
Pan Liu1,2, Jun Ai3, Zhenning(Jimmy) Xu4
1 College of Information and Computer, Shanghai Business School, Shanghai 201400, China 2
Shanghai Key Laboratory of Computer Software Testing and Evaluating, Shanghai, China 3

School of Reliability and System Engineering, Beihang University, Beijing, China
4 School of business, University of Southern Maine, USA

panl008@163.com, aijun@buaa.edu.cn, zhenning.xu@maine.edu

* This work is supported by National Natural Science Foundation of China (NSFC) under grant (No. 61502299), Science and
technology key project of Jiangxi Province (No. 20142BBE50015).

Abstract

Software testing has become an essential activity to
guarantee software quality. To reduce the overall cost
of software testing, model-based testing has been
widely studied in the past two decades and Finite State
Machine (FSM) is used to build the model of software
behaviors. However, due to the inadequacy of the
modeling ability of FSM, FSM-based testing cannot be
taken as a test oracle to solve all issues in software
testing. To improve the modeling capability of the
model, a few researchers have proposed using
Extended Regular Expressions (ERE) to model
software behaviors. This paper reviews the method of
the ERE-based testing and presents six modeling rules
to convert program codes to the ERE model. Then, a
case is adopted to illustrate the process of generating
executable paths from the ERE model and the method
of designing test cases by those paths. Compared with
the traditional graphic traversal method of
constructing executable paths from the program, ERE
not only has robust modeling capability to describe
more types of software behaviors than FSM, but also
can be used to construct effective executable paths to
detect program errors.
Keywords- software testing; model-based testing; ERE-
based testing; extended regular expression.

1. Introduction

Software has been the information infrastructure,
penetrated into all fields of economy, military and
personal life. However, due to the lack of software
testing technology, software quality is not still
satisfactory, resulting in the problem of software trust

[1-3]. For example, in 2009, DNS failure of Storm
Video Website led to the collapse of internet network
in some provinces of southern China. To detect
software errors, software testing, as a measure for
ensuring software equality, has been adopted in the
software development lifecycle. However, it was
reported that the traditional manual testing method has
occupied more than 50% of the total cost of software
development [4]. To decrease the cost of software
testing, some automated test methods have been
highlighted in the software engineering field.

Model-based testing [5-7], an automated test
method, can generate test cases from the model
describing system requirements, and then detect
software errors by observing the inconsistency between
executing results of the software and the desired model.
Since this test method allows testers to evaluate
requirements independent of algorithm design and
development, it realizes “Test-First programming” and
makes testers test software at each stage of the software
lifecycle.

Nevertheless, model-based testing is not yet
available as a test oracle [4]. An important reason is
that the modeling ability of the traditional model (such
as FSM) [5, 8] is far from perfect. For instance, FSM is
not appropriate for describing the different types of
cycles in software behaviors. In the past, some scholars
were used regular expressions to model software
behaviors and generate test cases [9, 10]. Since regular
expressions include two specific notations “*” and “+”
denoting two types of cycles in software behaviors,
they are more suitable for modeling software behaviors
than FSM.

To improve the modeling ability of regular
expressions, we have put forward a theory of test

978-1-5090-5507-4/17/$31.00 ©2017 IEEE
ICIS 2017, May 24-26, 2017, Wuhan, China

821

modeling based on extended regular expressions (ERE)
[8]. Compared with FSM, ERE has more powerful
modeling ability to describe more types of cycles in
software behaviors. In this paper, we presented six
modeling rules of constructing the ERE model for a
program. Then, through a case, we studied the
modeling method in terms of these modeling rules and
the test generation process by using the formal method.
Different from model-based testing, ERE-based testing
can generate effective executable paths without
traversing the graph (FSM).

This paper is organized as follows: Section 2
introduces the modeling theory of extended regular
expressions. Section 3 presents six modeling rules to
build the ERE model of the program. Section 4 gives a
case to study the modeling method of ERE and the
process of test generation from the ERE model. Section
4 discusses the difference between the ERE-based
testing method and the FSM-based method. Section 5
concludes the whole paper and points out future
directions.

