
Policy Enforcement upon Software Based on
Microservice Architecture

Tugrul Asik
Computer Engineering Department

Yildiz Technical University

Istanbul, Turkey

Email: tugrulasik@gmail.com

Yunus Emre Selcuk
Computer Engineering Department

Yildiz Technical University

Istanbul, Turkey

Email: yselcuk@yildiz.edu.tr

Abstract—Microservice is an architectural style that has re-
cently started gaining popularity to become a new architectural
phenomenon. Microservice architecture provides new opportuni-
ties to deploy scalable, language free and dynamically adjustable
applications. This type of applications consist of hundreds or
more of service instances. So that, management, monitoring,
refactoring and testing of applications are more complex than
monolithic applications. Therefore, some metrics and policies
for measuring the quality of an application which is based on
microservice architecture is needed. Moreover, automated tools
are needed to carry out those tasks and enforce those policies.
This work represents such metrics and policies. Additionally, an
automated tool is implemented for automatic analysis of those
metrics and policies upon software.

Index Terms—Microservice architecture, software metrics,
software policies, software quality, static analysis tool

I. INTRODUCTION

In this study, microservice architecture was chosen to work

on in order to measure software quality with newly defined

metrics and policies. A Microservice based architecture is

defined as a software architecture pattern for development of

distributed applications, where the application is comprised

of a number of smaller independent components; these com-

ponents are small application in-themselves [1]. This archi-

tecture style has gained popularity over the last few years to

describe a particular way of designing software applications

as suites of independently deployable services [2]. There are

certain common characteristics around organization around

business capability, automated deployment, built released with

automated processes, intelligence in the endpoints, and de-

centralized control of languages and data [2][3]. On the

other hand, there is no precise definition of this architectural

style and mentioned benefits come with challenges, such as

discovering services over the network, security management,

communication optimization, data sharing and performance

[4]. Furthermore, team size, culture, skills, productivity etc.

have an impact on software development [5]. Unfortunately,

there is no strict rule about these challenges, there are some

practices that have been proven in real-world systems. Accord-

ing to this characteristic features and trade offs, we studied on

defining new metrics and policies to measure software quality

and suitability for microservice practices. Metrics were defined

to measure service size and inter-service communication.

In order to check compliance with these metrics and poli-

cies, we have implemented static analysis tool to analyze

software based on microservice architecture. Finally, we have

developed a sample ticket selling application to evaluate these

metrics and policies, as well as to test our tool for functionality,

not efficiency or analysis speed.

This paper is organized as follows. Section II describes

the related works. Section III describes the details of defined

metrics and policies. Section IV introduces our static analyzer

tool. Section V describes the details about ticket selling ap-

plication and its architecture. Section VI combines the results

about experimental study. Finally, Section VII presents our

conclusions.

II. RELATED WORKS

There are many metrics and policies to detect code anoma-

lies, antipatterns and architectural problems for software prod-

ucts. In ISO9126-1 specification which represents the lat-

est (and ongoing) research into characterizing software for

the purposes of software quality control, software quality

assurance and software process improvement (SPI) 6 main

quality characteristics are identified. These are functionality,
reliability, usability, efficiency, maintainability, portability. In

object oriented programming; coupling, cohesion, encapsu-

lation, inheritance and complexity are some of the popular

metrics [6].

Another work relates architecture technical debt (i.e., result

of architectural smells) with modularity metrics in order

to estimate quality attributes [7] such as evolvability and

maintainability. Moreover, especially in papers about mi-

croservices concerning scalability, reusability, maintainability,

manageability and deployment quality attributes also used

component/container, class and deployment UML diagrams

to demonstrate the potential of implementing those attributes.

Instance graphs/type graphs enabled to trace and validate

quality attributes of health management, manageability and

deployment automation. Dependency graphs co-occured with

independence and maintainability quality attributes and also

used to trace and test them [8].

In industry, real time monitoring metrics on a running

system are popular, also important. Teams benefit from tools

[9] to measure performance among service calls, to detect

978-1-5090-5756-6/17/$31.00 ©2017 IEEE
SERA 2017, June 7-9, 2017, London, UK

283

service failures and to track end to end business logic flow.

Prometheus, AWS Cloud Watch, Metrics are some of the tools

for these purposes. [10].

III. METRICS AND POLICIES

Software metrics is defined by measuring of some prop-

erty of a portion of software or its specifications. Software

metrics provide quantitative methods for assessing the soft-

ware quality [11]. Metrics are very useful for optimizing the

performance of the software, debugging, managing resources,

quality assurance, furthermore they leads to higher organi-

zational performance [12] and visible results (such as those

provided by measurements) are considered critical to success

of any improvement plan, keeping participants [13] focused

and motivated.

