
Pyramid: Enhancing Selectivity in Big Data Protection

with Count Featurization
Mathias Lecuyer∗1, Riley Spahn∗1, Roxana Geambasu1, Tzu-Kuo Huang†2, and Siddhartha Sen3

1Columbia University, 2Uber Advanced Technologies Group, and 3Microsoft Research

Abstract—Protecting vast quantities of data poses a
daunting challenge for the growing number of organiza-
tions that collect, stockpile, and monetize it. The ability to
distinguish data that is actually needed from data collected
“just in case” would help these organizations to limit the
latter’s exposure to attack. A natural approach might be to
monitor data use and retain only the working-set of in-use
data in accessible storage; unused data can be evicted to a
highly protected store. However, many of today’s big data
applications rely on machine learning (ML) workloads that
are periodically retrained by accessing, and thus exposing
to attack, the entire data store. Training set minimization
methods, such as count featurization, are often used to
limit the data needed to train ML workloads to improve
performance or scalability.

We present Pyramid, a limited-exposure data man-
agement system that builds upon count featurization to
enhance data protection. As such, Pyramid uniquely in-
troduces both the idea and proof-of-concept for leveraging
training set minimization methods to instill rigor and selec-
tivity into big data management. We integrated Pyramid
into Spark Velox, a framework for ML-based targeting
and personalization. We evaluate it on three applications
and show that Pyramid approaches state-of-the-art models
while training on less than 1% of the raw data.

I. Introduction
Driven by cheap storage and the immense perceived

potential of “big data,” both public and private sectors

are accumulating vast quantities of personal data: clicks,

locations, visited websites, social interactions, and more.

Data offers unique opportunities to improve personal

and business effectiveness. It can boost applications’

utility by personalizing their features; increase business

revenues via targeted product placement; improve social

processes such as healthcare, disaster response and crime

prevention. Its commercialization potential, whether real

or perceived, drives unprecedented efforts to grab and

store raw data resources that can later be mined for profit.

Unfortunately, this “collect-everything” mentality

poses serious risks for organizations by exposing ex-

tensive data stores to external and internal attacks. The

hacking and exploiting of sensitive corporate and govern-

mental information have become commonplace [1], [2].

Privacy-transgressing employees have been discovered

snooping into data stores to spy on friends, family, and

job candidates [3], [4]. Although organizations strive

to restrict access to particularly sensitive data (such

as passwords, SSNs, emails, banking data), properly

managing access controls for diverse and potentially

sensitive information remains an unanswered problem.

∗First authors in alphabetical order.
†Work done while at Microsoft Research.

Compounding this challenge is a significant new

thrust in the public and private spheres to integrate

data collected from multiple sources into a single, giant

repository (or “data lake”) and make that available to any

applications that might benefit from it [5]–[7]. This prac-

tice magnifies the data exposure problem, transforming

big data into what some have called a “toxic asset” [8].

Our goal in this paper is to explore a more rigorous

and selective approach to big data protection. We hypoth-

esize that not all data that is collected and archived is, or

may ever be, needed or used. The ability to distinguish

data needed now or in the future from data collected “just

in case” could enable organizations to restrict the latter’s

exposure to attacks. For example, one could ship unused

data to a tightly controlled store, whose read accesses are

carefully mediated and audited. Turning this hypothesis

into a reality requires finding ways to: (1) minimize data

kept in the company’s widely-accessible data lakes, and

(2) avoid the need to access the controlled store to meet

current and evolving workload needs.

A natural approach might be to monitor data use and

retain only the working set of in-use data in accessible

storage; data unused for some time is evicted to the

protected store [9]. However, many of today’s big data

applications involve machine learning (ML) workloads

that are periodically retrained to incorporate new data,

resulting in frequent accesses to all data. How can we

determine and minimize the training set—the “working

set” for emerging ML workloads—to adopt a more

rigorous and selective approach to big data protection?

We observe that for ML workloads, significant re-

search is devoted to limiting the amount of data required

for training. The reasons are many but typically do not

involve data protection. Rather, they include increasing

performance, dealing with sparsity, and limiting labeling

effort. Techniques such as dimensionality reduction [10],

feature hashing [11], vector quantization [12], and count

featurization [13] are routinely applied in practice to

reduce data dimensionality so models can be trained

on manageable training sets. Semi-supervised [14] and

active learning [15] reduce the amount of labeled data

needed for training when labeling requires manual effort.

Can such mechanisms also be used to limit exposure
of the data being collected? How can an organization
that already uses these methods develop a more robust
data protection architecture around them? What kinds of
protection guarantees can this architecture provide?

As a first step to answering these questions, we present

Pyramid, a limited-exposure big-data management sys-

2017 IEEE Symposium on Security and Privacy

© 2017, Mathias Lecuyer. Under license to IEEE.

DOI 10.1109/SP.2017.60

78

tem built around a specific training set minimization

method called count featurization [13], [16]–[18]. Also

called historical statistics, count featurization is a widely

used technique for reducing training times by feeding

ML algorithms with a limited subset of the collected data

combined (or featurized) with historical aggregates from

much larger amounts of data. The method is valuable

when features with strong predictive power are highly

dimensional, requiring large quantities of data (and large

amounts of time and resources) to be properly modeled.

Applications that use count featurization include targeted

advertising, recommender systems, and content personal-

ization systems. Such applications rely on user informa-

tion to predict clicks, but since there can be hundreds of

millions of users, training can be very expensive without

some way to aggregate users, like count featurization.

The advertising systems at Microsoft, Facebook, and

Yahoo are all built upon this mechanism [19], and

Microsoft Azure offers it as a service [20].

Pyramid builds on count featurization to construct

a selective data protection architecture that minimizes

exposure of individual observations (e.g., individual

clicks). To highlight, Pyramid: keeps a small, rolling

window of accessible raw data (the hot window); sum-

marizes the history with privacy-preserving aggregates

(called counts); trains application models with hot raw

data featurized with counts; and rolls over the counts to

forget all traces of observations past a specified retention

period. Counts are infused with differentially private

noise [21] to protect individual observations that are no

longer in the hot window but still fall within the retention

period. Counts can support modifications and additions

of many (but not all) types of models; historical raw data,

which may be needed for workloads not supported by

count featurization, is kept in an encrypted store whose

decryption requires special access.

While count featurization is not new, our paper is the

first to retrofit it for data protection. Doing so raises

significant challenges. We first need to define meaning-

ful requirements and protection guarantees that can be

achieved with this mechanism, such as the amount of

exposed information or the granularity of protection. We

then need to achieve these protection guarantees without

affecting model accuracy and scalability, despite using

much less raw data. Finally, to make the historical raw

data store easier to protect, we need to access it as little

as possible. This means supporting workload evolution,

such as parameter tuning or trying new algorithms,

without the need to go back to historical raw data store.

We overcome these challenges with three main tech-

niques: (1) weighted noise infusion, which automatically

shares the privacy budget to give noise-sensitive fea-

tures less noise; (2) an unbiased private count-median
sketch, a data structure akin to a count-min sketch that

resolves the large negative bias arising from applying

differentially private noise to a count-min sketch; and

(3) automatic count selection, which detects potentially

useful groups of features to count together, to avoid

accesses to the historical data. Together, these techniques

reduce the impact of differentially private noise and

count featurization.

We built Pyramid and integrated it into Spark Velox,

a targeting and personalization framework, to add rigor

and selectivity to its data management. We evaluated

three applications: a targeted advertising system using

the Criteo dataset, a movie recommender using the

MovieLens dataset, and MSN’s production news per-

sonalization system. Results show that: (1) Pyramid

approaches state-of-the-art models while training on less

than 1% of the raw data. (2) Protecting historical counts

with differential privacy has only 2% impact on accu-
racy. (3) Pyramid adds just 5% performance overhead.

Overall, we make the following contributions:

1) Formulating the selective data protection problem
for emerging ML workloads as a training set min-

imization problem, for which many mechanisms

already exist.

2) The design of Pyramid, the first selective data

management system that minimizes data exposure

in anticipation of attack. Built upon count featur-

ization, Pyramid is particularly suited for targeting

and personalization workloads.

3) A set of new techniques to balance solid protection

guarantees with model accuracy and scalability,

such as our unbiased private count-median sketches.

4) Pyramid’s code, both integrated into Spark

Velox and as a stand-alone library ready

to integrate in other targeting/personalization

frameworks. https://columbia.github.
io/selective-data-systems/

II. Motivation and Goals
This paper argues for needs-based selectivity in big

data protection: protecting data differently depending

on whether or not it is actually needed to handle a

company’s day-to-day workloads. Intuitively, data that is

needed day-to-day is less amenable to certain kinds of

protection (e.g., auditing or case-by-case access control)

than data needed only for exceptional situations. A key

question is whether a company’s day-to-day needs can
be captured with a limited and well-defined data subset.
While we do not claim to answer this question in full, we

present with Pyramid the first evidence that selectivity

can be achieved in one important big-data workload

domain: ML-based targeting and personalization. The

following scenario motivates selectivity and shows how

and in what contexts Pyramid helps improve protection.

79

II.A. Example Use Case
MediaCo, a media conglomerate, collects observations

of user behavior from its hundreds of affiliate news

and entertainment sites. Observations include the articles

users read and share, the ads they click, and how they re-

spond to A/B testing. MediaCo uses this data to optimize

various processes, including recommending articles to

users, showing the most relevant articles first, and target-

ing ads. Initially, MediaCo collected observations from

affiliate sites in separate, isolated repositories; different

engineering teams used different repos to optimize these

processes for each affiliate site. Recently, MediaCo has

started to track users across sites using cookies and to

integrate all data into a central data lake. Excited about

the potential of the much richer information in the data

lake, MediaCo plans to provide indiscriminate access to

all engineers. However, aware of recent external hacking

and insider attacks affecting other companies, it worries

about the risks it assumes with such wide access.

