
An Implementation of Access-Control Protocol for
IoT Home Scenario

Xiaoyang Wu, Ron Steinfeld, Joseph Liu, Carsten Rudolph

Abstract—The internet of things comes into our daily life. It
connected lots of resource-constrained devices, denoted as smart
device, in an Internet-like structure. Considering the computing
burden, the CoAP protocol is developed for serving the resource-
constrained device and maps to HTTP for integration with
existing web. In this paper, an access-control protocol will be
introduced. The protocol is designed for IoT(Internet of Things)
home scenario. Like the most IoT we can see, the IoT home
scenario contains lots smart devices which collect some private
information from us. To protect those data, an access-control
protocol is needed. The protocol is deployed into Contiki OS and
evaluated using the powertrace and some other tools. The results
shows the protocol we designed takes a little more memory usage
than an OAuth based authorisation protocol but smaller power
consumption and more suitable for small scale IoT environment.

Index Terms—IoT(Internet of Things), protocol, Contiki,
power consumption.

I. INTRODUCTION

INTERNET of things (IoT) [1] has undoubtedly made great

changes to the lives of people, ranging from intelligent

furniture to smart city. IoT connected a large amount of

devices and make them accessible remotely through Internet.

While the IoT offer use great convenience, it also expose lots

of private data on the internet.
In home scenario, IoT devices can help users access and

control their appliances remotely. The connected appliances

may record informations about the user. While lots of your

valuable personal privacy information stored in IoT devices

like monitor or camera, IoT devices may become target of

malicious users. As all the IoT devices in home connected to

the Wi-Fi network, an access-control protocol is necessary for

protecting users privacy.
In the scenario that resource owner grants someone else to

access resource, OAuth is very popular as it can authenticate

the third-party without giving password. With the communi-

cation with an authentication server, the third-party keep a

secret token to access users data. The scenario of OAuth used

is similar to the IoT home scenario, but the power consumption

and memory usage of OAuth is a great burden for IoT devices.

So, a new access-control protocol is designed and implemented

in our research for IoT home scenario.
As my partner have done the design of the protocol, my

research is deploying the protocol he designed for home

scenario to real machine. In the home scenario, most devices

use low-power chips which only have low-power CPU, limited

RAM and ROM. As the result of that, deploying the protocol

to IoT devices, which are low-power chips, is most challenging

part in the whole implementation. This research is to deploying

the protocol (device part) to low-power chips.

Fig. 1. Options added into CoAP header to implement security scheme[8]

II. RELATED WORKS

A. Constrained Application Protocol

Constrained Application Protocol is a communication pro-

tocol based on REST model, which designed for low-power

devices. It is a specialized Web transfer protocol for use

with constrained nodes and constrained network. Because both

CoAP and HTTP follows the REST model, they are very

similar. [2] The server offer resources under a URL and client

can access using the methods same as Http, e.g. GET, PUT,

POST, and DELETE. As it designed based on REST model,

it can be used as a common communication protocol which

can transfer data between different devices in the IoT system.

CoAP is designed to be used on microcontroller with as low

as 10 KB of RAM and 100 KB of code space. As my research

is deploying the protocol to a low-power chip, a resource-saved

protocol is really helpful.

A research about using CoAP to implement a lightweight

security scheme for vehicle tracking system was done at

2013.They stated that the overhead security of CoAP is too

high. [3] In their design, they use a payload embedded low

cost symmetric-key based robust authentication and key man-

agement mechanism instead of handshaking and ciphersuite

agreement of standard TLS and DTLS. For better performance

in IoT system, they also modificate the header of CoAP to

implement security special mechanism which better than the

standard one.

To implement the CoAP with their security mechanism, they

introduce a new option AUTH in CoAP header to enable the

security function.

In their performance test, the security scheme they com-

bined with CoAP only have a little effect on performance.

The latency increase a little bit because of the header of CoAP

become larger. It has a low overhead due to the authentication

based on payload embedded symmetric key.

978-1-5090-5507-4/17/$31.00 ©2017 IEEE
ICIS 2017, May 24-26, 2017, Wuhan, China

31

Fig. 2. Separate Response and ACK in CoAP[9]

Implementing the security scheme based on payload em-

bedded content is an innovative ideal of modification of the

CoAP. It can save resource which is really precious for

devices in IoT system. In other way, it doesnt affect the

performance of communication. Their research is for vehicle

tracking system so that latency affect a lot. However, in home

scenario, the latency is low because all devices connected to

the same network without any long-distance transfer. So the

disadvantage (increasing latency) of their design has no effect

on our scenario. In performance aspect, this design fit our

scenario exactly.