2. Preliminaries

In this section, we will introduce some basic
conceptions in ERE-based testing, and discuss the
relationship between ERE and the System Under
Testing (SUT).

Definition 1 (Transition Set): A transition set is
defined as TN⊆S×I/O×S, where

 - S is the set of states,
 - I is the set of input conditions on the states, and
 - O is the set of the output results on the states.

 By definition 1, any transition can be denoted as
tr=(s1, i/o, s2), where s1 is called the pre-state of tr, s2 is
called the next-state of tr, i denotes the input condition
on s1, and o denotes the output result on s2. We use the
notation “-” to describe that there is not an input
condition on s1 or an output on s2 in tr. To simplify the
description of transitions in the model, in this paper, we
adopt an alphabet to represent a transition and then use
transitions to construct the ERE model.

Definition 2(Empty Transition): The empty
transition is denoted by the notation ε, which indicates
that a transition does not be executed.

In regular expressions, the empty transition ε plays
an important role in the operation of regular
expressions. For example, a0 = ε indicates that the
transition a does not be executed in the SUT.

Definition 3 (Concatenation Operator): The
concatenation operator is denoted by the notation “.”,
which indicates a concatenation operation between two
transitions.

By definition 3, a.b denotes that the transition a
occurs first, and then the transition b occurs in the
SUT. Using concatenation operator, we can get the
relationship between a regular expression and
transitions. For example, a regular expression k3=k.k.k
denotes the concatenation of three transitions k. And an
equation k.ε=ε.k=k exists for any transition k. Let Σ be
a nonempty set of transition sequences. There are some
properties for concatenation operator as follows [8]:
1) ∀a,b∈Σ • a.b ≠ b.a a ≠ b ∧ a ≠ ε ∧ b ≠ ε
2) ∀a,b,c∈Σ • a.b.c = (a.b).c = a.(b.c)
3) ∀a∈Σ • a.ε = ε.a = a

Definition 4 (Transition Sequence): A transition
sequence ts is a set of concatenation operations of
transitions.

Any transition sequence ts denotes a path fragment
of the SUT. So, if we can find a transition sequence,
starting from the initial state and ending at the terminal
state in the SUT, its state sequence is an executable
path of the SUT. Also, we can use input conditions in
the transition to design test cases and obtain the
expected result of the SUT according to output results
in the transition.

Definition 5 (Choice Operator): The choice
operator is denoted by the notation “|”, which indicates
the choice relationship among some transition
sequences.

The choice operator has the following seven
properties [8]:
1) ∀a,b∈Σ • a|b a∨b.
2) ∀a,b∈Σ • a|b = b|a
3) ∀a,b,c∈Σ • a|b|c = (a|b)|c = a|(b|c)
4) ∀a∈Σ • a|ε = ε|a = a
5) ∀a∈Σ • a|a = a
6) ∀a,b1,b2,…,bn∈Σ•a.(b1|b2|…|bn) = a.b1| a.b2|…| a.bn
7) ∀a1,a2,…,an,b∈Σ•(a1|a2|…|an).b = a1.b| a2.b|…| an.b

By definition 5, we can get a set of transition
sequences from the choice operation of transition
sequences. For example, we can get transition
sequences a.b1, a.b2, … , and a.bn from a.(b1|b2|…|bn).

Definition 6 (Star Operator): The star operator is
denoted by the notation “*”, which indicates that the
cycle number is from 0 to infinity.

By definition 6, if the model of the system can be
described as a*, it indicates that this SUT has infinite
executable paths.

Definition 7 (Positive Operator): The positive
operator is denoted by the notation “+”, which
indicates that the cycle number is from 1 to infinity.