MediaCo decides to use Pyramid to limit the expo-

sure of historical observations in anticipation of such

attacks. For MediaCo’s main workloads, which consist

of targeting and personalization, the company already

uses count featurization to address sparsity challenges;

hence, Pyramid is directly applicable for those work-

loads. They configure it by keeping Pyramid’s hot win-

dow of raw observations, along with its noise-infused

historical statistics, in the widely accessible data lake

so all engineers can train their models, tune them, and

explore new algorithms every day. Pyramid absorbs

many workload needs—current and evolving—as long

as the algorithms draw on the same user data to predict

the same outcome (e.g., whether a user will click on

an ad). MediaCo also configures a one-year retention

period for all observations; after this period, Pyramid

removes observations from the statistics and launches

retraining of all application models to purge the old

activity. Finally, MediaCo stores all raw observations in

an encrypted store whose read accesses are disabled by

default. Access to this store is granted temporarily and

on a case-by-case basis to engineers who demonstrate the

need for statistics beyond those that Pyramid maintains.

In addition to targeting/personalization workloads,

MediaCo has other, potentially non-ML workloads, such

as business analytics, trend studies, and forensics; for

these, count featurization may not apply. Hence, Medi-

aCo gives direct access to the raw-data store to engineers

managing these workloads and isolates their computa-

tional resources from the targeting/personalization teams.

With this configuration, MediaCo minimizes access to

its collected data on a needs basis. Assuming no entity

with full access to the historical raw data is malicious,

Pyramid guarantees the following (detailed in §II-B).

(1) Any observations preceding the hot window when

Fig. 1: Threat model. Tattack: time the attack starts; T stop
attack: time

the attack is eradicated; Δhot: hot window length; Δretention:
company’s data retention period.

an attack begins will be hidden from the attacker. (2)

Hiding is done at an individual observation level during

the retention period and in bulk past the retention period.

(3) Only in exceptional circumstances do engineers get

access to the historical raw data. With these guarantees,

MediaCo negotiates lower data loss insurance premiums

and gains PR benefits for its efforts to protect user data.

II.B. Threat Model
Fig. 1 illustrates Pyramid’s threat model and guar-

antees. Pyramid gives guarantees similar to those of

forward secrecy: a one time compromise will not allow

an adversary to access all past data. Attacks are assumed

to have a well-defined start time, Tattack, when the

adversary gains access to the machines charged with

running Pyramid, and a well-defined end time, T stop
attack,

when administrators discover and stop the intrusion.

Adversaries are assumed to not have had access to the

system before Tattack, nor to have performed any action

in anticipation of their attack (e.g., monitoring external

predictions, the hot window, or the models’ state), nor

to have continued access after T stop
attack. The attacker’s goal

is to exfiltrate individual observations of user activities

(e.g., to know if a user clicked on a specific article/ad).

Historical raw data is assumed to be protected through

independent means and not compromised in this attack.

Pyramid’s goal is to limit the hot data in active use,

which is widely accessible to the attacker.

Examples of adversaries that fit our threat model

can be found among both the internal and external

adversaries of a company. An external adversary may

be a hacker who breaks into the company’s computing

infrastructure at time Tattack and starts looking for data

that may prove of value (e.g., information about celebri-

ties’ specific activities, what they liked or disliked, where

they were in the past, etc.). An internal adversary may

be a privacy-transgressing employee who spontaneously
decides at Tattack to look into some past action of a family

member or friend (e.g., to check if the person has visited

or liked a particular page).

After compromising Pyramid’s internal state, the at-

tacker will gain access to data in three different rep-

resentations: the hot data store containing plaintext ob-

servations, the historical counts, and the trained models

80

themselves. The plaintext observations in the hot data

store are not protected in any way. The historical statis-

tics store contains differentially private count tables of

the recent past. The attacker will learn some information

from the count tables but individual records will be

protected with a differentially private guarantee. Pyramid

forces models to be retrained when observations are

removed from the hot raw data store, so the attacker will

not be able to learn anything from the models beyond

what they have already learned above.

Pyramid provides three protection levels:
P1 No protection for present or future observations.

Observations in the hot data store when the attack

begins, plus observations added to the hot data store

while the attack is ongoing, receive no protection;

i.e., observations received between (Tattack − Δhot)

and T stop
attack receive no protection.

P2 Protection for individual observations for the length
of the retention period. Statistics about observations

are retained in differentially private count tables for

a predefined retention period Δretention. The attacker

may learn broad statistics about observations in the

interval [Tattack − Δretention, Tattack − Δhot] but will

not be able to confidently determine if a specific

observation is present in the table.

P3 Protection in bulk past the retention period. Obser-

vations past their retention period (i.e., older than

Tattack −Δretention) have been phased out of the his-

torical statistics store and are protected separately

by the historical raw data store.
Finally, we assume that no states created based on the

hot raw data persist once the hot window is rolled over.

While we explicitly launch retraining of models regis-

tered with Pyramid, we operate under the assumption

that (1) the models’ states are securely erased [22] and

(2) no other state was created out of band based on the

raw hot data (such as copies made by programmers).

II.C. Design Requirements
Given the threat model, our design requirements are:

R1 Limit widely accessible data. The hot data window

is exposed to attackers; hence, Pyramid must limit

its size subject to application-level requirements,

such as the accuracy of models trained with it.

R2 Avoid accesses to historical raw data even for
evolving workloads. Pyramid must absorb as many

current and evolving workload needs as possible to

limit access to the historical raw data.

R3 Support retention policies. Pyramid must enforce

a company’s retention policies. Although Pyramid

provides a differential privacy guarantee, no protec-

tion is stronger than securely deleting data.

R4 Limit impact on accuracy, performance, scalability.
We intend to preserve the functional properties of

applications and models running on Pyramid.

III. The Pyramid Architecture
Pyramid, the first selective data management archi-

tecture, builds upon the ML technique of count-based

featurization and augments it with new mechanisms to

meet the preceding design requirements.

III.A. Background on Count-Based Featurization
Training predictive models can be challenging on data

that contains categorical variables (features) with large

numbers of possible values (e.g., an ID or an interest

vector). Existing ML techniques that handle large feature

spaces often make strong assumptions about the data,

e.g., assuming a linear relationship between the features

and the label (e.g., Lasso [23]). If the data does not meet

these assumptions, results can be very poor.

Count-based featurization [13] is a popular approach

to handling categorical variables of high cardinality.

Rather than directly using the value of a categorical vari-

able, this technique featurizes the data with the number

of times a particular feature value (e.g., a user ID) was

observed with each label and the conditional probability

of the label given the feature value. This substantially

reduces dimensionality. Suppose the raw data contains

d categorical features with an average cardinality of K
and a label of cardinality L, where K � L; e.g., in click

prediction K can be millions (number of users), while L
is 2 (click, non-click). Standard encoding of categorical

variables [24] results in a feature space of dimension

O(dK), whereas with count featurization it is O(dL).
Count featurization can also be applied to continuous

variables or continuous labels by first discretizing them;

this increases dimensionality but only by a small factor.

The dramatic dimensionality reduction yields impor-

tant benefits. It is known that fewer dimensions permit

more efficient learning, both statistically and computa-

tionally, potentially at the cost of reducing predictive

accuracy. However, count featurization makes it feasible

to apply advanced, nonlinear models, such as neural

networks, boosted trees, and random forests. This com-

bination of succinct data representation and powerful

learning models enables substantial reduction of the

training data with little loss in predictive performance.

Quantified in §V, this is the insight behind our use of

count-based featurization to limit data exposure.

III.B. Architectural Components
Fig. 2 shows Pyramid’s architecture. Pyramid manages

collected data (observations) on behalf of application

models hosted by a model management system. In our

case, we use Velox [25], built on Spark. Velox facili-

tates ML-based targeting and personalization services by

implementing three functions: (1) fast, but incomplete,

incorporation of new observations into models that pro-

grammers register with Velox; (2) low-latency prediction

serving from these models; and (3) periodic retraining of

81

,

Fig. 2: Pyramid’s architecture. Notation: �x: feature vector; l:
label; �x′: count-featurized feature vector; CT: count table.

the models to correct inconsistencies created by the in-

complete incorporation of new observations. Velox saves

observations in a separate data management component,

Spark’s Tachyon. Pyramid replaces this component to

ensure rigorous and selective protection of observations.

Pyramid itself consists of four architectural compo-

nents, shown across the top of the highlighted box in

Fig. 2. The first is count featurization, which leverages

the known ML mechanism to count featurize observa-

tions before feeding them to models for training and pre-

diction. The second, third, and fourth are noise infusion,

data retention, and count selection, which augment count

featurization with differential privacy and a set of new

mechanisms to meet Pyramid’s design requirements. We

discuss each component in turn.

III.B.1. Count Featurization
Pyramid hijacks the stream of observations collected

by Velox (the observe method) and count-featurizes

them. An observation is a pair 〈�x, l〉 with a feature vector

�x = 〈x1, x2, ..., xd〉 and a label l. Application models

predict the label (or a probability for each possible

label) for a given feature vector by training on count-

featurized observations. When an observation arrives,

Pyramid incorporates it into two data structures: (1)

the hot raw data store, which retains observations from

the recent past, and (2) the historical statistics store,

which consists of multiple count tables that maintain the

number of occurrences of each feature with each label.

We maintain count tables for all features in �x and for

some feature combinations. A separate set of count tables

is maintained for each time window.

Featurization transforms a feature vector �x into a

count-featurized feature vector �x′, by replacing each

feature xi with the conditional probabilities of each label

value given xi’s value. The conditional probabilities are

computed directly from the count tables as discussed

Fig. 3: Count featurization example.

below. To train its models, an application requests a

training set from Pyramid (getTrainSet). Pyramid

featurizes the hot raw data with historical counts and

returns it to the application. To predict the label for a

feature vector �x, the application requests its featurization

from Pyramid (featurize); Pyramid returns �x′.
Example. Fig. 3 shows (a) a sample observation format,

(b) some count tables used by Pyramid to count-featurize

it, and (c) a sample count-featurized observation.

• Observation format. In targeting and personalization,

an observation’s feature vector �x typically consists of

user features (e.g., id, gender, age, and previously com-

piled preferences) and contextual information for the

observation (e.g., the URL of the article or the ad shown

to the user, plus any features of these). The label l might

indicate whether the user clicked on the article/ad.

• Count tables. Once an observation stream of the pre-

ceding type is registered with Pyramid, the userId table

maintains for each user the number of clicks the user has

made on any ad shown and the number of non-clicks; it

therefore encodes each user’s propensity to click on ads.

The urlHash table maintains for each URL the number of

clicks that each user made on any ad shown on that page;

it therefore encodes the page’s inherent “ad-clickability.”

Pyramid maintains count tables for every feature in �x and

for some feature combinations with predictive potential,

such as the 〈urlHash, adId〉 table, which encodes the

joint probability of a particular ad being clicked when it

is shown on a particular page.