There is no strict policies in microservice architecture for

service size, service call hierarchy, service discovery and

security about software quality. Requirements, business flow

changes, technology stack, team size [5], culture etc. have an

impact on software.

In our study, there are three category for measuring and trac-

ing the software quality in order to build suitable products for

microservice architecture. First one is about measurement of

service size, second one is about inter-service communications

and the last one is about bad practices.

A. Measurement of Service Size

There are many methods to measure size of a software

such as Source Lines Of Code (SLOC), Logical Lines Of

Code (LLOC), COSMIC, Use Case-based etc. [14][15]. In

order to measure a microservice size, our approach is that we

count resources and clients which responsible for interactions

between microservices or external services.

1) Resource Count (RC): Resource is defined as that a

network data object or service that can be identified by a URI

[16]. It represents a method which handles received requests

to a service identified by a URI. Results will be the same

for each service which is coded with any other programming

language for this metric. Also it gives us the ability of tracking

the service size changes or it can be an indicator for the need

of splitting service into two or more smaller services.

2) Client Count (CC): Client is defined as that a program

that establishes connections for the purpose of sending re-

quests [16]. Client Count represents counts of HTTP service

calls identified by a URI. Results will be the same for each

service which is coded with any other programming language

for this metric. Also, similar to the resource count criteria,

the client count criteria gives us the ability of tracking the

service resource changes and it can be an indicator for the

need of splitting service into two or more smaller services.

Furthermore, it’s important for a service to know that how

many services it needs in order to work properly.

Size (S) of a microservice is sum of these two metrics

defined as Resource Count (RC) and Client Count (CC),
S = RC + CC. To describe size of a service in more

detail, interactions of Sample Service is shown in Fig.1.

Fig. 1. Snippet-1 for service interactions of Sample Service

The service has 3 resources to handle received requests.

These are ”GET sampleservice/samples”, ”POST sampleser-
vice/samples”, ”GET sampleservice/samples/id/:id”, R-1, R-2

and R-3 respectively. Moreover, Sample Service has 2 clients

to send requests to other microservices that are mentioned

as Other Service1 and Other Service2. Clients are ”GET
otherservice1/others” and ”GET otherservice2/others/id/:id”.

According to prementioned service size definition, size of the

Sample Service is 5 (5 = 3 + 2).

B. Inter-Service Communication Compatibility

Microservices send messages to each other over HTTP[2].

They need to know each other and they have to send messages

to each other in acceptable format with valid (existing) URIs

in practice. Our approach in order to analyze compatibility

is counting the unused resources and unreachable endpoints.

Virtually prepared inter-service connection dependency graph

which shows service interactions between services can be used

to collect results for defined metrics. In that graph, URIs,

transferred entities [16] and media types are used for mutual

relation matching criteria.

1) Unused Resource Count (URC): It represents that a URI

which is implemented in a microservice to handle received

HTTP requests that isn’t used by any other microservice in

application domain. In other words, there is an open door in

the microservice and nobody goes through it, but somebody is

able to. This is a type of unused functionality, also potential

security risk. Additionally, ideal architectural design should

have zero unused resource count.

2) Unreachable Endpoint Count (UEC): It represents that a

URI which is defined in a microservice to send HTTP request

to an other microservice that is not exist or not matching to

any URI criteria in application domain. Service request will

face a problem and it will return wrong response to requester.

It may cause reliability and functionality problems.

To describe inter-service communication compatibility in

more detail shortly, artificially implemented case is shown in

Fig.2. Sample Service has one resource mentioned as R-4 that

it is not used anymore by any other service, but It is still in

source code. So that, Unused Resource Count (URC) is 1 for

Sample Service. Moreover, Sample Application has one client

284

Fig. 2. Snippet-2 for service interactions of Sample Service

mentioned as C-3 to send a request to an other service but

URI (end point) is not correct or is not implemented yet by

any service. It means that Unreachable Endpoint Count(UEC)

is 1 for Sample Service. In short, URC is 1 and UEC is 1 for

that sample scenario.

General purpose of these metrics in this part is that to

improve maintainability and reliability of software. In other

words, we want to avoid bad coding, refactoring and design

practices. Moreover, our other purpose is to keep inter-service

communication under control and make software less affected

by continuous source code changes.