By definition 7, the model a+ of the SUT indicates
that the system has to be executed at least once. Thus,
there is an equation a+=a.a*=a*.a. Although both the
star operator and the positive operator have the ability

822

to describe two types of cycles in the SUT, they do not
accurately describe all types of cycles. For instance, the
statement “for(; i<3; i++)” indicates that a cycle may
be 0, 1 or 2 times. To describe this type of cycle in the
SUT, we give the definition of the range operator.

Definition 8 (Range Operator): The range
operator is denoted by the notation {i~j}, which
indicates that the number of cycles is from i to j, where
both i and j satisfy 0≤i≤j.

By definitions 6, 7, and 8, both the star operation
and the positive operation are two special types of the
range operations. In fact, the regular expression a* is
equal to a{0~n} if n is an infinite integer.

Definition 9 (Extended Regular Expressions):
Extended regular expressions (ERE) make up of some
notation in Σ and operators, including “.”, “|”, “*”, “+”,
and {i≤j}.

3. Modeling Rules

To build the ERE model of the program, we

designed six modeling rules to respectively deal with
sequential statements, judgment statements, and loop
statements of the program. To simplify the design of
transitions, we use the number of lines of the program
as both pre-states and next-states of transitions.
3.1 Modeling for Sequential statements

In this paper, sequential statements refer to
assignment statements, variable assignment statements,
and signal assignment statements.

Modeling rule 1 (Transition Rule): The sequential
statement in the pre-state is taken as the input condition
of the transition, and the variable on the left side of the
equation in this sequential statement can be denoted as
the output result of the transition.

Modeling rule 2 (Concatenation Rule): A set of
adjacent sequential statements can be denoted by a
transition sequence.

1 int x=getX();
2 int y=getY();
3 x=x^y;
4 y=y^x;
5 x=x^y;
6 printf(x);

Fig.1. Six sequential statements.

Fig. 1 shows a program segment with six sequential

statements. According to modeling rules 1 and 2, we
can obtain five transitions a=(1,x=getX()/x,2),
b=(2,y=getY()/y,3), c=(3,x=x^y/x,4), d=(4,y=y^x/y,5),

and e=(5,x=x^y/x,6). And the program segment in
Figure 1 (a) can be modeled as a.b.c.e.d.

Modeling rule 3 (Block Rule): The transition
sequence in a program block can be modeled by a new
transition tr, where

- the pre-state of the transition tr is the pre-state
of the first transition in the sequence,

- the next-state of the transition tr is the next-state
of the last transition in the sequence,

- the input condition of the transition tr is the
union set of all input conditions in the sequence,
and

- the output result of the transition tr is the union
set of all output results in the sequence.

Let k be a.b.c.e.d. Then, by modeling rule 3, there is
k=(1, x=getX() ∧ y=getY() ∧ x=x^y ∧ y=y^x ∧
x=x^y/x ∧ y, 6).
3.2 Modeling for judgment statements

In this paper, judgment statements refer to both “if”
and “switch” statements of the program. Then, we need
to design modeling rules for two types of judgment
statements.

Modeling rule 4 (Choice Rule): The judgment
statement can be modeled by the choice operator.

Modeling rule 5 (Condition Rule): The decision
condition of the judgment statement is the input
condition of the transition and the output result is
empty.

1 if(x<=y)
2 z=y;
 else
3 z=x;

4 switch(i){
5 case 1:
6 printf(x);break;
7 case 2:
8 printf(y);break;
9 case 3:
10 printf(y);break;
 }

(a) (b)
Fig.2. Two decision statements.

Fig. 2 (a) is a program segment with the if statement,

and Fig. 2 (b) is a program segment with the switch
statement. By modeling rules 4 and 5, we can obtain
two transitions a=(1, x<=y/-, 2) and b=(1, x>y/-, 3) for
the program segment in Fig. 2 (a), and six transitions
c=(4, i/-, 5), d=(4, i≠1/-, 7), e=(4, i≠1∧i≠2/-, 9), f=(5,
i=1/x, 6), g=(7, i=2/y, 8), and h=(9, i=3/y, 10) for the
program segment in Fig. Finally, the model a|b can
denote the program segment in Fig. 2 (a), and the
model a.d|b.e|c.f can denote the program statement in
Fig. 2 (b).
3.3 Modeling for Loop Statements

823

In this paper, the loop statements refer to while
statements, for statements, and do…while statements.
We need to design modeling rules for three types of
loop statements.