• Count featurization. To count-featurize a fea-

ture vector �x = 〈x1, x2, . . . , xd〉, Pyramid first re-

places each of its features with the conditional

probabilities computed from the count tables, e.g.,
�x′ = 〈P (click|x1), P (click|x2), . . . , P (click|xd)〉, where

P (click|xi) = clicks
clicks+non-clicks from the row matching the

82

value of xi in the table corresponding to xi. Pyramid

also appends to �x′ the conditional probabilities for any

feature combinations it maintains. Fig. 3(c) shows an

example of feature vector �x and its count-featurized

version �x′. This is a simplified version of the count

featurization function. We can also include the raw

counts in �x′, and support non-binary categorical labels

by including conditional probabilities for each label. To

avoid featurizing with an effectively random probability

when a given feature value has very few counts, we

estimate the variance of our probability estimate and, if it

is too high, featurize with a default probability P (click).

• Training and prediction. Suppose a boosted-tree model

is trained on a count-featurized dataset (〈�x′, l〉 pairs). It

might find that for users with a click propensity over

0.04, the chances of a click are high for ads whose

clickability exceeds 0.05 placed on websites with ad-

clickability over 0.1. In this case, the model would

predict a “click” label for the feature vector in Fig. 3(c).

Process. Pyramid count-featurizes all features xi for

each observation type. For categorical features, we fea-

turize them as described above. For low-cardinality fea-

tures, we can additionally include the raw feature values

in �x′ alongside the conditional probabilities. Continuous

features are first mapped to a discrete space, binning

them by percentiles, and then count-featurized as cate-

gorical. We do the same with continuous labels.

Pyramid maintains hot windows and count tables as

follows. There is one hot window for each observation

stream. There is one count table per feature or feature

group; it has a column for each label and a row for

each value the feature can take. To support granular

retention times, each count table is composed of multiple

windowed count tables holding data for observations

collected during disjoint windows of time. The complete

count table is the sum of the associated windowed count

tables. When a new observation arrives, it is added to

the hot window and made immediately available to the

models for (re)training. The hot window is a sliding

window that may be sized differently from the count

table window. It is also added to the current windowed

count table; this count table is withheld when computing

the complete count table until it is finished populating.

At this point, Pyramid begins using it as part of the

featurization process, phases out the oldest count table if

it is past its retention period, and begins populating a new

count table that has been initialized with differentially

private noise. Once count tables are incorporated into

the featurization process, they are never updated again.

Count-min sketches (CMSes). A key challenge with

count featurization is its storage requirement. For a

categorical variable of cardinality K and a label of

cardinality L, the count table is of size O(LK). A

common solution, used in Azure [20], is to store each

table in a Count-Min Sketch (CMS) [26], a data structure

that approximates counts in sub-linear space. A CMS

consists of a 2D array with an independent hash function

for each row. When a new feature arrives, the CMS uses

the hash function for each row to assign the feature to a

column and increment the value in that cell.

We query the CMS for a feature count by hashing

the feature into a column of each row and taking the

minimum value. Despite overcounting from collisions,

CMS provides sufficiently accurate count estimates to

train ML models. With a CMS, we can maintain more

and/or larger count tables with bounded storage over-

heads. This gives developers flexibility in the types of

modeling they can do atop in-use data without tapping

into the historical data store. The CMS poses challenges

to our noise infusion process, as described next.

III.B.2. Noise Infusion
Pyramid’s key contribution is to retrofit count fea-

turization, a technique developed for performance and

scalability, to protect past observations against exposure

to attack. Pyramid infuses noise into the count tables to

protect these observations. While we leverage differential

privacy methods [21], correctly applying these methods

in our context poses scaling challenges. For example,

each observation contributes to multiple count tables,

increasing the noise required to guarantee differential

privacy, and a naı̈ve application degrades accuracy when

there are many count tables. We present two techniques

to address this challenge. First, we use a weighted noise
infusion technique to mitigate the impact of noise, allow-

ing us to navigate the privacy/utility trade-off. Second,

for high noise levels, we replace the CMS by a count-

median sketch [27], a data structure with weaker accu-

racy guarantees than CMS but that provides an unbiased

frequency estimate, making it more robust to negative

noise values. To our knowledge, we are the first to

observe that the count-median sketch structure is better

suited to differential privacy. After a brief overview of

differential privacy, we describe these techniques.

Differential privacy properties. Pyramid’s noise infu-

sion component uses four differential privacy properties:

1. Privacy guarantees: Let D1 be the database of past

observations, D2 be a database that differs from D1

by exactly one observation (i.e., D2 adds or removes 1

observation), and S the range of all possible count tables

that can result from a randomized query Q() that builds

a count table from a window of observations. The count

table query Q() is ε-differentially private if P [Q(D1) ∈
S] ≤ eε × P [Q(D2) ∈ S]. In other words, adding or

removing an observation in D1 does not significantly

change the probability distribution of possible count

tables; therefore, the count table does not leak significant

information about any specific observation [21]. ε is

called the query’s privacy budget.

83

2. Laplace distribution: Let a query’s sensitivity be the

magnitude of the change in the query result triggered

by adding or removing a single observation. If the

query has sensitivity Δ, then adding noise drawn from a

Laplace distribution with scale parameter Δ
ε guarantees

that the result is ε-differentially private [21]. Increasing
Δ
ε increases the standard deviation of the distribution

(stdev of a Laplace distribution with parameter b is b
√
2).

3. Composability: Differentially private queries are

composable: the sum of n εn-differentially private

queries is (Σεn)-differentially private [28]. This lets us

maintain multiple count tables, possibly with different

budgets, and combine them without breaking guarantees.

(Advanced composition theorems allow sublinear loss in

the privacy budget by relaxing the guarantees to (ε, δ)-
differential privacy [29], but we do not explore that here.)

4. Post-processing resilience: Any computation on a

differentially private data release remains differentially

private [29]. This is a crucial point for Pyramid’s protec-

tion guarantees: it ensures that guarantee P2, the protec-

tion of individual past observations during their lifetime,

holds for each model’s internal state and outputs. As long

as models comply with retrain calls and erase all internal

state when they do, their output is differentially private

with regard to observations outside the hot window.

Basic noise infusion process. We apply these known

properties when creating count tables for the hot window.

Upon creating a count table, we initialize each cell of

the CMS storing that table with a random draw from

a Laplace distribution. This noise is added only once:

the count tables are updated as observations arrive and

are sealed when the hot window rolls over. To determine

the correct parameter for the Laplace distribution, b, we

must account for three factors: (1) the internal structure

of the CMS, (2) the number of observations we want to

hide simultaneously, and (3) the number of count tables

(features or feature combinations) we are maintaining.

First, an exact count table has sensitivity 1 since

adding or removing an observation can only change one

count by 1. For a CMS, each observation is counted

once per hash function; hence, the sensitivity is h, the

number of hash functions. Second, if we aim to hide any

group of k observations with a privacy budget of ε, then

we make a count table ε-differentially private by adding

noise from a Laplace distribution of parameter b = hk
ε in

every cell of the CMS. Third, we must maintain multiple

count tables for the different features and feature groups.

Since each observation affects every count table, we need

to split the privacy budget ε among them, e.g., splitting

it evenly by adding noise with b = nhk
ε to each table.

The third consideration poses a significant challenge

for Pyramid: the amount of noise we apply grows lin-

early with the number of count tables we keep. Since the

amount of noise directly affects application accuracy, this

yields a protection/accuracy tradeoff, which we address

with weighted noise infusion.

Weighted noise infusion process. We note that count

tables are not all equally susceptible to noise. For ex-

ample in our movie recommender, the user table most

likely contains low values, since each user rates only a

few movies (29 for the median user). Moreover, we do

not expect this count to change significantly when adding

more data, since single users will not rate significantly

more movies. Each genre table however contains higher

values (1M or more), since each genre characterizes

multiple movies, each rated by many users. Sharing noise

equally between tables would pollute all counts by a

standard deviation of 145 (ε = 1, h = 5, and k = 1),

a reasonable amount for genres, but devastating for the

user feature, which essentially becomes random.

Pyramid’s weighted noise infusion distributes the

privacy budget unevenly across count tables, adding

less noise to low-count features. This way, we retain

more utility from those tables, and the composability

property of differential privacy preserves our protection

guarantees. Each table’s share of noise is determined

automatically, based on the count values observed in the

hot window. Specifically, the user specifies a quantile,

and the privacy budget is shared between each feature

proportionally to this quantile of its counts. For instance

we use the first percentile, so that 99% of the counts for

a feature will be less affected by the noise. Sharing the

privacy budget proportionally to the counts is a heuristic

that makes the noise’s standard-deviation proportional to

the typical counts of each feature. This scheme is also

independent of the learning algorithm.

Finally, the weight selection process should be made

differentially private so the weights computed on a

previous hot window do not reveal anything about that

window’s data at a later time. While our implemen-

tation currently does not do this, a design might use

a small portion of one window’s privacy budget and

leverage smooth sensitivity [30] to compute differentially

private count percentiles that can be used as feature

weights. One could compute each weight as a separate

differentially private query, or use the sample-aggregate

framework and the center of attention aggregation [30]

to compute all the weights in one query.

Section V shows that weighted noise infusion is vital

for providing protection while preserving accuracy at

scale: without it, the cost of hiding single observations is

a 15% accuracy loss; with it, the loss is less than 5%. We

leave the evaluation of incorporating differential privacy

into the weight selection method for future work.

Unbiased private count-median sketch. Another factor

that degrades performance when adding differentially

private noise is the interaction between the noise and

the CMS. In the CMS, the final estimate for a count is

84

min(hi(key)) for each row i. The minimum makes sense

here since collisions can only increase the counts. The

Laplace distribution however is symmetric around zero,

so we may add negative noise to the counts. Taking the

minimum of multiple draws—each cell is initiated with

a random draw from the distribution—thus selects the

most extreme negative values, creating a downward bias

that can be very large for a small ε.

We observe that because the mean of the Laplace

distribution is 0, an unbiased estimator would not suffer

from this drawback. For tables with large noise, we thus

use a count-median sketch [27], which differs in two

ways: 1) each row i has another hash function si that

maps the key to a random sign si(key) ∈ {+1,−1}, with

each cell updated with si(key)hi(key); 2) the estimator is

the median of all counts multiplied by their sign, instead

of the minimum. The signed update means that collisions

have an expected impact of zero, since they have an equal

chance of being negative or positive, making the cell an

unbiased estimate of the true count. The median is a

robust estimate that preserves the unbiased property.

