vol. 18, no. 10, pp. 568–579, 1975.

[69] J. Kepner, D. Bader, A. Buluç, J. Gilbert, T. Mattson, and H. Meyer-
henke, “Graphs, matrices, and the GraphBLAS: Seven good reasons,”
Procedia Computer Science, vol. 51, pp. 2453–2462, 2015.

[70] V. Gadepally, J. Bolewski, D. Hook, D. Hutchison, B. Miller, and
J. Kepner, “Graphulo: Linear algebra graph kernels for NoSQL
databases,” in International Parallel & Distributed Processing Sym-
posium Workshops (IPDPSW). IEEE, 2015.

[71] D. Hutchison, J. Kepner, V. Gadepally, and A. Fuchs, “Graphulo
implementation of server-side sparse matrix multiply in the accu-
mulo database,” in High Performance Extreme Computing Conference
(HPEC), 2015 IEEE. IEEE, 2015, pp. 1–7.

[72] Microsoft Corporation, “Database-level roles.” [Online]. Available:
https://msdn.microsoft.com/en-us/library/ms189121.aspx

[73] C. Bösch, P. Hartel, W. Jonker, and A. Peter, “A survey
of provably secure searchable encryption,” ACM Comput. Surv.,
vol. 47, no. 2, pp. 18:1–18:51, August 2014. [Online]. Available:
http://doi.acm.org/10.1145/2636328

[74] P. Grubbs, R. McPherson, M. Naveed, T. Ristenpart, and V. Shmatikov,
“Breaking web applications built on top of encrypted data,” in ACM
CCS 16. ACM Press, 2016, pp. 1353–1364.

[75] S. Kamara, “Structured encryption and leakage suppression,” presented
at Encryption for Secure Search and Other Algorithms, Bertinoro, Italy,
June 2015.

[76] S. Bajaj and R. Sion, “TrustedDB: A trusted hardware-based database
with privacy and data confidentiality,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 26, no. 3, pp. 752–765, 2014.

[77] A. C.-C. Yao, “Protocols for secure computations (extended abstract),”
in 23rd FOCS. IEEE Computer Society Press, Nov. 1982, pp. 160–
164.

[78] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract),” in 20th ACM STOC. ACM Press, May 1988, pp. 1–10.

[79] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game or A completeness theorem for protocols with honest majority,”
in 19th ACM STOC, A. Aho, Ed. ACM Press, May 1987, pp. 218–229.

[80] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in 41st
ACM STOC, M. Mitzenmacher, Ed. ACM Press, May / Jun. 2009,
pp. 169–178.

[81] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully ho-
momorphic encryption without bootstrapping,” in ITCS 2012, S. Gold-
wasser, Ed. ACM, Jan. 2012, pp. 309–325.

[82] C. Gentry, S. Halevi, and N. P. Smart, “Better bootstrapping in fully
homomorphic encryption,” in PKC 2012, ser. LNCS, M. Fischlin,
J. Buchmann, and M. Manulis, Eds., vol. 7293. Springer, Heidelberg,
May 2012, pp. 1–16.

[83] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters,
“Candidate indistinguishability obfuscation and functional encryption
for all circuits,” in 54th FOCS. IEEE Computer Society Press, Oct.
2013, pp. 40–49.

[84] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private infor-
mation retrieval,” in 36th FOCS. IEEE Computer Society Press, Oct.
1995, pp. 41–50.

[85] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin, “Protecting data
privacy in private information retrieval schemes,” in 30th ACM STOC.
ACM Press, May 1998, pp. 151–160.

[86] M. T. Goodrich, R. Tamassia, N. Triandopoulos, and R. Cohen,
“Authenticated data structures for graph and geometric searching,”
in CT-RSA 2003, ser. LNCS, M. Joye, Ed., vol. 2612. Springer,
Heidelberg, Apr. 2003, pp. 295–313.

[87] C. Papamanthou and R. Tamassia, “Time and space efficient algorithms
for two-party authenticated data structures,” in ICICS 07, ser. LNCS,
S. Qing, H. Imai, and G. Wang, Eds., vol. 4861. Springer, Heidelberg,
Dec. 2008, pp. 1–15.

[88] M. Etemad and A. Küpçü, “Database outsourcing with hierarchical
authenticated data structures,” in ICISC 13, ser. LNCS, H.-S. Lee and
D.-G. Han, Eds., vol. 8565. Springer, Heidelberg, Nov. 2014, pp.
381–399.