B. Low-power CoAP for Contiki
There is a research about implementing a low-power CoAP

for contiki operating system in 2011. [4]. Their aim is to

achieve high power efficiency for CoAP communication on

Contiki platform. On typical IoT platform, one of components

which are most power-consuming is the radio transceiver. The

power consumption of listening packets is as expensive as

receiving packets. [4] To reduce the waste of power, several

radio duty cycling(RDC) algorithms have been designed. RDC

algorithms allows node to turns off radio chip for most of time

while still being able to send and receive message.
They also took advantage of the Contiki REST layer ab-

straction to modify the CoAP : they separate the acknowledge

frame from response data. With this modification, the client

doesnt need to resend the data during the time the server

processing the request it receive. It enabling long processing

times and avoiding unnecessary retransmission.
Their low-power CoAP implementation for Contiki achieve

a high energy efficiency at the cost of a higher latency. The

radio chip on server doesnt keep listening all the time, hence

not all packets sent by client can be received and increasement

of latency.
In out research, in home scenario, most IoT devices uses

battery as power. High energy efficiency means the devices

can keep working longer. This research shows a clear way to

reduce the energy cost of devices. The energy efficiency may

become a concern in further research but not in current state.

C. IOT-OAS
An OAuth-based authorisation service architecture is pub-

lished in 2015 which called IoT-OAS. [5] The goal of the

Fig. 3. Authentication Process

architecture is revlieving smart object form burden of handling

large amount of authorization-related information. In the ar-

chitecture, an external authentication service is set to handle

authorization information. And the smart object can keep the

application logic as simple as possible while outsourcing all

the authentication functions.

Considering the computing burden of using HTTP, they

using different communication protocol among different roles

in the architecture. The somart object only deal with message

on COAP protocol. An hybrid gateway-based communication

is used in their implementation. The application protocol

extternal client used is different from that used by smart object.

The gateway manage the communication in authentication

process. It translate the incomming message from HTTP and

CoAP to the other.

1) The particle swarm optimization algorithm:

III. IMPLEMENTATION

A. Protocol Summary

The protocol is designed by my partner. There are four roles

in his design: Owner, Visitor, Gateway and Device. The most

challenging of implementation is device part as the device

program is working on power constrained chip. The protocol

summary below is focus on the device program.

Authentication Process:The authentication process shows as

Fig.3.

1 Visitor sends request about accessing device to gateway.

2 Gateway check the authority of the visitor in its database.

If the visitor is eligible to access the device, send back the

counter number and authorization information.

3 The visitor sends the counter number and authorization

information to the owner.

32

4 The owner will check its local database. If the visitor is

eligible to access the device, the owner will send back the

Nonce, the MACKOD
, and the KeyshareO

Nonce = HMACKOD
(counter)

MACKOD
= HMACKOD(counter||AuthorizationInfo)

KeyshareO = HMACKOD
(Nonce)

5 Then the visitor send the Nonce, to the gateway to obtain

the KeyshareG.

KeyshareG = HMACKGD
(Nonce)

6 The gateway send back the KeyshareG. As KeyshareO and

KeyshareG has been obtained, the KV D can be calculate

by visitor itself.

KV D = KeyshareO‖KeyshareG

KV D will be used to encrypt the request visitor send to the

device. As AES128 encryption required the length of key

must be times of 16, we take eight byte from each keyshare

and combine them into a 16 byte key.

7 The visitor send the Authorization token and encrypted to

the device

V to D : counter‖Authorization ‖
MACKOD

(counter‖Authorization)‖
MACKGD

(counter‖Authorization)‖
{Nv‖Request}KV D

The device processes this authorization token. Decrypted the

request and send response if the authorization token is valid.

The validation process on device will be described in detail in

further section.

B. Communication

A gateway-based communication protocol is used in our im-

plementation. There are two communication protocol we used

under the same network. Considering the power limitation, we

can not allow the IoT device running two server at the same

time. To solve the problem, we set a HTTP-CoAP proxy on

gateway. The data flows goes as Fig.4

The proxy is on the gateway. The packet owner/visitor send

to device will go to the proxy first. Then the proxy translate it

into a CoAP packet and send it to device. So does the packet

send to owner/visitor by device.

C. Implementation Environment Summary

Gateway, owner and visitor supposes to be deployed to

high-power environment: the gateway should be deployed to a

router or a server which can running all the time. The owner

and visitor program should be deployed to smartphone or

desktop. In the home scenario, most devices use low-power

chips which only have low frequencies CPU, limited RAM

and ROM space. As the result of that, deploying the protocol

to IoT devices is the most challenging part in the whole

implementation.

D. Device Implementation

As I mentioned, the device is the only power constrained

device in the system, so I focus on the implementation of

Fig. 4. Communication protocol in Implementation

device part program. All aspects of the implementation on

device part will be described in detail in this section.