Using this count-median sketch reduces the impact

of noise, since values from the Laplace distribution are

exponentially concentrated around the mean of zero. §V
shows that for small ε, or a large number of features, it

is worth trading the CMS’s better guarantees for reduced

noise impact with the count-median sketch.

III.B.3. Data Retention
While differential privacy provides a reasonable level

of protection for past observations, complete removal

of information remains the cleanest, strongest form of

protection (design R3 in §II-C). Pyramid supports data

expiration with windowed count tables. When an obser-

vation arrives, Pyramid updates the count tables for the

current count window only. To featurize �x, Pyramid sums

the relevant counts across windows. Periodically, it drops

the oldest window and invokes retraining of all models

in Velox (retrain method). Our use of count-based

featurization supports such behaviors because retraining

is cheap (§V-E), so we can afford to do it frequently.

III.B.4. Count Selection
Pyramid seeks to support workload evolution (model

changes/additions, such as future model M4 in Fig. 2)

using only the widely accessible stores without tapping

into the historical raw data store. To do so, it uses two

approaches. First, it stores the count tables in a very

compact representation—the count-median sketches—so

it can afford to keep plenty of count tables. Second, it

includes an automatic process of count table selection
that inspects the data to identify feature combinations
worth counting, whether they are used in the current

workloads or not. This technique is useful because

count featurization tends to obscure correlations between

features. For example, different users may have different

opinions about specific ads. Although that information

could be inferred by a learning algorithm from the raw

data points, it is not accessible in the count-featurized

data unless we explicitly count the joint occurrences of

specific users with specific ads, i.e., maintain a table for

the 〈userId, adId〉 group.

We adapted several feature selection techniques [31] to

select feature groups and describe one here. Mutual In-
formation (MI) is a measure of dependence between two

random variables. A common feature selection technique

keeps features of high MI with the label. We extend

this mechanism for group count selection. Our goal is

to identify feature groups that provide more information

about the label than individual features. For each feature

xi, we find all other features xj such that xi and xj

together exhibit higher MI with the label than xi alone.

From these groups, we select a configurable number with

highest MIs. To find promising groups of larger sizes,

we apply this process greedily, trying out new features

with existing groups. For each selected group, Pyramid

creates and maintains a count table.

This exploration of promising groups operates on the

hot window of raw data. Because the hot raw data is

limited, the selection may not be entirely reliable. There-

fore, count tables for new groups are added on a “trial

basis.” As more data accumulates in the counts, Pyramid

re-evaluates them by computing the MI metric on the
count tables. With the increased amount of data, Pyramid

can make a more reliable decision regarding which

count tables to keep and which to drop. Because count

selection—like feature selection—is never perfect, we

give engineers an API to specify groups that they know

are worth counting from domain knowledge. Finally, like

the weight selection process, count selection should be

made differentially private so the groups selected in a

particular hot window, which are preserved over time,

do not leak information about the window’s data in the

future. We leave this for future work.

III.C. Supported Workload Evolution
Count featurization is a model-independent prepro-

cessing step, allowing Pyramid to absorb some common

evolutions during an ML application’s life cycle without

tapping the historical raw data store. §V-G gives anecdo-

tal evidence of this claim from a production workload.

This section reviews the types of workload changes

Pyramid currently absorbs.

A developer may want to change four aspects of the

model: (1) the algorithm used to train the model (2)

hyperparameters for the model or for the underlying

optimization algorithm, (3) features used by the model,

and (4) the predicted label. Pyramid supports (1) and (2),

partially supports (3), and usually does not support (4).

85

• Algorithm changes: Supported. Pyramid allows devel-

opers to move between types of models and libraries

used to train those models as long as they are using

features and labels that are already counted. In our eval-

uation we experimented with linear models and neural

networks in Vowpal Wabbit [32] and gradient boosted

trees in scikit-learn [33] using the same count tables.

• Hyperparameter tuning: Supported. By far the most

common type of model change we encountered, both

in our own evaluation and in reports from a produc-

tion setting, was hyperparameter tuning. For example, a

developer may want to change model hyperparameters,

such as the number of hidden units in a neural network,

or tune parameters of the underlying optimization algo-

rithm, such as the learning rate or an L1/L2 regulariza-

tion penalty. Changing hyperparameters is independent

from the underlying features so is supported by Pyramid.

• Feature changes: Partially supported. Pyramid sup-

ports making minimal feature changes. A developer may

want to perform one of three types of feature changes:

adding new features, removing existing features, or

adding interactions between existing features. Pyramid

trivially supports removing existing features, and lets

developers add new features if they are based on existing

ones. For example, the developer could not create an

〈Age, Location〉 feature interaction if the individual fea-

tures were not already counted together. Introducing new

feature combinations or interactions requires creating

new count tables. This highlights the importance of count

selection to support workload evolution.

• Label changes: Mostly unsupported. Changes in pre-

dicted labels are not supported except if a new label

is a subset of an existing label. For example, a news

recommender could not start predicting retention time

instead of clicks unless retention time was previously

declared as a label. As with features, Pyramid can

support label changes when the new label is a subset of

an existing one. For example, if a label exists that tracks

retention time in time buckets, Pyramid can support new,

coarser labels, such as the three classes “0 seconds,” “less

than a minute,” and “more than a minute.”

III.D. Summary
With these components, Pyramid meets the design re-

quirements noted in §II-C, as follows. R1: By enhancing

the training set with historical statistics gathered over a

longer period of time, we minimize the hot data. R2: By

automatically identifying combinations of features worth

maintaining, we avoid having to access the historical

raw data for workloads that use the same observation

streams to predict the same label. R3: By rolling the

count windows and retraining the application models, we

support data retention policies, albeit at a coarse level.

§V evaluates R4: accuracy and performance impact.

IV. Prototype
Pyramid is implemented in 2600 lines of Scala, as a

modular library. It integrates into the feature engineering

stage of an ML pipeline, before the actual learning

algorithms are invoked. The modular backend allows

count tables to be stored locally in memory or in a

remote datastore such as Redis or Cassandra.

We integrated Pyramid into the Velox model manage-

ment system [25] with minimal effort, by adding/modi-

fying around 500 lines of code. The changes we made to

Velox involve interposing on all of Velox’s interfaces that

interact with raw data (e.g., adding observations, making

predictions, and retraining). Now prediction requests are

passed through the Pyramid featurization layer, which

performs count featurization.

One of Velox’s key contributions is performing low

latency predictions by pushing models to application

servers. To enable low-latency predictions, Pyramid pe-

riodically replicates snapshots of the central count tables

to the application servers, allowing them to perform fea-

turization locally. §V-E evaluates prediction performance

in Velox/Pyramid with and without this optimization.

V. Evaluation
We evaluate Pyramid using different versions of three

data-driven applications: two ad targeting applications,

two movie recommendation applications, and MSN’s

production news personalization system. We compare

models on count-featurized data to state-of-the-art mod-

els trained on raw data, and answer these questions:

Q1. Can we accurately learn on less data using counts?

Q2. How does past-data protection impact utility?

Q3. Does counting feature groups improve accuracy?

Q4. How efficient is Pyramid?

Q5. To what problems does Pyramid apply?

Our evaluation yields four findings: (1) On classifica-

tion problems, count featurization lets models perform

within 4% of state-of-the-art models while training on

less than 1% of the data. (2) Count featurization enables

powerful nonlinear algorithms, such as neural networks

and boosted trees, that would be infeasible due to high-

cardinality features. (3) Protecting individual past obser-

vations with differential privacy adds 1% penalty to the

accuracy, which remains within 5% of state-of-the-art

models. (4) Pyramid’s performance overheads are small.

V.A. Methodology
Workloads. Table II shows our apps, datasets, and

baselines. We defer discussion of MSN to §V-G.

• Criteo ad targeting. Using two versions of the well-

known Criteo ads dataset, we build a binary click/no-

click classifier. We use seven days of the Criteo ad click

dataset amounting to 1.2 billion total observations. This

dataset is very imbalanced with an approximate click

rate of 3.34%. The second version of the Criteo dataset

86

App Dataset Obs. Feat. Baseline
Ad targeting (classifica-
tion)

Criteo Kag-
gle [34]

45M 39 neural net in
Kaggle [35]

Ad targeting (classifica-
tion)

Criteo
Full [36]

1.2B 39 regularized lin-
ear model

Movie recommendation
(classification)

MovieLens
[37]

22M 21 matrix factor-
ization [32]

Movie recommendation
(regression)

MovieLens
[37]

22M 21 matrix factor-
ization [32]

News personalization
(regression)

MSN.com
production

24M 507 contextual ban-
dits [38], [39]

TABLE I: Workloads. Apps and datasets; number of observations
and features in each dataset; and baselines used for comparison. All
baselines are trained using VW [32].

Dataset Model Parameters

Criteo-Kaggle
B: neural net (nn) VW. One 35 nodes hidden layer

with tanh activation. LR: 0.15.
BP: 25. Passes: 20. Early Termi-
nate: 1.

logistic regression
(log. reg.)

VW. LR: 0.5. BP: 26.

gradient boosted
trees (gbt)

Sklearn. 100 trees with 8 leaves.
Subsample: 0.5. LR: 0.1. BP: 8.

Criteo-Full B: ridge regression
(rdg. reg.)

VW. L2 penalty: 1.5e−8. LR:
0.5. BP: 26.

MovieLens
Regression

B: singular value
decomposition
(svd)

VW. Rank 10. L2 penalty: 0.001.
LR: 0.015. BP: 18. Passes: 20. LR
Decay: 0.97. PowerT: 0.

linear regression
(lin. reg.)

VW. LR: 0.5. BP: 22. Passes: 5.
Early Terminate: 1.

gradient boosted
trees (gbt)

Sklearn. 100 trees with 8 leaves.
Subsample: 0.5. LR: 0.1. BP: 8.

MovieLens
Classification

B: singular value
decomposition
(svd)

VW. Rank 10. L2 penalty: 0.001.
LR: 0.015. BP: 18. Passes: 20. LR
decay: 0.97. PowerT: 0.

logistic regression
(log. reg.)