[89] M. Backes, M. Barbosa, D. Fiore, and R. M. Reischuk, “ADSNARK:
Nearly practical and privacy-preserving proofs on authenticated data,”
in 2015 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, May 2015, pp. 271–286.

[90] J. H. Ahn, D. Boneh, J. Camenisch, S. Hohenberger, a. shelat, and
B. Waters, “Computing on authenticated data,” in TCC 2012, ser.
LNCS, R. Cramer, Ed., vol. 7194. Springer, Heidelberg, Mar. 2012,
pp. 1–20.

[91] A. Hamlin, N. Schear, E. Shen, M. Varia, S. Yakoubov, and A. Yerukhi-
movich, “Cryptography for big data security,” in Big Data: Storage,
Sharing, and Security, F. Hu, Ed. Taylor & Francis LLC, CRC Press,
2016.

[92] M. Bellare, A. Boldyreva, and A. O’Neill, “Deterministic and efficiently
searchable encryption,” in CRYPTO 2007, ser. LNCS, A. Menezes, Ed.,
vol. 4622. Springer, Heidelberg, Aug. 2007, pp. 535–552.

[93] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order-preserving
encryption for numeric data,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2004, pp. 563–574.
[Online]. Available: http://doi.acm.org/10.1145/1007568.1007632

[94] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, “Order-preserving
symmetric encryption,” in EUROCRYPT 2009, ser. LNCS, A. Joux,
Ed., vol. 5479. Springer, Heidelberg, Apr. 2009, pp. 224–241.

[95] A. Boldyreva, N. Chenette, and A. O’Neill, “Order-preserving encryp-
tion revisited: Improved security analysis and alternative solutions,” in
CRYPTO 2011, ser. LNCS, P. Rogaway, Ed., vol. 6841. Springer,
Heidelberg, Aug. 2011, pp. 578–595.

[96] C. Mavroforakis, N. Chenette, A. O’Neill, G. Kollios, and
R. Canetti, “Modular order-preserving encryption, revisited,” in
Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, 2015, pp. 763–777. [Online]. Available:
http://doi.acm.org/10.1145/2723372.2749455

[97] R. A. Popa, F. H. Li, and N. Zeldovich, “An ideal-security protocol for
order-preserving encoding,” in 2013 IEEE Symposium on Security and
Privacy. IEEE Computer Society Press, May 2013, pp. 463–477.

[98] P. Grofig, M. Härterich, I. Hang, F. Kerschbaum, M. Kohler, A. Schaad,
A. Schröpfer, and W. Tighzert, “Experiences and observations on
the industrial implementation of a system to search over outsourced
encrypted data,” in Sicherheit, 2014, pp. 115–125. [Online]. Available:
http://subs.emis.de/LNI/Proceedings/Proceedings228/article7.html

188

[99] M. Chase and S. Kamara, “Structured encryption and controlled
disclosure,” in ASIACRYPT 2010, ser. LNCS, M. Abe, Ed., vol. 6477.
Springer, Heidelberg, Dec. 2010, pp. 577–594.

[100] M. Naveed, M. Prabhakaran, and C. A. Gunter, “Dynamic searchable
encryption via blind storage,” in 2014 IEEE Symposium on Security
and Privacy. IEEE Computer Society Press, May 2014, pp. 639–654.

[101] R. Bost, “Σ𝑜𝜙𝑜𝜍: Forward secure searchable encryption,” in ACM CCS
16. ACM Press, 2016, pp. 1143–1154.

[102] S. Kamara and T. Moataz, “SQL on structurally-encrypted databases,”
Cryptology ePrint Archive, Report 2016/453, 2016, http://eprint.iacr.
org/2016/453.

[103] ——, “Boolean searchable symmetric encryption with worst-case sub-
linear complexity,” in EUROCRYPT 2017, 2017.

[104] T. Moataz, “Searchable symmetric encryption: Implementation of 2Lev,
ZMF, IEX-2Lev, IEX-ZMF,” https://github.com/orochi89/Clusion.

[105] D. Cash and S. Tessaro, “The locality of searchable symmetric encryp-
tion,” in EUROCRYPT 2014, ser. LNCS, P. Q. Nguyen and E. Oswald,
Eds., vol. 8441. Springer, Heidelberg, May 2014, pp. 351–368.