1 for(i=0; i<5; i++){
2 sum++;
 }
3 printf(%d , sum);

4 k=k*k;
5 while (k>=0){
6 sum++; k--;}
7 printf(%d , sum);

(a) (b)
 Fig.3. Two loop statements.

Modeling rule 6 (Loop Rule): If the variable(s) on

the left of the decision conditions in the loop statement
has (have) the infinite values, the star operator or the
positive operator can describe this loop statement. If
the decision conditions in the loop statement must be
satisfied, the positive operator or the range operator
can model the loop statement. If the finite values satisfy
the decision conditions in the loop statement, the range
operator can model this loop statement.

Fig.3 (a) is a program segment with the for
statement, and Fig.3 (b) is a program segment with the
while statement. By modeling rules 7, the model
(a.b){1~5}.c is constructed for the program segment with
the while statement shown in Fig. 3 (a), and the model
a.(b.c)+.d for the program segment with the while
statement shown in Fig.3 (b).

 void InsertSort(int a[], int n){
1 for(int i=1; i<n; i++){
2 if(a[i]<a[i-1]){
3 int j=i-1;
4 int x=a[i];
5 a[i]=a[i-1];
6 while(x<a[j]){//error
7 a[i+1]=a[j];
8 j--;
 }//end while
9 a[j+1]=x;
 }//end if
10 }//end for
 } //end InsertSort

Transitions:
a=(1, i?∧i<n/i, 2),
b=(2, a[i]<a[i-1]/i, 3-5),
c=(3-5, j=i-1∧x=a[i] ∧
 a[i]=a[i-1]/a[i]∧x∧j, 6),
d=(6, x<a[j]/a[j+1]∧j, 7-8),
e=(7-8, a[i+1]=a[j]∧j
 /a[j]∧j, 6),
f=(6, x≥a[j]/x, 9),
g=(2, a[i]≥a[i-1]∧i++/i, 1),
h=(9, a[j+1]=x∧i++/a[j+1], 1),
i=(1, i?∧i≥n/a, 10).

Fig.4. An insert sort algorithm and its transitions.

4. Case Study

In this section, we apply an insert sort algorithm to

illustrate the processes of constructing the ERE model
and test generation from this model. Fig.4 consists of
an insert sort algorithm and a set of transitions, which
are designed according to modeling rules 1 and 5. Also,
there is an error in Line 6 of the insert sort algorithm.
We will model this algorithm by the ERE model, and

then test the algorithm by test cases generated from the
ERE model so as to expose the error.
4.1 Modeling

By six modeling rules in Section 3, we can convert
the insert sort algorithm into the related ERE model.
Our strategy is to convert the most internal statements
in the algorithm first, and then the external statements
are converted to the ERE model. So, we can apply
three steps to model this algorithm as follows:

Step 1: Modeling for the while statement.

6 while(x<a[j]){
7 a[i+1]=a[j];
8 j--;
 }//end while

(d.e){0~n-1}

Since the cycle number in the while statement in

Line 6 is from 0 to n-1 times, the program segment in
Step 1 is denoted by the model (d.e){0~n-1}.

Step 2: Modeling for the while statement.

2 if(a[i]<a[i-1]){
3 int j=i-1;
4 int x=a[i];
5 a[i]=a[i-1];
 ...
9 a[j+1]=x;
 }//end if

b.c.(d.e){1~n-1}.f

In the program segment in Step 2, when the

transition b occurs, the transition d.e must occur. Hence,
the model b.c.(d.e){1~n-1}.f can describe the program
segment in Step 2.

Step 3: Modeling for the insert sort algorithm.