E. Contiki OS
Contiki OS is an open source operating system designed

for the Internet of Things. The protocol has been deployed

to contiki-based constrained device. [6] The contiki operating

system can runs on range of different platforms and is designed

to run in small memory usage. Contiki support fully standard

IPv6, IPv4, 6lowpan, RPL and CoAP. And contiki-based

program can run on either the simulated environments (using

cooja simulator) or real testbed.
The choice of Contiki-OS also allow us to do further inves-

tigation easily on the feasibility of the device part program.

F. Device Bootstrap
When the device boots, it will send its device id to gateway

and owner. Each of them(owner and gateway) will generate a

unique key basing on the device id they received. The key is

generated by HMAC-SHA1 cryptograph. The device stores

the key in RAM until reset. The owner and gateway also store

the key in a database. After that, the device will have two

synchronized key with the owner(KOD) and gateway(KGD).

Also, the initial counter number will set by the gateway.

KOD : HMACOwner key(Device ID)

KGD : HMACGateway key(Device ID)

Gateway and owner will use the key to authenticate visitor to

access resources on the device. As keys are generated basing

on device id, so keys are vary for different devices. We assume

boot process running in a secure environment. After the device

received two keys and counter number, it begin to listen to

request from user.

33

Fig. 5. Timer-based token expiration

G. Counter on Device

The access control is meaningless if an authorized token can

be used forever. Most authorisation protocol has a timestamp

which indicates when the authorisation will expire. In OAuth

2, a lifetime is used in authorisation token to indicate when

the token expires. [7] Timer is the critical function module in

the timestamp based key expiration. However, as target of the

implementation is low power device, the CPU on chips may

not contain timer on its own. The CPU without timer can not

expire an authorisation token if token expiration mechanism

is timestamp-based. Even the CPU has timer, more network

transmissions are required for synchronize time with time

server. For better portability of the device part program, the

timestamp-based token expiration can not be used. A counter-

based expiration mechanism is used on device program. The

detail information of the mechanism can be seen in Fig.5.

Every device has its own counter. The length of counter is

4 byte, so the range of the counter number is from 0 to 232.

When the device booting, the gateway would send a random

initial counter number to the device. The device will set its

current counter number to this initial counter number. In the

Fig 5, the current counter number is 13. The default counter

window size is 5, which means the counter number range from

current counter number minus 5 to current counter number

minus 1 is valid counter number. The device also keep an

array of integer which named counterWindow. It record how

many times left each valid counter number can be accessed.

The index in array can map to specific counter number. Values

in this array are times counter number their index map to can

be used. The size of this array is exactly the size of available

counter window. The logical structure of it can be seen in the

Fig 5. For example, the counter number 8 times left is 4. And

the number 12 times left is 9. Every times the counter number

been used, the times left would minus one. When the times

left becomes zero, like number 10 in Fig 5, it can not been

used anymore. When current counter number been used for

the first time, the counter number would increase. The access

times left is setted by the last byte of authorisation information.

As we can see in the Fig 5, the available counter window move

down for one step. Current counter number becomes 14. And

the access times for 13 is The old counter number 8 become

invalid, even if it still has used times left. The number of

Fig. 6. Authorisation information structure

valid tokens at the same time is constrained by the size of

counter window. For example, the default counter window is

5. So there is 5 tokens are valid at most. In home scenario,

5 valid token at the same time should be enough. It can also

be customize basing on different need. In this mechanism, one

more user at the same time only take one byte more in devices

RAM. So the protocol can support large amount of visitor at

the same time. The counter-based token expiration mechanism

has one drawback. The token is exactly the same for the same

counter number in same device. When the counter number

goes to maximum, it will become zero in next time. So the

counter number will finally go back to a number it used before

if the counter didnt be reset. For prevent this kind of attack,

we set the length of counter to 4 bytes. The counter number

ranges from 0 to 232. And when device reboot, it will get a

new random counter number from gateway. With these two

configuration, the counter number became almost impossible

to use some number it used.

H. Authorisation Information

The authorization information(10 bytes) contain four autho-

risation words and a byte to indicate how many times can the

counter number be used.

The first eight bytes of the authorisation is made up of four

authorisation words. The ninth byte in the authorisation infor-

mation is empty. The last byte of the authorisation indicate

how many times the counter number can be used. When the

counter number in the packet is used for the first time, the

counter number available times will be set on the devices.

After that, the counter number available times can not be

increased until reset.