[106] S. Kamara and C. Papamanthou, “Parallel and dynamic searchable
symmetric encryption,” in FC 2013, ser. LNCS, A.-R. Sadeghi, Ed.,
vol. 7859. Springer, Heidelberg, Apr. 2013, pp. 258–274.

[107] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic searchable
encryption with small leakage,” in NDSS 2014. The Internet Society,
Feb. 2014.

[108] A. C.-C. Yao, “How to generate and exchange secrets (extended
abstract),” in 27th FOCS. IEEE Computer Society Press, Oct. 1986,
pp. 162–167.

[109] M. Chase and E. Shen, “Substring-searchable symmetric encryption,”
PoPETs, vol. 2015, no. 2, pp. 263–281, 2015. [Online].
Available: http://www.degruyter.com/view/j/popets.2015.2015.issue-2/
popets-2015-0014/popets-2015-0014.xml

[110] T. Boelter, R. Poddar, and R. A. Popa, “A secure one-roundtrip index
for range queries,” Cryptology ePrint Archive, Report 2016/568, 2016,
http://eprint.iacr.org/2016/568.

[111] D. S. Roche, D. Apon, S. G. Choi, and A. Yerukhimovich, “POPE:
Partial order preserving encoding,” in ACM CCS 16. ACM Press,
2016, pp. 1131–1142.

[112] F. Baldimtsi and O. Ohrimenko, “Sorting and searching behind the
curtain,” in FC 2015, ser. LNCS, R. Böhme and T. Okamoto, Eds.,
vol. 8975. Springer, Heidelberg, Jan. 2015, pp. 127–146.

[113] M. Strizhov and I. Ray, “Multi-keyword similarity search over en-
crypted cloud data,” Cryptology ePrint Archive, Report 2015/137,
2015, http://eprint.iacr.org/2015/137.

[114] E. Shen, E. Shi, and B. Waters, “Predicate privacy in encryption
systems,” in TCC 2009, ser. LNCS, O. Reingold, Ed., vol. 5444.
Springer, Heidelberg, Mar. 2009, pp. 457–473.

[115] C. Bösch, Q. Tang, P. H. Hartel, and W. Jonker, “Selective document
retrieval from encrypted database,” in ISC 2012, ser. LNCS, D. Goll-
mann and F. C. Freiling, Eds., vol. 7483. Springer, Heidelberg, Sep.
2012, pp. 224–241.

[116] X. Meng, S. Kamara, K. Nissim, and G. Kollios, “GRECS: Graph
encryption for approximate shortest distance queries,” in ACM CCS
15, I. Ray, N. Li, and C. Kruegel:, Eds. ACM Press, Oct. 2015, pp.
504–517.

[117] O. Goldreich and R. Ostrovsky, “Software protection and simulation
on oblivious rams,” Journal of the ACM (JACM), vol. 43, no. 3, pp.
431–473, 1996.

[118] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu,
and S. Devadas, “Path ORAM: an extremely simple oblivious RAM
protocol,” in ACM CCS 13, A.-R. Sadeghi, V. D. Gligor, and M. Yung,
Eds. ACM Press, Nov. 2013, pp. 299–310.

[119] M. Naveed, “The fallacy of composition of oblivious RAM and
searchable encryption,” Cryptology ePrint Archive, Report 2015/668,
2015, http://eprint.iacr.org/2015/668.

[120] D. S. Roche, A. J. Aviv, and S. G. Choi, “A practical oblivious map
data structure with secure deletion and history independence,” in 2016
IEEE Symposium on Security and Privacy. IEEE Computer Society
Press, 2016, pp. 178–197.

[121] S. Garg, P. Mohassel, and C. Papamanthou, “TWORAM: Efficient
oblivious RAM in two rounds with applications to searchable encryp-
tion,” ser. LNCS. Springer, Heidelberg, Aug. 2016, pp. 563–592.

[122] S. Lu and R. Ostrovsky, “How to garble RAM programs,” in EURO-
CRYPT 2013, ser. LNCS, T. Johansson and P. Q. Nguyen, Eds., vol.
7881. Springer, Heidelberg, May 2013, pp. 719–734.

[123] T. Moataz and E.-O. Blass, “Oblivious substring search with updates,”
Cryptology ePrint Archive, Report 2015/722, 2015, http://eprint.iacr.
org/2015/722.