InsertSort(int a[],int n){
1 for(int i=1; i<n; i++){
2 if(a[i]<a[i-1]){
 ...
9 a[j+1]=x;
 }//end if
 }//end for
10 } //end InsertSort

(a.(b.c.(d.e){1~n-1}.f.h|g)){0~n-1}.i

 Since the cycle number of the for statement in Line 1
of the program segment in Step 3 is from 0 to n-1, the
algorithm can be denoted by the model (a.(b.c.(d.e){1~n-

1}.f.h | g)){0~n-1}.i.

4.2 Executable Path
To generate executable paths of the algorithm

shown in Fig. 4, we need to deal with the ERE model
(a.(b.c.(d.e){1~n-1}.f.h | g)){0~n-1}.i by using operation
properties described in Section 2. Then, we can obtain
(a.(b.c.(d.e){1~n-1}.f.h | g)){0~n-1}.i = (a.b.c.(d.e){1~n-1}.f.h |
a.g){0~n-1}.i.

824

Let A be (a.b.c.(d.e){1~n-1}.f.h | a.g). Then, the ERE
model of the insert algorithm is transformed to A{0~n-1}.i.
According to definition 8, we can obtain:

A{0~n-1}.i
= i |A.i|A2.i|…|An-1.i
=i|a.b.c.(d.e){1~n-1}.f.h.i|a.g.i|(a.b.c.(d.e){1~n-1}.f.h

|a.g)2.i | … | (a.b.c.(d.e){1~n-1}.f.h|a.g)n-1.i.
Let B be (d.e){1~n-1}. Then, we can obtain:
(a.b.c.(d.e){1~n-1}.f.h | a.g){0~n-1}.i
= i | a.b.c.(d.e){1~n-1}.f.h.i | a.g.i | (a.b.c.(d.e){1~n-

1}.f.h|a.g)2.i | … | (a.b.c.(d.e){1~n-1}.f.h|a.g)n-1.i
= i | a.g.i | a.b.c.B.f.h.i | (a.b.c.B.f.h|a.g)2.i | … |

(a.b.c.B.f.h|a.g)n-1.i
In model-based testing, some coverage criteria [11]

are used to generate test paths from the model. In this
section, we select part of transition sequences in terms
of the coverage criterion of independent paths [12].
Then, four transition sequences i, a.g.i, a.b.c.B.f.h.i,
and a.b.c.B.f.h.a.g.i are obtained.

According to definition 8, there is B=(d.e){1~n-

1}=d.e|(d.e)2|…|(d.e)n-1. Then, we can obtain:
a.b.c.B.f.h.i
= a.b.c.(d.e|(d.e)2|…|(d.e)n-1).f.h.i
= a.b.c.d.e.f.h.i|a.b.c.d.e.d.e.f.h.i|…|a.b.c.(d.e)n-1.f.h.i
By the coverage criterion of independent paths, we

can get the transition sequence a.b.c.d.e.f.h.i from
a.b.c.B.f.h.i. Similarly, we can obtain the transition
sequence a.b.c.d.e.f.h.a.g.i from a.b.c.B.f.h.a.g.i to
satisfy the independent path coverage criterion. Finally,
four transition sequences i, a.g.i, a.b.c.d.e.f.h.i, and
a.b.c.d.e.f.h.a.g.i are gained from the model
(a.(b.c.(d.e){1~n-1}.f.h | g)){0~n-1}.i.

For each transition sequence, we can construct state
sequences as executable paths by using those states in
transitions. Thus, four test executable paths are
obtained from four transition sequences. Table I shows
four transition sequences and four executable paths.

TABLE I. TRANSITION SEQUENCES AND THEIR EXECUTABLE PATHS
FOR THE INSERT SORT ALGORITHM.

Transition Sequence Executable Path
i 1-10
a.g.i 1-2-1-10
a.b.c.d.e.f.h.i 1-2-3-5-6-7-8-6-9-1-10
a.b.c.d.e.f.h.a.g.i 1-2-3-5-6-7-8-6-9-1-2-1-10

TABLE II. TEST SEQUENCES AND LISTS OF TEST INPUT CONDITIONS.