VW. LR: 0.5. BP: 22. Passes: 5.
Early Terminate: 1.

gradient boosted
trees (gbt)

Sklearn. 100 trees with 8 leaves.
Subsample: 0.5. LR: 0.1. BP: 8.

MSN.com contextual bandit VW. IPS context. bandit. LR:
0.02. BP: 18.

TABLE II: Model parameters. The libraries and parameters used to
train each model. The parameters not noted use library defaults. “LR”
indicates the learning rate. “BP” indicates the hash featurization’s bit
precision (only applicable to raw models). “PowerT” exponent controls
learning learning rate decay per step. “B:” indicates that the model
will be used as a baseline. VW and Sklearn denote that the model was
trained with Vowpal Wabbit [32] and scikit-learn [33], respectively.

has 45 million observations, and was released as part of

a Kaggle competition. In the Criteo Kaggle dataset, the

click and non-click points were sampled at different rates

to create a more balanced class split with a 25% click

rate. Each observation has 39 features (13 numeric, 26

categorical), and 8 of the categorical features are high

dimensional (> 100K values). The numeric features

were binned into 4 equal size bins for each dataset. As

a baseline, we use a feed-forward neural network that

performed well for the competition dataset [35], and we

use ridge regression for the full dataset.

• MovieLens movie recommendation. Using the well-

known MovieLens dataset, which consists of 22M rat-

ings on 34K movies from 240K users, we build two

predictors: (1) a regression model that predicts the user’s

rating as a continuous value in [0, 5], (2) a binary classi-

fier that predicts if a user will give a rating of 4 or more.

As a baseline, we use the matrix factorization algorithm

in Vowpal Wabbit (VW) [32]; algorithms in this class are

state-of-the-art for recommender systems [40], although

this specific implementation is not the most advanced.

Method. For each application, we try a variety of count

models, including linear or logistic regression, neural

networks, and boosted trees. We split each dataset by

time into a training set (80%) and testing set (20%),

except for the full Criteo dataset for which we use the

first six days for training and the seventh for testing.

On the training set, we compute the counts and train our

models on windows of growing sizes, where all windows

contain the most recent training data and grow back-

wards to include older data. This ensures that training

occurs on the most recent data (closest to the testing

set), and that count tables only include observations from

the hot window or the past. We use the testing set to

compare the performance of our count algorithms to their

raw data counterparts and to the baseline algorithms.

For all baselines, we apply any dimensionality reduction

mechanisms (e.g., hash featurization [41]) that those

models typically apply to strengthen them.

Metrics. We use two model accuracy metrics.

(1) The average logistic loss for classification problems

with categorical labels (e.g. click/no-click). Algorithms

predict a probability for each class and are penalized

by the logarithm of the probability predicted for the

true class: − log(ptrue class). Models are penalized less

for incorrect, low-confidence predictions and more for

incorrect, high-confidence predictions. Logistic loss is

better suited than accuracy for classification problems

with imbalanced classes because a model cannot perform

well simply by returning the most common class.

(2) The average squared loss for regression problems

with continuous labels. Algorithms make real-valued

predictions that are penalized by the square of the

difference with the label: ||prediction− label||2.

We conclude our evaluation with our experience with

a production setting, in which we can directly estimate

click-through rate, a more intuitive metric.

Result interpretation. All graphs report loss normalized

by the baseline model trained on the entire training data.

Lower values are better in all graphs: a value of 1 or less

means that we beat the baseline’s best performance; and

a value > 1 means that we do worse than the baseline.

For completeness, we specify our baselines’ perfor-

mance: MovieLens classification matrix factorization has

a logistic loss of 0.537; MovieLens regression matrix

factorization has a squared loss of 0.697; Criteo-Kaggle

neural network has a logistic loss of 0.467; and Criteo-

Full ridge regression has a logistic loss of 0.136.

V.B. Training Set Reduction (Q1)
Pyramid’s design is predicated on count featurization’s

ability to substantially reduce training sets. While this

method has long been known, we are unaware of scien-

tific studies of its effectiveness for training set reduction.

87

(a) MovieLens classification (b) Criteo-Kaggle classification (c) Criteo-Full classification
Fig. 4: Normalized losses for raw and count algorithms. “B:” denotes the baseline model. Count algorithms converge faster than raw data
algorithms, to results that are within 4% on MovieLens, and within 2% and 4% on Criteo Kaggle and full respectively.

(a) MovieLens boosted tree (b) Criteo-Kaggle algorithms (c) Criteo-Full ridge regression
Fig. 5: Impact of data protection. Results are normalized by the baselines. We fix k = 1 and vary ε, the privacy budget. Fig. 5(a) and Fig. 5(b)
show results using the weighted noise (denoted wght). On MovieLens our weighting scheme is crucial to hide 1 observation. On Criteo we can
easily hide 1 observation with little performance degradation and can hide up to 100 observations while remaining within 5% of the baseline.

We hence perform a study here. The count models must

converge faster than raw-data models (reach their best

performance with less data), and perform on par with

state-of-the-art baselines. Fig. 4 shows the performance

of several linear and nonlinear models, on raw and count-

featurized data. We make two observations.

First, training with counts requires less data. On

both Criteo and MovieLens the best count-featurized

algorithm approaches the best raw-data algorithm by

training on 1% of the data or less. On Criteo-Kaggle

(Fig. 4(b)), the count-featurized neural network comes

within 3% of the baseline when trained on 0.4% of the

data and performs within 1.7% of the baseline with 28%

of the training data. On Criteo-Full (Fig. 4(c)), the count-

featurized ridge regression model comes within 3.3%

of the baseline with only 0.1% of the data, and within

2.5% when trained on 15% of the data. These results

show that models trained on count-featurized data can

perform close to raw models in both balanced and very

imbalanced datasets (Criteo Full and Kaggle’s respective

click rates are 3% and 25%). On MovieLens (Fig. 4(a)),

the count-featurized boosted tree needs only 0.8% of

the data to get within 4% of the baseline, or match the

raw data logistic regression. Because counts summarize

history and reduce dimensionality, they allow algorithms

to perform well with very little data. We say that they

converge faster than raw data algorithms.

Second, counts enable new models. In Fig. 4, the

boosted tree performs poorly on raw data but very well

on the count-featurized data. This reveals an interesting

insight. The raw-data boosted tree uses a dimensional-

ity reduction technique known as feature hashing [41],

which hashes all categorical values to a limited-size

space. This technique exhibits a trade-off: increasing the

hash space reduces collisions at the cost of introducing

more features, leading to overfitting. Count featurization

does not have this problem: a categorical feature is

mapped to a few new features (roughly one per label

value). This lets us train boosted trees very effectively.

V.C. Past-Data Protection Evaluation (Q2)
We have shown that count-featurized algorithms con-

verge faster than models trained on raw data. This allows

Pyramid to keep, and thus expose, only a small amount

of raw data to train ML models. However the count

tables, while only aggregates of past data, can still leak

information about past observations. To prevent such

leaks, Pyramid adds differentially private noise to the

tables. The amount of noise to add depends on the

desired privacy guarantee, parameterized by ε (smaller

is more private), but also on the number of features (see

Table II) and CMS hash functions (five here), through

the formula from §III-B2. In this section we evaluate

the noise’s impact on performance, as well as Pyramid’s

two mechanisms that increase data utility: automatic

weighted noise infusion and the use of private count-

median sketches. We also show the impact of the number

of windows used, which defines the granularity at which

past observations can be entirely dropped.

Impact of noise. Fig. 5 shows the performance of

different algorithms and datasets when protecting an

observation, k = 1, with different privacy budgets ε
(note the direct tradeoff between the two parameters:

the noise is proportional to k
ε). We find that Pyramid

can protect observations with minimal performance loss.

88

When ε = 1, the boosted tree model on the MovieLens

dataset remains within 5% of the baseline with only 1%

of the training data. The logistic regression and neural

network models on the Criteo-Kaggle dataset perform

within 2.7% and 1.8% of the baseline respectively, and

the Criteo-Full ridge regression is within 3%. All Criteo

models also come within 5% of their respective baseline

with a privacy budget as small as ε = 0.2.

The Criteo-Full ridge regression performance de-

grades less than models on other datasets when the noise

increases. For instance, it degrades by less than 1% with

ε going from 1 to 0.1, while the Criteo-Kaggle neural

network loses 6.5%. This is explained by the fact that the

amount of noise required to make a query differentially

private is not related to the size of the dataset. The

Criteo-Full dataset is much larger, so the additional noise

is much smaller relative to the counts.

Weighted noise infusion. Weighted noise infusion is in-

tegral to the protection of past observations with minimal

performance cost. Fig. 6(a) shows the impact of noise

on the boosted tree for the MovieLens dataset. Without

weighting the privacy budget of different features, the

model performs 15% worse than the baseline even for

ε = 1. With weighting, the MovieLens model performs

at 5% of the baseline. The weighted noise infusion

technique is thus critical to maintaining performance on

the MovieLens dataset. Intuitively, this is because the

users making the rating and the movie being rated are the

most important features when predicting ratings. Most

users rate relatively few movies, and a long tail of movies

are rarely rated, so their respective counts are quickly

overwhelmed by the noise when the privacy budget is

equally distributed among all features.

The Criteo models do not depend as much on the

weighting trick, since they do not rely on a few features

with small counts. Noise weighting is still beneficial,

though: e.g., the Criteo-Kaggle neural network gains

about 0.5% of performance, as shown in Fig. 6(b).

Private count-median sketch. Another technique that

Pyramid uses to reduce the impact of noise is to switch

to a private count-median sketch. As noted in §III-B2,

the count-min sketch will exhibit a strong downward bias

when initialized with differentially private noise, because

taking the minimum of multiple observations will select

the most extreme negative noise values. The count-

median sketch uses the median instead of the minimum

and does not suffer from this effect. Fig. 6(c) shows that

when noise is added, the count-median sketch improves

performance over the count-min sketch by around 0.5%,

on MovieLens and Criteo-Kaggle.