[124] S. Faber, S. Jarecki, S. Kentros, and B. Wei, “Three-party ORAM for
secure computation,” in ASIACRYPT 2015, Part I, ser. LNCS, T. Iwata
and J. H. Cheon, Eds., vol. 9452. Springer, Heidelberg, Nov. / Dec.
2015, pp. 360–385.

[125] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill, “Generic attacks
on secure outsourced databases,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’16. New York, NY, USA: ACM, 2016, pp. 1329–1340.
[Online]. Available: http://doi.acm.org/10.1145/2976749.2978386

[126] E. Chen, I. Gomez, B. Saavedra, and J. Yucra, “Cocoon: Encrypted
substring search,” https://courses.csail.mit.edu/6.857/2016/files/29.pdf,
May 2015, accessed: 2016-07-15.

[127] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries
are belong to us: The power of file-injection attacks on
searchable encryption,” in 25th USENIX Security Symposium,
USENIX Security 16, Austin, TX, USA, August 10-12, 2016., 2016,
pp. 707–720. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/zhang

[128] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse
attacks against searchable encryption,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security,
Denver, CO, USA, October 12-6, 2015, 2015, pp. 668–679. [Online].
Available: http://doi.acm.org/10.1145/2810103.2813700

[129] D. Pouliot and C. V. Wright, “The shadow nemesis: Inference
attacks on efficiently deployable, efficiently searchable encryption,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, CO, USA, October 12-6, 2015,
2015, pp. 644–655. [Online]. Available: http://doi.acm.org/10.1145/
2810103.2813651

[130] M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks on
property-preserving encrypted databases,” in 23rd ACM Conference on
Computer and Communications Security, Vienna, Austria, October 24-
28, 2016, 2016.

[131] P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Ristenpart,
“Leakage-abuse attacks against order-revealing encryption,” Cryptol-
ogy ePrint Archive, Report 2016/895, http://eprint.iacr.org/2016/895.

[132] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation,” in 19th
Annual Network and Distributed System Security Symposium, NDSS
2012, San Diego, California, USA, February 5-8, 2012, 2012.

[133] A. Boldyreva and N. Chenette, “Efficient fuzzy search on encrypted
data,” in FSE 2014, ser. LNCS, C. Cid and C. Rechberger, Eds., vol.
8540. Springer, Heidelberg, Mar. 2015, pp. 613–633.

[134] G. D. Crescenzo and A. Ghosh, “Privacy-preserving range queries from
keyword queries,” in Data and Applications Security and Privacy XXIX,
ser. LNCS, vol. 9149. Springer, 2015, pp. 35–50.

[135] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14,
no. 3, pp. 130–137, 1980.

[136] P. Willett, “The porter stemming algorithm: then and now,” Program,
vol. 40, no. 3, pp. 219–223, 2006.

[137] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, “Fuzzy keyword
search over encrypted data in cloud computing,” in INFOCOM 2010.
29th IEEE International Conference on Computer Communications,
Joint Conference of the IEEE Computer and Communications Societies,
15-19 March 2010, San Diego, CA, USA, 2010, pp. 441–445. [Online].
Available: http://dx.doi.org/10.1109/INFCOM.2010.5462196

[138] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” in Proceedings of the thirtieth
annual ACM symposium on Theory of computing. ACM, 1998, pp.
604–613.

[139] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in high
dimensions via hashing,” in VLDB, vol. 99, no. 6, 1999, pp. 518–529.

[140] M. Kuzu, M. S. Islam, and M. Kantarcioglu, “Efficient similarity
search over encrypted data,” in IEEE 28th International Conference on
Data Engineering (ICDE), 2012, pp. 1156–1167. [Online]. Available:
http://dx.doi.org/10.1109/ICDE.2012.23

[141] H. Park, B. H. Kim, D. H. Lee, Y. D. Chung, and J. Zhan,
“Secure similarity search,” in 2007 IEEE International Conference
on Granular Computing, GrC 2007, San Jose, California, USA,
2-4 November 2007, 2007, p. 598. [Online]. Available: http:
//dx.doi.org/10.1109/GRC.2007.140