Transition
Sequence Input condition list

i <i?∧i≥n>
a.g.i <i?∧i<n, a[i]≥a[i-1]∧i++, i?∧ i≥n>

a.b.c.d.e.f.h.i <i?∧i<n, a[i]<a[i-1], i, x<a[j], j--
∧a[j], x≥a[j], x∧i++, i?∧i≥n>

a.b.c.d.e.f.h.a.g.i
<i?∧i<n, a[i]<a[i-1], i, x<a[j],
j∧a[j], x≥a[j], x, i?∧i<n, a[i]≥a[i-
1]∧i++, i?∧i≥n>

4.3 Instantiation

To design test cases of the insert sort algorithm, we
need to apply some techniques of instantiation to
generate test cases so as to cover those executable
paths in Table 1. First, we construct a list of the input
conditions for each transition sequence. Table 2 shows
test sequences and the corresponding lists of test input
conditions. Then, in terms of the formal reasoning
method, we can simplify the test input condition
sequence in Table 2 so as to design test cases.

For the list <i?∧i≥n>, there is i?∧i≥n i=1•1≥n.
Hence, when the size of the array a[n] is not greater
than 1, the test case (a[n], n) will cover the executable
path 1-10.

Theorem 1: we can obtain a[1]≥a[0]∧n=2
according to the list <i?∧i<n, a[i]≥a[i-1]∧i++, i?∧ i≥n>.
 By theorem 1, when the size of the array a[n] is 2
and a[1] ≥a[0], the test case (a[n], n) covers the
executable path 1-2-1-10.

Theorem 2: we can obtain a[1]<a[0]∧n=2
according to the list <i?∧i<n, a[i]<a[i-1], i, x<a[j], j--
∧a[j], x≥a[j], x∧i++, i?∧i≥n>.
 By theorem 2, when the size of the array a[n] is 2
and a[1]<a[0], the test case (a[n], n) covered the
executable path 1-2-3-5-6-7-8-6-9-1-10.

Theorem 3: we can obtain a[1]<a[0] ∧ a[2]≥a[1] ∧
n=3 according to the list <i?∧i<n, a[i]<a[i-1], i, x<a[j],
j--∧a[j], x≥a[j], x∧i++, i?∧i≥n>.

By theorem 3, when the size of the array a[n] is 3,
a[1]<a[0], and a[2]≥a[1], the test case (a[n], n) covers
the executable path 1-2-3-5-6-7-8-6-9-1-2-1-10.
Finally, we design four test cases, shown in Table 3, for
four executable paths according to theorems 1-3.

TABLE III. EXECUTABLE PATHS AND CORRESPONDING TEST CASES.

Executable Path Test Cases
1-10 (a[0]=1, n=1)
1-2-1-10 (a[0]=3, a[1]=4, n=2)
1-2-3-5-6-7-8-6-9-1-10 (a[0]=4, a[1]=3, n=2)
1-2-3-5-6-7-8-6-9-1-2-1-
10

(a[0]=4, a[1]=3, a[1]=5,
n=3)

Through verification, test cases (a[0]=4, a[1]=3,

n=2) and (a[0]=4, a[1]=3, a[1]=5, n=3) can detect the
program error in Line 6 of the insert sort algorithm in
Fig. 4.
4.4 Discussions

825

Generally, the model in model-based testing is
stored as the graph in the computer. Then, test paths
are constructed by means of graphical traversal
algorithms. To compare the difference between the
ERE-based testing and model-based testing, we use the
method of [13] to construct a test tree of the model. In
Fig. 5, there is a control flow graph of the insert sort
algorithm shown in Fig. 4 and a test tree by traversing
this graph. Then, four test paths 1-2-1, 1-2-3-5-6-7-8-6,
1-2-3-5-6-9-1, and 1-10 are obtained from the root
node to the leaf nodes in the test tree. However, we
find that test paths 1-2-1, 1-2-3-5-6-7-8-6, and 1-2-3-5-
6-9-1 are incomplete because the leaf nodes 1 and 6 in
the test tree are not the terminal node 10 of the insert
sort algorithm. In addition, it is impossible to design a
test case to cover the path segment 1-2-3-5-6-9-1.
Therefore, traditional graph traversal algorithms have
their limitations to construct executable paths from the
graphical model.