C. Bad Practices

The following practices are discouraged in microservice im-

plementations. Interfaces provided by microservices should be

discoverable, consumer of the interfaces must be able to look

up, find the interfaces without having explicitly knowledge of

the underlying technology implementation or location [16].

1) Static URI (SURI): This practice represents the client

URI to send messages to an other microservice that is defined

in a the service statically. In other words, service URI of an

other service is hard coded into source code. For horizontal

scaling, services live up dynamically. So that, service URI

changes dynamically, too. Because of these reasons, any

microservice should not has static IP address of an other

service. It may causes communication problems.(e.g static IP

http://10.10.11.12:8080/sampleservice/sample)

2) Long URI (LURI): Technically, according to RFC-2616

[16], the HTTP protocol does not place any a priori limit on

the length of a URI. Services should handle received requests

by meaningful and short URIs. In microservice architecture,

URIs are important for service discovery and usability, also

connectivity. It should not be too long and it should be easy

discoverable, meaningful and clear.

Policies. According to these metrics in this section, a set

of rule was defined. Service size should be less than 15,

Unused Resource Count(URC) and Unreachable Endpoint

Count(UEC) should be 0. Services should not have any

static IP addresses of other services. Service URIs to provide

functionalities should not be more than 50 characters including

dynamic parameter keywords.

IV. STATIC CODE ANALYZER TOOL

Program analysis technology has been proposed to detect

bugs in software. Based on whether the target program will

be running, program analysis can be divided into dynamic

program analysis and static analysis [17]. Static code analysis

method was chosen to analyze specified metrics and a static

analyzer tool was developed in this direction. Static analysis

tools provide a means for analyzing code without having to run

the code, helping ensure higher quality software throughout the

development process. There are a variety of ways to perform

automatic static analyses, including at the developers request,

continuously while creating the software in a development

environment [18]. There are many approaches for analyzing

software to find bugs, bad smells and to measure software

quality.

The tool takes source code written in Java as input, analyzes

it and displays the results for specified metrics and policies.

Aforementioned Java input was developed with Dropwizard

Framework. JavaParser library was used for parsing the code

to get Abstract Syntax Tree (AST). AST is reduced, and then

every reduced part is assigned to an object which represents

attributes for aforementioned metrics. The reduced information

includes HTTP method, Java method name, line location

in Java file etc., including raw AST in case of customized

information may be needed. List of microservices is defined

in a configuration file which identified by the tool. The

tool analyses all defined microservices together to list metric

results.

V. SAMPLE APPLICATION SETUP

Ticket Selling application for cinema and theatre is imple-

mented as microservices with some bugs and bad practices so

that it can be analyzed by our static analyzer tool. There are

eight services in the sample application. On the other hand,

real world applications have usually more services depending

on the project requirements. Our services are API gateway,

salon, ticket, credit card, debit card, coupon, SMS and mail

service. Also, we have two external service providers named as

Banks and Sender Provider. These are for payment, SMS and

mail operations respectively. They are out of scope for static

analysis. High level application architecture is given in Fig. 3.

Moreover, services are independent and they send messages

to each other over HTTP on demand.

We assumed that Domain names (DNS) are dynamic and

discoverable by each service in the application domain excepts

bad practices scenarios. Our RESTful API for messaging

is suitable for Richardson Maturity Level-II which uses the

HTTP verbs[19] [20]. Furthermore, data layers of services are

designed suitable for microservice architecture, decentralized.

Information about microservices and labeled policy checks
like Unused Resource are given in service details. RESTful

API paths(URIs) are formatted as declarative with the format

”HTTP Method + WhiteSpace + Service URI” e.g GET
sampleservice/samples. Double dot (:) is used for prefix for

dynamic parameters e.g :id. Resource and client lists are

defined in details of each microservice.

285

Fig. 3. High level microservice architecture for service interactions

API Gateway
It’s a service designed for a frontier handler of all requests

from clients. Services aren’t called directly from external

clients. Some services are in private side. So that, we assumed

that API gateway includes all endpoints of these two services,

Salon and Ticket services.

Salon Service
It’s the service designed for providing information about

salons and shows.

Resources are;

• GET /salonservice/salons

• GET /salonservice/salons/:id

• GET /salonservice/salons/cities/:cid

• PUT /salonservice/salons/:id/seats/:sid

• GET /salonservice/salons/cities/:cid:/district/:did

/category/:caid/time/from/:fromDate/to/:toDate/... (Long
URI)

Ticket Service
It’s the service designed for creating tickets.