189

[142] M. Adjedj, J. Bringer, H. Chabanne, and B. Kindarji, “Biometric
identification over encrypted data made feasible,” in Information
Systems Security, 5th International Conference, ICISS 2009, Kolkata,
India, December 14-18, 2009, Proceedings, 2009, pp. 86–100.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-10772-6_8

[143] J. Bringer, H. Chabanne, and B. Kindarji, “Error-tolerant searchable
encryption,” in Proceedings of IEEE International Conference on
Communications, ICC 2009, Dresden, Germany, 14-18 June 2009,
2009, pp. 1–6. [Online]. Available: http://dx.doi.org/10.1109/ICC.
2009.5199004

[144] C. Wang, K. Ren, S. Yu, and K. M. R. Urs, “Achieving
usable and privacy-assured similarity search over outsourced cloud
data,” in Proceedings of the IEEE INFOCOM 2012, Orlando, FL,
USA, March 25-30, 2012, 2012, pp. 451–459. [Online]. Available:
http://dx.doi.org/10.1109/INFCOM.2012.6195784

[145] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deligiannakis, and
M. Garofalakis, “Practical private range search revisited,” in ACM
SIGMOD/PODS Conference, 2016.

[146] I. Damgard, M. Geisler, and M. Kroigard, “Homomorphic encryption
and secure comparison,” International Journal of Applied Cryptogra-
phy, vol. 1, no. 1, pp. 22–31, 2008.

[147] F. Kerschbaum, D. Biswas, and S. de Hoogh, “Performance comparison
of secure comparison protocols,” in Database and Expert Systems
Application, 2009. DEXA’09. 20th International Workshop on. IEEE,
2009, pp. 133–136.

[148] S. Han and W. K. Ng, “Privacy-preserving linear fisher discriminant
analysis,” in Pacific-Asia Conference on Knowledge Discovery and
Data Mining. Springer, 2008, pp. 136–147.

[149] X. S. Wang, K. Nayak, C. Liu, T.-H. H. Chan, E. Shi, E. Stefanov, and
Y. Huang, “Oblivious data structures,” in ACM CCS 14, G.-J. Ahn,
M. Yung, and N. Li, Eds. ACM Press, Nov. 2014, pp. 215–226.

[150] R. Elmasri and S. Navathe, Fundamentals of Database Systems.
Boston, MA, USA: Addison-Wesley, 2011.

[151] E. Bertino and R. Sandhu, “Database security-Concepts, Approaches,
and Challenges,” IEEE Transactions on Dependable and Secure Com-
puting, vol. 2, no. 1, 2005.

[152] A. Fuchs, “Accumulo–extensions to Google’s Bigtable design,” Na-
tional Security Agency, Tech. Rep, 2012.

[153] IARPA, “Broad agency announcement IARPA-BAA-11-01:
Security and privacy assurance research (SPAR) program.”
February 2011. [Online]. Available: https://www.fbo.gov/notices/
c55e38dbde30cb668f687897d8f01e69

[154] A. Hamlin and J. Herzog, “A test-suite generator for database systems,”
in 2014 IEEE High Performance Extreme Computing Conference,
2014, pp. 1–6.

[155] M. Varia, B. Price, N. Hwang, A. Hamlin, J. Herzog, J. Poland,
M. Reschly, S. Yakoubov, and R. K. Cunningham, “Automated assess-
ment of secure search systems,” Operating Systems Review, vol. 49,
no. 1, pp. 22–30, 2015.

[156] M. Varia, S. Yakoubov, and Y. Yang, “HEtest: A homomorphic
encryption testing framework,” in FC 2015 Workshops, ser. LNCS,
M. Brenner, N. Christin, B. Johnson, and K. Rohloff, Eds., vol. 8976.
Springer, Heidelberg, Jan. 2015, pp. 213–230.

[157] J. Kepner, V. Gadepally, P. Michaleas, N. Schear, M. Varia, A. Yerukhi-
movich, and R. K. Cunningham, “Computing on masked data: a high
performance method for improving big data veracity,” in 2014 IEEE
High Performance Extreme Computing Conference (HPEC). IEEE,
2014, pp. 1–6.

[158] V. Gadepally, B. Hancock, B. Kaiser, J. Kepner, P. Michaleas, M. Varia,
and A. Yerukhimovich, “Computing on masked data to improve the
security of big data,” in IEEE International Symposium on Technologies
for Homeland Security (HST). IEEE, 2015, pp. 1–6.