When combined with weighted noise infusion, the pri-

vate count-median sketch is less useful at first, since the

noise is small on features with small counts. However, it

provides an improvement for lower ε. For instance, the

MovieLens boosted tree improves by 0.5% even after

noise weighting for ε = 0.10.
Number of windows. Another factor impacting accuracy

is the number of count windows kept to support granular

retention policies. Fig. 7 shows Criteo-Full’s ridge

regression for k = 1 and ε = 1 while varying the

number of windows. We observe that it is possible to

support a large number of windows. On Criteo, we can

support 1000 windows with little degradation, enough

to support a daily granularity for a multi-year retention

period. While we believe this granularity for retention

policies should be enough in practice, we also simulated

a binary tree scheme [42] that supports huge numbers of

windows. We can see that on Criteo, this allows using

100K windows with a penalty similar to 10 windows

using the basic scheme.

V.D. Count Selection Evaluation (Q3)
Without noise. We measure the performance of our

algorithms when the featurization is augmented by MI-

selected groups. We evaluate on MovieLens, as groups

provided little additional benefit on Criteo. A total of

35 groups were selected by MI and given 10% of the

privacy budget to share. When using these groups, the

accuracy of the count boosted tree gets within 3% of

the baseline with the same 0.8% of the data, 1% better

than without feature groups. Logistic regression does

not improve asymptotically but converges faster, getting

within 5% of the baseline with 15% of the data instead

of 22%. Thus, count selection selects relevant groups.
With noise. We also evaluate the impact of group se-

lection on MovieLens with noise k = 1, ε = 1. Logistic

regression is not improved by the grouped features, but

the boosted tree is still 1% closer to the baseline. Thus,

the algorithm can still extract useful information from

the groups despite the increased noise.
While these results are encouraging, we leave for fu-

ture work the full investigation of how the improvement

in accuracy gained from maintaining and using relevant

groups is affected by the higher noise levels necessary

to maintain a large number of count tables for fixed ε.

V.E. Performance Evaluation (Q4)
We evaluate Pyramid’s overhead on Velox by mea-

suring the median latency of a prediction request to

Velox. We perform this evaluation using the 39-feature

Criteo dataset. Fig. 9 shows the median latencies and a

breakdown of the time into four components: computing

the prediction, unmarshalling the message into a usable

form, performing count featurization, and other functions

like the network and traversing the web stack. We show

the results with and without count table caching in the

application servers (§IV). Without caching, prediction

latency is around 200ms. Caching reduces it to 1.6ms,

a 5% overhead with the total time dominated by the

network and traversing the web framework used to

89

(a) MovieLens boosted tree (b) Criteo-Kaggle neural network (c) Sketch comparison
Fig. 6: Impact of data protection (continued). Results are normalized to the baselines. We fix k = 1 and vary ε, the privacy budget. (a)
Without the feature weighting trick the gradient boosted trees perform unacceptably poorly. (b) The weighting trick marginally improves the
performance of Criteo-Kaggle models over equally distributing the privacy budget. (c) Private count-median sketch improves performance in
both MovieLens (ML) and Criteo-Kaggle (CK) models with ε = 1.

Fig. 7: Criteo-Full windows. The Criteo

datasets can support 1K windows with rea-

sonable penalty. Supporting more windows

requires a scheme based on binary trees.

Fig. 8: MovieLens regression. Linear

regression algorithms are not amenable.

Boosted tree converges quickly but does not

match the baseline.

Action P. w/o cache P. w/ cache Velox

Featurization 99.22% 4.37% N/A

Marshalling 0.04% 6.44% 7.06%

Prediction 0.01% 0.51% 0.63%

Network/Framework 0.73% 88.68% 92.31%

Total Latency 283.69 ms 1.65 ms 1.58 ms

Fig. 9: Prediction Latency. Median time to serve

a model prediction. Caching is crucial for Pyramid

to achieve low overhead compared to Velox.

implement Velox. Pushing count tables to the application

servers is crucial for performance and does not signifi-

cantly increase the attack surface.

V.F. Applicability Evaluation (Q5)
Pyramid works well for classification problems. We

now consider another broad class of supervised learning

problems: regression problems. In regression, the algo-

rithm guesses a label on a continuous scale, and the goal

is for the prediction to be as close to the true label as

possible. Intuitively, count featurization should be less

effective for regression problems, because it needs to

bin the continuous label into discrete buckets.

Fig. 8 shows the performance of linear and boosted

tree (nonlinear) regressions on the MovieLens dataset.

We first observe that linear regression does worse on

count-featurized data than on raw data. This is not sur-

prising: count featurization gives the probability of each

label conditioned on a feature. The algorithm cannot find

a linear relationship between, say, P (rating = 3|user)
and the rating. Indeed, the rating does not keep growing

with this probability, it keeps getting closer to 3.

Nonlinear algorithms do not have this limitation. The

boosted tree converges quickly and outperforms raw

models trained on similar amounts of data until we reach

55% of the data. At that point, the boosted tree plateaus

and never comes close to the baseline. Although we did

not find good algorithms for this dataset, we suspect that

some nonlinear algorithms may perform well on counts.

Count featurization is most reminiscent of the counts

used by Naive Bayes classifiers [43], and there are

Fig. 10: Estimated article CTR for MSN. The raw model, count
model, and private count model are normalized against the estimated
performance of human editors. The count models perform slightly
worse than the raw models; all models outperform human editors on
five out of seven days.

workloads for which it is not suitable. For instance, count

featurization requires a label and is thus not applicable

to unsupervised learning. Other feature representations

may be better suited to such types of models. Our

choice of count featurization reflects its suitability to data

protection in a practical system architecture.

Even in settings that are less amenable to Pyramid,

such as online learning applications that avoid retraining,

we found that Pyramid can perform well and help protect

past observations, as we describe in the next section.

V.G. Experience with a Production Setting
In addition to public datasets, we also evaluated

Pyramid on a production workload. One of the authors

helped build MSN’s news personalization service, which

we used to evaluate three aspects: (1) How to adapt

count featurization to a different type of learning, (2)

90

how Pyramid applies to this application, and (3) how

Pyramid supports the application’s workload evolution.

Adapting count featurization. MSN uses contextual

bandit learning [44], [45] (via the Decision Service [46])

to personalize the order of articles shown to each user

so as to maximize clicks, based on 507 features of

user demographics and past browsing history. This is a

challenging scenario due to the large number of features

and low click signal. Contextual bandit algorithms use

randomization to explore different action choices, e.g.,

picking the top article at random. This produces a

dataset that assigns a probability (importance weight) to

each datapoint. The probabilities are used to optimize

models offline and obtain unbiased estimates of their

performance had they been run online [38], [39], [47].

Importance-weighted data have interesting implica-

tions for Pyramid. When updating the count tables with

a given data point, Pyramid must increment the counts

by 1/p, rather than 1, to ensure they remain unbiased.

This weighting also increases the noise required for

differential privacy, because the sensitivity of a single

observation can now be as high as 1/pmin, where pmin

is the minimum probability of any data point.

With these changes, we built a linear model on count-

featurized data and compare it to the (linear) raw-data

model used in production. Both models were trained

using VW’s online contextual bandit learner; in the

production system, a snapshot of the model is deployed

to application servers every five minutes.

Applicability. Our results suggest that in this applica-

tion, selectivity is achieved naturally by retaining only

the last day of data in the hot window and without the

need for Pyramid’s training set minimization. This is

because news is highly non-stationary: new content ap-

pears every hour and breaking news influences people’s

short-term interests. As a result, even without Pyramid,

training models on the last day of raw data is sufficient,

and in fact better than training on more days. This is

in contrast to the MovieLens and Criteo datasets, which

are much more stationary and hence can benefit from

Pyramid’s training set reduction.

That said, even in non-stationary settings, Pyramid

can still enhance data protection through its privacy-

preserving counts. We compared the estimated click-

through rate (CTR) of the count model (with and without

noise) to the raw model across a seven-day period in

April 2016. Fig. 10 shows the results relative to the

default article ranking by editors. Despite day-to-day

variations, on average count models perform within 7%

and 13.5% (with noise) of the raw model performance.

Support for workload evolution. We also assessed

how Pyramid would support changes in MSN over time,

without accessing the raw data store. MSN developers

have spent hundreds (thousands) of human (compute)

hours optimizing the production models. The changes in-

clude: tuning hyperparameters and learning rates, adding

L1/L2 regularization, testing different exploration rates

or model deployment intervals, and adding/interact-

ing/removing features. For example, in some regions

regulatory policies prevent certain user data from being

collected, so they are removed and models are retrained.

Pyramid supports all of the listed changes (§III-C) except

adding new features/feature interactions.

VI. Analysis and Limitations
We analyze Pyramid’s security properties in the con-

text of our threat model (§II-B), pointing out its limi-

tations. A Pyramid deployment has three components:

(1) A central repository of raw data in cold storage that

is infrequently accessed and is assumed to be secure.

Protecting this data store is outside of Pyramid’s scope.

(2) A compute/storage cluster used to train models,

store the plaintext hot window, and to store and update

count tables. (3) Numerous model servers storing trained

models and cached versions of count tables.

We first examine the effects of compromising the clus-

ter responsible for training models, maintaining the hot

window, and storing the count tables. This will reveal the

state of the count tables at time Tattack-Δhot by subtract-

ing all observations residing in the hot window at Tattack.

Property P1 in §II-B captures this exposure. However,

the observations from the range [Tattack-Δretention, Tattack-

Δhot] are protected through differential privacy (property

P2 in §II-B). We expect that the hot window (Δhot)

will be small enough that only a small fraction of an

organization’s data will be exposed. Observations whose

retention period ended before Tattack will have been

erased, and the models will have been retrained to forget

this information (property P3 in §II-B).

In addition to the hot data, the adversary can siphon

observations arriving in the interval [Tattack, T
end
attack].

Hence, the amount of data exposed depends on the time

to discover and respond to an attack. The sliding nature

of Pyramid’s hot window gives the organization an ad-

vantage when investigating breaches. If an organization

knows Tattack and T stop
attack, it will be able to determine

exactly which observations were exposed to the attacker

and take the appropriate steps. Knowing these times is

only required for post-attack auditing, not for protection

of past data during the attack.

Under our current threat model, Pyramid does not

protect data from multiple intrusions happening during

the same time window. If an attacker accesses Pyramid’s

internal count tables, that attack is eradicated, and then

gains access again at Tattack2 where Tattack2 follows T stop
attack,

the attacker will be able to compute the full fidelity

count tables for updates that occurred during the time

range [T stop
attack,min(Tattack2, Twin end)] by subtracting the

91

state of the count table at Tattack from the state of

the same count table at Tattack2. Twin end is the time

when Pyramid finishes populating the count table it was

populating at T stop
attack. One approach to mitigate this attack

is to require that Pyramid recomputes count tables after

T stop
attack, including reinitializing them with new draws from

the Laplacian distribution. This will require an increased

privacy budget but will still provide a privacy guarantee.