Resources are;

• GET /ticketservice/tickets

• GET /ticketservice/tickets/:id

• GET /ticketservice/tickets/seats/:id

• POST /ticketservice/tickets

• PUT /ticketservice/tickets

• DELETE /ticketservice/tickets/:id

Clients are;

• PUT /salonservice/salons/:id/seats/:sid

• POST /creditcardservice/cards

• POST /debitcardservice/cards

• PUT /couponservice/coupons

• POST /smsservice/smses

• POST /pushnotificationservice/notification (Unreachable)

• POST http://10.11.12.13/mailservice/mails (static URI)

Credit Card Service
It’s the service that accepts payment with credit card. It

doesn’t have its own database. Assumed that it is connected

with the banking APIs.

Resources are;

• POST /creditcardservice/cards

• POST /creditcardservice/visa (unused resource)

• POST /creditcardservice/master (unused resource)

• POST /creditcardservice/americanexpress (unused re-
source)

Debit Card Service
It’s the service that accepts payment with debit card. It

doesn’t have its own database. Assumed that it is connected

with the banking APIs.

Resources are;

• POST /debitcardservice/cards

Coupon Service
It’s the service that accepts payment by coupon code.

Resources are;

• PUT /couponservice/coupons

• GET /cooponservice/coupons (unused resource)

SMS Service
It’s the service to send short messages.

Resources are;

• POST /smsservice/smses

Mail Service
It’s the service to send e-mails.

Resources are;

• POST /mailservice/mails

VI. EVALUATING THE RESULTS

Bad practices and detectable cases are created on purpose

in the Ticket Selling application. Analysis results are shown

in Table I, these results were listed by our analyzer tool.

Ticket Service has 6 resources, Salon Service has 5, Credit

Card Service has 4, Coupon Service has 2 and others have

just 1 resource(s). Furthermore, Ticket Service has 7 clients

and others have 0 client excepts external interactions. From

this viewpoint, Ticket Service needs other services to work

properly.

We see that Ticket Service is the biggest service by making

use of the referred definition of microservice size. It is suitable

for our policy(size should be less than 15) about microservice

size. On the other hand, results do not show that Ticket Service

has more source lines of code than other services or Mail

Service has less logical lines of code than Salon Service.

286

TABLE I
METRIC BASED ANALYSIS RESULTS OF TICKET SELLING APPLICATION

Name RC CC Size URC UEC SURI LURI

Salon 5 0 5 0 0 0 1
Ticket 6 7 13 0 1 1 0

Credit Card 4 0 4 3 0 0 0
Debit Card 1 0 1 0 0 0 0

Coupon 2 0 2 1 0 0 0
SMS 1 0 1 0 0 0 0
Mail 1 0 1 0 0 0 0

Our measurement of size definition is not dependent with other

size measurement methods.

In Credit Card and Coupon services, there are resources

which are not used by any other microservice. That case

breaks our rules, services should have 0 unused resource.

There are many possible scenarios for that case. One of the

these scenarios is that developer may forget to remove or

refactoring the unused functionalities, other one is that code

bases of these services may be released earlier than others.

Ticket Service has a client but it does not exist in the appli-

cation domain. It includes a client to send notifications with

the request POST /pushnotificationservice/notifications. That

case may cause functionality problems. Possible scenarios are

that the URI may not be written correctly or push notification

service may be removed from service list. But, Ticket Service

still has the unreachable client into the source code. Even this

client does not affect anything bad, it needs to be removed in

order to make source code clean and readable.

Salon Service has a resource to handle complex queries,

but its URI violate our URI length policy. It is longer than 50

characters. It should be shorter if it is possible. if not, it can

be marked as an exception.

Ticket Service has a client to send request to Mail Ser-

vice. Client URI is defined as hard coded. The URI is

http://10.11.12.13/mailservice/mails. If Mail Service lives up

in an other URI, Ticket Service will have a mail sending

problem. It means that you may fail in production just because

of a hard coded URI. Moreover, It’s hard to detect quickly

these type of hard coded configuration problems. So that,

Static URI(SURI) metric which is categorized as bad practices

may save the day.

We can generate many scenarios for policy violations

mentioned above. It is important to understand that early

detections and automated analyze with tuned policies is helpful

to manage software quality.

VII. CONCLUSION

In this paper, according to the characteristic features of

microservice architecture we discovered some gray areas.

From this viewpoint, new metrics and policies were defined.