[159] B. Schneier, “Data is a toxic asset,” 2016. [Online]. Available: https://
www.schneier.com/essays/archives/2016/03/data_is_a_toxic_asse.html

[160] D. Blumenthal, “Launching HITECH,” New England Journal of
Medicine, vol. 362, no. 5, pp. 382–385, 2010.

[161] "The Office of the National Coordinator for Health Information
Technology", “Guide to privacy and security of electronic health
information,” 2015. [Online]. Available: https://www.healthit.gov/sites/
default/files/pdf/privacy/privacy-and-security-guide.pdf

[162] S. Barnum, “Standardizing cyber threat intelligence information with
the Structured Threat Information eXpression (STIX),” MITRE Corpo-
ration, vol. 11, 2012.

[163] “Amazon Web Services (AWS) - cloud computing services.” [Online].
Available: https://aws.amazon.com/

APPENDIX A

SUBSTRING AND WILDCARD QUERY COMBINERS

9) Bounded-length substring using keyword equality [22]:
Searches for substrings of a fixed length 𝜅 can be supported

simply by inserting all length-𝜅 substrings (𝜅-grams) into an

equality-searchable index during initialization. Given a field

with maximum length 𝛼, this techniques requires adding 𝛼−𝜅

keywords during insertion and making one keyword search

during query execution.

10) Short substring using range [22]: By inserting the 𝜅-

grams into a range index, queries for substrings of length up

to 𝜅 can also be supported. We explain by example: one can

query for the two-character string “hi” by searching for the

range [ℎ𝑖𝑎, ℎ𝑖𝑧] in an index of length-3 substrings.

11) Anchored substring using conjunction [18]: We now

consider the converse of the above situation: supporting

searches of long substrings of length at least 𝜅, with storage

overhead decreasing in 𝜅. We begin with an “anchored” search,

where the substring occurs either at the beginning or end of

the string.

By way of example, suppose we wish to support substring

searches on the record 𝑎 =“teststring”. In a conjunction-

searchable index, we insert 𝜅-grams of the string along with

their location (1, “tes”), (2, “est”), . . . , (8, “ing”). Now to

search for all records containing “test” the client asks for all

records matching both (1, “tes”) and (2, “est”). Searching from

the end of the string can be accomplished using negative

indexing; using (-1, “ing”), (-2, “rin”), (-3, “tri”), . . . , (-8,

“tes”) in the above example.

12) Substring using disjunction of conjunctions [18]:
Removing the anchoring restriction from the above technique

requires the use of disjunctions, since the starting location

of the substring is unknown. To find the substring “test” the

querier must search for a conjunction of (𝑖, “tes”) and (𝑖+1,

“est”) for any starting position 𝑖. The number of terms in this

formula depends on the maximum string length.

13) and 14) Wildcard using conjunctions [18]: The above
technique also supports single-character wildcard queries. For

instance, to search for “tes_str”, the client asks for a con-

junction of (1, “tes”) and (5, “str”). Note that the 𝜅-gram

length of letters is required on either side of the wildcard. This

technique can be extended for unanchored queries as above,

and it supports multiple character wildcards by incrementing

the expected positions of the 𝜅-grams.

APPENDIX B

PROCEDURE FOR PILOT STUDY

We installed and configured multiple protected search sys-

tems. For each, we ingested ten million records of real

application data, and conducted sessions with 10 users over a

ten-day period. Our Institutional Review Board reviewed our

protocols and questionnaires, determined that they represented

a minimal risk, and approved the procedure. Software for the

190

procedure resided in an Amazon Web Services (AWS) [163]

network. Data was drawn from a genuine application source

and was converted to a single, static table with over one

hundred columns and ten million records.

Participants had a mix of technical and non-technical back-

grounds, with six men and four women. All participants

had prior experience interacting with web interfaces that

use database backends to present results. Participants were

aware that they were using different systems but systems were

identified only by a single letter. Participants were not given

any information about the capabilities of the technologies.

Each participant took part in three types of sessions, each

of which lasted 30 minutes: 1) training on the web interface;

2) scripted interaction with each of the technologies; and

3) exploratory sessions with each of the technologies. Users

interacted with the secure database technology through a

web application which included a visual query builder which

queried the underlying secure database. Participants interacted

with the visual query builder to create queries. Then, the web

server submitted the query to the protected search system.

191