§V demonstrates the need to cache count tables on the

application model servers. Attackers that compromise an

application server will gain access to the existing cached

count table, trained models, and a stream of plaintext

prediction requests (unlabeled observations). With access

only to the application server the adversary will be able

to calculate the difference between the existing count

table and new count tables as they are replicated. The

adversary will learn little because the difference between

the cached count table and the newly replicated count

table will be differentially private.

A key limitation of our system stems from our design

choice to expose data for a period of time, while it is

hot. Data is exposed through the hot data store, trained

models, external predictions, and other states that may

persist after the data is phased out into the differentially

private count tables. There are three implications of

this design choice. First, an adversary may monitor

these states before actually mounting the full-system

break-in that Pyramid is designed to protect against (so

before Tstart). §II-B explicitly leaves this attack out of

scope. Second, exposing the hot data in raw form to

programmers and applications may produce data residues

that persist after the data is phased out, potentially

revealing past information when an attacker breaks in

at Tstart. For example, a programmer may create a local

copy of the hot window at time T for experimentation

purposes. While we cannot ensure that state created out-

of-band is securely managed, the Pyramid design strives

to eliminate any residues for state that Pyramid manages.

This is why we enforce model retraining whenever the

hot window is rolled over. And this is why we clarify in

§III-B2 that the count and weight selection mechanisms

should incorporate differential privacy. Third, while the

exposed hot data may be small (e.g., 1% of all the

data), it may still reveal sufficient sensitive information

to satisfy the attacker’s goal. Despite these caveats, we

believe that our design decision to expose a little hot

data affords important practical benefits that would be

difficult to achieve with a fully protected design. For

example, unlike fully differentially private designs [48],

our scheme allows training of unchanged ML algorithms

with limited impact on their accuracy. Unlike encrypted

databases [49], [50], our scheme provides performance

and scalability close to—or even better than—running

on the raw, fully exposed data.

VII. Related Work
Closest works. Closest to our work are the building

blocks we leverage for Pyramid’s selective data pro-

tection architecture: count featurization and differen-

tial privacy. Count featurization has been developed

and adopted to improve performance and scalability of

certain learning systems. We are the first to retrofit

it to improve data protection, defining the protection

guarantees that can be achieved and implementing them

without sacrificing accuracy.

To implement these guarantees, we leverage differen-
tial privacy theory [51]. The typical threat model for

differentially private systems [28], [48], [52] is different

from ours: they protect user privacy in the results of

a publicly released computation, whereas Pyramid aims

to protect data inside the system, by minimizing access

to historical data so its accesses can be controlled and

monitored more tightly. For example, differential privacy

frameworks (e.g., PINQ [28] and Airavat [52], adding

privacy to LINQ and MapReduce respectively) ensure

that the result of a query will be differentially private.

However, these systems require full and permanent ac-

cess to the data. The same holds for privacy-preserving

recommender systems [48]. Pan-privacy [42], [53], [54]

is a variant of differential privacy that holds even when

an adversary can observe the system’s internal state, a

threat model close to ours.

Pyramid is the first to combine count featurization

with differential privacy for protection.1 This raises sig-

nificant challenges at scale, including rampant noise with

large numbers of count tables and damaging interference

of differential privacy noise with count-min sketches.

To address these challenges, our design includes two

techniques: noise weighting and private count-median

sketches. Prior art, such as iReduct [55] or GUPT [56],

included a noise weighting scheme to allocate less of

the privacy budget to queries with larger results. To our

knowledge, we are the first to point out the limitations

of CMS integration with differential privacy and propose

private count-median sketches as a solution.

Alternative protection approaches. Many alternative

protection models exist. First, many companies enforce

a data retention period. However, because of the data’s

perceived benefit, most companies configure long peri-

ods. Google maintains data for 9-18 months [57]. Pyra-

mid limits the data’s exposure for as long as the company

decides to retain it. Second, some companies anonymize
data: Google erases the last byte of IP addresses in

search logs after 6 months [58]. Anonymization provides

very weak protection [59]. Pyramid leverages differential

privacy to provide rigorous protection guarantees. Third,

1Azure applies tiny levels of Laplacian noise to count featurization
to avoid overfitting, but such low levels neither provide protection nor
raise the challenges we encountered.

92

some companies enforce access controls on the data.

Google’s Sawmill strips out sensitive data before return-

ing results to processes lacking certain permissions [60].

Given the push toward increased developer access to

data [5], [6], Pyramid provides additional benefit by

protecting data on a needs basis.

Data minimization. Compact data representation is an

important topic in big data systems, and many techniques

exist for different scenarios. Sketching techniques com-

pute compact representations of the data that support

queries of summary statistics [26], large-scale regres-

sion analysis [61], privacy preserving aggregation [62];

streaming/online algorithms [63], [64] process the data

using bounded memory, retaining only the information

relevant for the problem at hand; dimensionality reduc-
tion techniques [10] find a low-dimensional, faithful rep-

resentation of the raw data, according to different mea-

sures of faithfulness; hash featurization [11] compacts

high-cardinality categorical variables; coresets [65], [66]

are data subsets giving a good approximation for a

given computation; autoencoders attempt to learn a

compressed identity function [67].

We believe that this rich literature should be inspected

for candidates for selective data protection. Not all

mechanisms will be suitable. For example, according

to our evaluation (Fig. 4), hash featurization [11] does

not yield sufficient training set reduction. And none of

the mechanisms listed above appear to support workload

evolution. The next section presents a few promising

techniques we have identified.

VIII. Closing: A Vision for Selectivity
We close with our vision for selectivity in big data

systems. Today’s indiscriminate data collection, long-

term archival, and wide-access practices are risky and

unsustainable. It is time for a more rigorous and selective

approach to big data collection, access, and protection so

that its benefits can be reaped without undue risks.

Our vision (illustrated on

the right) involves architect-

ing data-driven systems to

permit clean separation of

data needed by current and

evolving workloads, from

data collected and archived for possible future needs. The

former should be minimized in size and time span (hence

the pyramid shape). The latter should be protected vigor-

ously and only tapped under exceptional circumstances.

These requirements should be met without disrupting

functional properties of the workloads.

The notion of selectivity applies to many big data

workloads, including ML and non-ML, and there are per-

haps multiple ways to conceptualize the data selectivity

problem. For ML workloads, we find that a productive

way of identifying potential mechanisms is to model the

problem as a training set minimization problem. This

reveals a rich set of mechanisms that might be leveraged

to achieve data selectivity. We have identified several

promising mechanisms, which we hope to incorporate

into Pyramid for wider workload coverage:

• Vector quantization (VQ). VQ [12] is a family of tech-

niques used to compactly represent high dimensional,

real-valued feature vectors. At a high level, VQ computes

a small subset of vectors, known as the codebook or the

centroids, that are representative of the entire set of input

vectors (e.g., historical data).

• Sampling. Uniform random sampling and more ad-

vanced techniques like herding [68] can be used to

maintain a representative sample of the historical data.

This sample can be combined with in-use data to form a

training set. Compared to VQ, which often makes certain

assumptions about the underlying data (e.g., that it forms

clusters), sampling techniques are more general.

• Active learning. Active learning algorithms [15] tell

users what specific data points they need for improved

accuracy. Originally built to decrease manual labeling,

they may be valuable to selective data collection.

We leave investigation of such mechanisms for future

work. The key challenge will be to identify the kinds of

protection and privacy guarantees achievable with these

mechanisms, and how to effectively implement them.

This paper provides a first blueprint for this process.

IX. Acknowledgements
We thank our shepherd, Ilya Mironov, and the anony-

mous reviewers for their valuable feedback. We thank

Alekh Agarwal, Markus Cozowicz, Daniel Hsu, Angelos

Keromytis, Yoshi Kohno, John Langford, and Eugene

Wu for their feedback and advice. This work was

supported in part by NSF grants #CNS-1351089 and

#CNS-1514437, a Sloan Faculty Fellowship, a Microsoft

Faculty Fellowship, and a Google Ph.D. Fellowship.

References
[1] J. Eng, “OPM hack: Government finally starts notifying 21.5

million victims,” http://www.nbcnews.com/tech/security/opm-
hack-government-finally-starts-notifying-21-5-million-victims-
n437126, 2015.

[2] T. Gryta, “T-Mobile customers information compromised by data
breach at credit agency,” http://www.wsj.com/articles/experian-
data-breach-may-have-compromised-roughly-15-million-
consumers-1443732359, 2015.

[3] S. Gorman, “NSA officers spy on love interests,”
http://blogs.wsj.com/washwire/2013/08/23/nsa-officers-
sometimes-spy-on-love-interests/, 2013.

[4] C. Ornstein, “Celebrities medical records tempt hospital workers
to snoop,” https://www.propublica.org/article/clooney-to-
kardashian-celebrities-medical-records-hospital-workers-snoop,
2015.

[5] D. Wilson, “Hearst’s VP of data on connecting the data dots,”
http://www.pubexec.com/article/hearsts-vp-data-connecting-
data-dots/, 2014.

93

[6] L. Rao, “Google consolidates privacy policy; will combine user
data across services,” http://techcrunch.com/2012/01/24/google-
consolidates-privacy-policy-will-combine-user-data-across-
services/, 2012.

[7] O. Chiu, “Introducing Azure Data Lake,” https://azure.microsoft.
com/en-us/blog/introducing-azure-data-lake/, 2015.

[8] B. Schneier, “Data is a toxic asset,” https://www.schneier.com/
blog/archives/2016/03/data is a toxic.html, 2015.

[9] Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani, R. Geambasu,
and N. Sarda, “CleanOS: Mobile OS abstractions for managing
sensitive data,” in Proc. of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2012.

[10] C. J. Burges, Dimension reduction: A guided tour. Now
Publishers Inc, 2010.

[11] Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, and
S. Vishwanathan, “Hash kernels for structured data,” The Journal
of Machine Learning Research, vol. 10, pp. 2615–2637, 2009.

[12] A. Gersho and R. M. Gray, Vector quantization and signal
compression. Springer Science & Business Media, 2012, vol.
159.