Start

End

Fig.5. A control flow graph and its test tree.

5. Conclusions

The paper introduces an improved model-based test
method, named as ERE-based testing, to generate test
cases. The proposed method uses extended regular
expressions to model the SUT. To construct the ERE
model of a program, we have presented six modeling
rules. Then, a case study is illustrated to how to apply
these rules to set up the ERE model of the program and
how to design test cases from the ERE model. In this
study, four test cases are designed to satisfy the
independent path coverage criterion, and two of
designed test cases can detect the error in the insert sort
algorithm. Compared with the traditional methods of
generating test paths by traversing the model, ERE-
based testing can construct test paths by using some
algebraic operations. Moreover, executable paths
constructed by our method are valid and complete and
can be used to design effective test cases to detect

program errors. In the future, we will perfect our
previous work in the theory of the algebra system [8]
and in the development of the test modeling tool [14]
for constructing the ERE model.

References

[1] E. Amoroso, T. Nguyen, J. Weiss, J. Watson, P. Lapiska,
and T. Starr, "Toward an approach to measuring software
trust," in Research in Security and Privacy, 1991.
Proceedings., 1991 IEEE Computer Society Symposium on,
1991, pp. 198-218.
[2] T. Grandison and M. Sloman, "A survey of trust in
internet applications," IEEE Communications Surveys &
Tutorials, vol. 3, pp. 2-16, 2000.
[3] J.-H. Cho, A. Swami, and R. Chen, "A survey on trust
management for mobile ad hoc networks," IEEE
Communications Surveys & Tutorials, vol. 13, pp. 562-583,
2011.
[4] A. Bertolino, "Software testing research: Achievements,
challenges, dreams," in 2007 Future of Software
Engineering, 2007, pp. 85-103.
[5] R. V. Binder, B. Legeard, and A. Kramer, "Model-based
testing: where does it stand?," Communications of the ACM,
vol. 58, 2015.
[6] H. Hemmati, A. Arcuri, and L. Briand, "Achieving
scalable model-based testing through test case diversity,"
ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 22, p. 6, 2013.
[7] C. Schulze, D. Ganesan, M. Lindvall, R. Cleaveland, and
D. Goldman, "Assessing model-based testing: an empirical
study conducted in industry," in Companion Proceedings of
the 36th International Conference on Software Engineering,
2014, pp. 135-144.
[8] P. Liu and H. Miao, "Theory of Test Modeling Based on
Regular Expressions," in Structured Object-Oriented Formal
Language and Method, ed: Springer, 2014, pp. 17-31.
[9] D. Kozen, "Kleene algebra with tests," ACM
Transactions on Programming Languages and Systems
(TOPLAS), vol. 19, pp. 427-443, 1997.
[10] J. Carlson and B. Lisper, "An event detection algebra for
reactive systems," in Proceedings of the 4th ACM
international conference on Embedded software, 2004, pp.
147-154.
[11] P. Ammann and J. Offutt, Introduction to software
testing: Cambridge University Press, 2008.
[12] R. S. Pressman, Software engineering: a practitioner's
approach: Palgrave Macmillan, 2005.
[13] H. Miao, Z. Qian, and B. Song, "Towards automatically
generating test paths for Web application Testing," in
Theoretical Aspects of Software Engineering, 2008.
TASE'08. 2nd IFIP/IEEE International Symposium on, 2008,
pp. 211-218.
[14] M. Zeng, P. Liu, and H. Miao, "The Design and
Implementation of a Modeling Tool for Regular
Expressions," in Advanced Applied Informatics (IIAIAAI),
2014 IIAI 3rd International Conference on, 2014, pp. 726-
731.

826

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