These are Resource Count (RC), Client Count (CC) are defined

for measurement of service size; Unused Resource Count
(URC), Unreachable Endpoint Count (UEC) are defined for

service interconnection compatibility; Static URI (SURI), Long
URI (LURI) are defined for bad practices. Sample application

were implemented with some bugs and bad practices on

purpose. In order to compliance with these metrics, software

were analyzed by our static analysis tool. Experimental results

and expectations were compared and evaluated. Results are as

same as expected.
Although sample application is a small application, many

problematic scenarios are generated and they are detected

by the tool. There are more microservices than our sample

application in real world. It is important to understand that

automated software quality management is important to make

software under control. Also running tuned policies upon a

software makes it more visible and observable to prevent bugs

and bad smells.

REFERENCES

[1] Dmitry Namiot, Manfred Sneps-Sneppe, ”On Microservices Architec-
ture”, International Journal of Open Information Technologies ISSN:
2307-8162, vol. 2, no. 9, pp. 24-27, 2014.

[2] James Lewis, Martin Fowler, ”Microservices”,
https://martinfowler.com/articles/microservices.html, 2014. [Online;
accessed 16-Mar-2017].

[3] I. Nadareishvili et al., ”Microservice Architecture: Aligning Principles,
Practices and Culture”, OReilly, 2016.

[4] Johannes Thnes, ”Microservices”, IEEE Software, vol. 32, no. 1, pp. 116-
116, 2015.

[5] P. Clarke, R. V. O’Connor, ”Changing Situational Contexts Present a
Constant Challenge to Software Developers.” in Systems Software and
Services Process Improvement, Springer International Publishing, pp.
100-111, 2015.

[6] ISO 9126 Software Quality Characteristics, ”An overview of the ISO
9126-1 software quality model definition, with an explanation of the major
characteristics”, http://www.sqa.net/iso9126.html. [Online; accessed 16-
Mar-2017].

[7] Z. Li, P.Liang, P. Avgeriou, N. Guelfi, and A. Ampatzoglou. ”An
empirical investigation of modularity metrics for indicating architectural
technical debt”. In 10th International ACM SIGSOFT Conference on
Quality of Software Architectures, QoSA14, 2014.

[8] Nuha Alshuqayran, Nour Ali, Roger Evans, A Systematic Mapping Study
in Microservice Architecture, ISBN: 978-1-5090-4781-9, 4-6 Nov. 2016.

[9] Chris Richardson, Application Metrics,
http://microservices.io/patterns/observability/application-metrics.html.
[Online; accessed 16-Mar-2017].

[10] ”AWS Cloud Watch”, https://aws.amazon.com/cloudwatch. [Online; ac-
cessed 16-Mar-2017].

[11] J. Verner and G. Tate, A software size model, IEEE Transaction on
Software Engineering, vol. 18, no. 4, 1992.

[12] Gopal, A., Krishnan, M., Mukhopadhyay, T., Goldenson, D.R. Measure-
ment programs in software development: determinants of Success, IEEE
Trans. Softw. Eng., 2002, 28, pp. 863 875.

[13] Iversen, J., Ngwenyama, O. , Problems in measuring effectiveness in
software process improvement: a longitudinal study of organizational
change at Danske data, Int. J. Inf. Manage., 26, (1), pp. 30 43, 2006.

[14] Charles Symons, Alain Abran, Christof Ebert, Frank Vogelezang, Mea-
surement of Software Size: Advances Made by the COSMIC Community,
IWSM-MENSURA, 2016.

[15] Software sizing, https://en.wikipedia.org/wiki/Software sizing. [Online;
accessed 16-Mar-2017].

[16] RFC2616 Specification, ”Hypertext Transfer Protocol HTTP/1.1”,
https://tools.ietf.org/html/rfc2616. [Online; accessed 16-Mar-2017].

[17] Hongliang Liang, Lei Wang, Dongyang Wu, Jiuyun Xu, MLSA: a static
bugs analysis tool based on LLVM IR, International Journal of Networked
and Distributed Computing, Vol. 4, No. 3, pp. 137-144, Jul. 2016.

[18] M. Gegick and L. Williams, ”Towards the use of automated static
analysis alerts for early identification of vulnerability-and attack-prone
components”, in Proc. ICIMP, 2007, pp. 18-23.

[19] ”Richardson Maturity Model”, http://restcookbook.com/Miscellaneous/
richardsonmaturitymodel/. [Online; accessed 16-Mar-2017].

[20] ”Richardson Maturity Model Level-2”,
https://martinfowler.com/articles/richardsonMaturityModel.html. [Online;
accessed 16-Mar-2017].

287

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