[13] A. Srivastava, A. C. König, and M. Bilenko, “Time adaptive
sketches (ada-sketches) for summarizing data streams,” in ACM
SIGMOD Conference. ACM, June 2016.

[14] X. Zhu, “Semi-supervised learning literature survey,” 2006.
[15] B. Settles, “Active learning,” Synthesis Lectures on Artificial

Intelligence and Machine Learning, vol. 6, no. 1, pp. 1–114,
2012.

[16] O. Chapelle, E. Manavoglu, and R. Rosales, “Simple and scalable
response prediction for display advertising,” ACM Trans. Intell.
Syst. Technol., vol. 5, no. 4, pp. 61:1–61:34, Dec. 2014.

[17] Y. Chen, D. Pavlov, and J. F. Canny, “Large-scale behavioral tar-
geting,” in Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD
’09. New York, NY, USA: ACM, 2009, pp. 209–218.

[18] W. Li, X. Wang, R. Zhang, Y. Cui, J. Mao, and R. Jin, “Exploita-
tion and exploration in a performance based contextual advertis-
ing system.” in KDD, B. Rao, B. Krishnapuram, A. Tomkins, and
Q. Yang, Eds. ACM, 2010, pp. 27–36.

[19] M. Bilenko, “Learning with counts,” In preparation, 2016.
[20] AzureML, “Build counting transform,” https://msdn.microsoft.

com/en-us/library/azure/mt243845.aspx, 2016.
[21] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating

noise to sensitivity in private data analysis,” in Proceedings of
the Third Conference on Theory of Cryptography, ser. TCC’06.
Berlin, Heidelberg: Springer-Verlag, 2006, pp. 265–284.

[22] P. Gutmann, “Secure deletion of data from magnetic and solid-
state memory,” in Proc. of USENIX Security, 1996.

[23] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society. Series B (Methodologi-
cal), pp. 267–288, 1996.

[24] A. Agresti, Categorical Data Analysis, ser. Wiley Series in
Probability and Statistics. Wiley, 2013.

[25] D. Crankshaw, P. Bailis, J. E. Gonzalez, H. Li, Z. Zhang, M. J.
Franklin, A. Ghodsi, and M. I. Jordan, “The missing piece in
complex analytics: Low latency, scalable model management and
serving with Velox,” CoRR, vol. abs/1409.3809, 2014.

[26] G. Cormode and S. Muthukrishnan, “An improved data stream
summary: the count-min sketch and its applications,” Journal of
Algorithms, vol. 55, no. 1, pp. 58–75, 2005.

[27] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent
items in data streams,” in Proceedings of the 29th International
Colloquium on Automata, Languages and Programming, ser.
ICALP ’02. London, UK, UK: Springer-Verlag, 2002, pp. 693–
703.

[28] F. D. McSherry, “Privacy integrated queries: An extensible plat-
form for privacy-preserving data analysis,” in Proceedings of the
2009 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’09. New York, NY, USA: ACM, 2009,
pp. 19–30.

[29] C. Dwork and A. Roth, “The algorithmic foundations of
differential privacy,” Foundations and Trends R© in Theoretical

Computer Science, vol. 9, no. 3–4, pp. 211–407, 2014. [Online].
Available: http://dx.doi.org/10.1561/0400000042

[30] K. Nissim, S. Raskhodnikova, and A. Smith, “Smooth sensitivity
and sampling in private data analysis,” in Proceedings of the
Thirty-ninth Annual ACM Symposium on Theory of Computing,
ser. STOC ’07. New York, NY, USA: ACM, 2007, pp.
75–84. [Online]. Available: http://doi.acm.org/10.1145/1250790.
1250803

[31] I. Guyon and A. Elisseeff, “An introduction to variable and
feature selection,” The Journal of Machine Learning Research,
vol. 3, pp. 1157–1182, 2003.

[32] J. Langford, L. Li, and A. Strehl, “Vowpal Wabbit online learning
project,” 2007.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[34] “Criteo display advertising challenge,” https://www.kaggle.com/
c/criteo-display-ad-challenge, 2014.

[35] https://www.kaggle.com/c/criteo-display-ad-
challenge/discussion/10429#54591, 2014.

[36] “Criteo releases its new dataset,” http://labs.criteo.com/2015/03/
criteo-releases-its-new-dataset/, 2015.

[37] F. M. Harper and J. A. Konstan, “The MovieLens datasets:
History and context,” ACM Trans. Interact. Intell. Syst., vol. 5,
no. 4, pp. 19:1–19:19, Dec. 2015.

[38] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-
bandit approach to personalized news article recommendation,”
in Intl. World Wide Web Conf. (WWW), 2010.

[39] M. Dudı́k, J. Langford, and L. Li, “Doubly robust policy evalu-
ation and learning,” in Intl. Conf. on Machine Learning (ICML),
2011, pp. 1097–1104.

[40] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization tech-
niques for recommender systems,” Computer, no. 8, pp. 30–37,
2009.

[41] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. At-
tenberg, “Feature hashing for large scale multitask learning,”
in Proceedings of the 26th Annual International Conference on
Machine Learning. ACM, 2009, pp. 1113–1120.

[42] T.-H. H. Chan, E. Shi, and D. Song, “Private and continual release
of statistics,” ACM Trans. Inf. Syst. Secur., vol. 14, no. 3, pp.
26:1–26:24, Nov. 2011.

[43] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, 2nd ed. Pearson Education, 2003.

[44] J. Langford and T. Zhang, “The Epoch-Greedy Algorithm for
Contextual Multi-armed Bandits,” in Advances in Neural Infor-
mation Processing Systems (NIPS), 2007.

[45] A. Agarwal, D. Hsu, S. Kale, J. Langford, L. Li, and R. Schapire,
“Taming the monster: A fast and simple algorithm for contextual
bandits,” in Intl. Conf. on Machine Learning (ICML), 2014.

[46] A. Agarwal, S. Bird, M. Cozowicz, L. Hoang, J. Langford,
S. Lee, J. Li, D. Melamed, G. Oshri, O. Ribas, S. Sen, and
A. Slivkins, “A multiworld testing decision service,” CoRR, vol.
abs/1606.03966, 2016.

[47] L. Li, W. Chu, J. Langford, and X. Wang, “Unbiased offline
evaluation of contextual-bandit-based news article recommenda-
tion algorithms,” in Intl. Conf. on Web Search and Data Mining
(WSDM), 2011.

[48] F. McSherry and I. Mironov, “Differentially private recommender
systems: Building privacy into the Netflix prize contenders,” in
Proceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 2009, pp.
627–636.

[49] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: Protecting confidentiality with encrypted query pro-
cessing,” in Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles. ACM, 2011, pp. 85–100.

94

[50] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich, “Processing
analytical queries over encrypted data,” in Proceedings of the
VLDB Endowment. VLDB Endowment, 2013.

[51] C. Dwork, “Differential privacy,” in Automata, languages and
programming. Springer, 2006, pp. 1–12.

[52] I. Roy, S. T. Setty, A. Kilzer, V. Shmatikov, and E. Witchel,
“Airavat: Security and privacy for MapReduce.” in NSDI, vol. 10,
2010, pp. 297–312.

[53] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum, “Differential
privacy under continual observation,” in Proceedings of the forty-
second ACM symposium on Theory of computing. ACM, 2010,
pp. 715–724.

[54] D. Mir, S. Muthukrishnan, A. Nikolov, and R. N. Wright, “Pan-
private algorithms via statistics on sketches,” in Proceedings
of the thirtieth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems. ACM, 2011, pp. 37–48.

[55] X. Xiao, G. Bender, M. Hay, and J. Gehrke, “iReduct: Differential
privacy with reduced relative errors,” in Proceedings of the 2011
ACM SIGMOD International Conference on Management of
data. ACM, 2011, pp. 229–240.

[56] P. Mohan, A. Thakurta, E. Shi, D. Song, and D. Culler, “GUPT:
Privacy preserving data analysis made easy,” in Proceedings of
the 2012 ACM SIGMOD International Conference on Manage-
ment of Data. ACM, 2012, pp. 349–360.

[57] N. Anderson, “Why Google keeps your data forever, tracks you
with ads,” http://arstechnica.com/tech-policy/2010/03/google-
keeps-your-data-to-learn-from-good-guys-fight-off-bad-guys/,
2010.

[58] P. Fleischer, “The European Commision’s data protection find-
ings,” http://googlepublicpolicy.blogspot.com/2008/04/european-
commissions-data-protection.html, 2008.

[59] A. Narayanan and V. Shmatikov, “Robust de-anonymization of
large sparse datasets,” in Proceedings of the 2008 IEEE Sympo-

sium on Security and Privacy, ser. SP ’08. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 111–125.

[60] A. Becker, “Replacing Sawzall a case study in domain-specific
language migration,” http://www.unofficialgoogledatascience.
com/2015/12/replacing-sawzall-case-study-in-domain.html,
2015.

[61] M. W. Mahoney, “Randomized algorithms for matrices and data,”
Foundations and Trends R© in Machine Learning, vol. 3, no. 2,
pp. 123–224, 2011.

[62] L. Melis, G. Danezis, and E. De Cristofaro, “Efficient private
statistics with succinct sketches,” in Network and Distributed
System Security Symposium–NDSS 2016, 2016.

[63] S. Muthukrishnan, Data streams: Algorithms and applications.
Now Publishers Inc, 2005.

[64] S. Shalev-Shwartz, “Online learning and online convex optimiza-
tion,” Foundations and Trends in Machine Learning, vol. 4, no. 2,
pp. 107–194, 2011.

[65] D. Feldman, A. Fiat, H. Kaplan, and K. Nissim, “Private core-
sets,” in Proceedings of the forty-first annual ACM symposium
on Theory of computing. ACM, 2009, pp. 361–370.

[66] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan, “Geometric
approximation via coresets,” Combinatorial and computational
geometry, vol. 52, pp. 1–30, 2005.

[67] I. Goodfellow, Y. Bengio, and A. Courville, “Deep learning,”
2016, book in preparation for MIT Press. [Online]. Available:
http://www.deeplearningbook.org

[68] Y. Chen, M. Welling, and A. Smola, “Super-samples from kernel
herding,” in Proceedings of the Twenty-Sixth Conference Annual
Conference on Uncertainty in Artificial Intelligence (UAI). Cor-

vallis, Oregon: AUAI Press, 2010, pp. 109–116.

95