The length of authorisation word is 2 bytes. The first byte

is the ID of API. Each API has its own ID, device declared ID

of each API to the gateway when booting. The second byte

denotes the approved methods for this API. As shown in Fig

8, the last four bits indicate the availability of methods GET,

POST PUT and DELETE. In the Fig 8, the APIs ID is 19,

and the approved methods are GET and PUT.

I. Nonce

The Monce is a 20 bytes hash code generated using the

counter number as content and KOD as key.

Nonce : HMACKOD
(Counter)

The KOD is a synchronized key between owner and device

so that device can generate this by itself. The nonce is used

34

in generating KV D, and the KV D will be used to decrypt the

request sent by the visitor.

J. Request Validation Process

When device receives a request, the counter number

will be checked at first step. The device will check if the

counter number is in the valid counter window. If so, the

HMAC checking will be done in next step.The device

generates MACKOD
and MACKGD

using the HMAC-SHA1

cryptography and keys stored in RAM. Keys stored in RAM

are synchronized with keys in gateway and owner, so the

MACKOD
and MACKGD

should be exactly same as the

MAC string in the packet. The packet passing the MAC

checking denotes the packet has been authorized by both

owner and gateway.

After that, the nonce (described in the last section) and KV D

will be generated. As KV D is used to decrypt the request

part, the length of it can only be 128, 192 and 256 bits. For

reducing RAM usage of the program, the shortest one, 128

bits, is used in this protocol. The KV D take eight bytes from

each hash string generated from the nonce.

When device decrypted the request (using the KV D), the

requested resource can be seen. The device would go back

to the authorisation information to check if the requested

resource is approved in authorisation words. If its approved,

then generate the response and encrypted it with AES128.

The KV D would be used as the encryption key, same as the

received packet.

Fig. 7. Memory footprint, with compiler optimization enabled.

IV. EXPERIMENTAL RESULTS

For demonstrating the feasibility and performance of the

implementation of IoT access-control protocol designed by

my partner, we have conducted experimental tests to evaluate

the response time and energy consumptions on the device

program. The security of the protocol is discussed by my

partners thesis, so any attack model will not be tested in my

research. In IoT home scenario, there are no power constraints

on owner, visitor and gateway, so implementation of them are

not critical from an energy consumption viewpoint. For this

reason, we have limited our experiment to the device part

program. The experimentation investigation include memory

usage and energy consumption.

A. Experiment Setup

In the experiment, the device side program runs on a sim-

ulator called Cooja, which is the Contiki network simulator.

It allows the network of contiki motes to be simulated. Mote

is a hardware la emulation of low-power environment. Lots

motes provided in Cooja and each of them has different RAM

and ROM space configuration. Considering memory footprint

of our program, the mote EXP5438 is used in our experiment.

Cooja also offer lots tools which allow precise inspection of

the system behaviour. Both network traffic and console output

of the mote can be inspected in Cooja. Copper(Cu) is an add-

on application of firefox browser. It allow users to manipulate

a CoAP packet, send the packet and display the response.

The Copper is used as a CoAP client to mock the visitor

and gateway in our implementation. By sending CoAP packet

to the device, the response time and energy consumption of

processing a request can be inspected.

B. Memory Footprint

To evaluate RAM and ROM footprint of the device side

program, the tool namedsize is used for get memory usage of

the file after compile. The gnu size utility can list each section

size for object or archive file in its argument list. By using this

tool, the memory footprints of each module are obtained.

35

As shown in Fig.7, memory footprint of each component in

the implementation has been measured. The complete device

sied program take 64 kB in ROM and 5 kB in RAM totally.

Among them, the Erbium combined with the protocol take

most ROM space, which is 32 kB. The ROM footprint of

Erbium can still be compressed some functions of it are turned

on and useless in our IoT home scenario. In both RAM and

ROM footprints, the Contiki OS takes up lots of memory

space. The researcher of IoT-OAS declared that they turned off

lots of function of Contiki OS to express memory footprints.

[5] I havent tried it but this method should work on our project.

The compiler optimization has been done when compiling. The

command of the compiler optimization has been mentioned in

related works.

Compared with the IoT-OAS implementation, their imple-

mentation only take 52 kB ROM space. As they didnt give

the exact number of memory each module took, i can only

compare the total memory footprint with them. They declared

they have no resource on the Erbium CoAP server while our

implementation has one test resource on the server. And we

have two cryptographs(AES128 and HMAC SHA1) on our

server while they only has one on their server [5]. The memory

compress approach they used will be try in our implementation

in further research.

C. Response Time

As the console output can be inspected precisely through

Cooja, the times each function takes can be calculated. By

insert printf() command in the program, the timestamp this

line be printed to console can be measured.

As we using printf() to inspect when each function com-

pleted, the times taken by printf() will affect the experiment

result. So the time printf() taken needs to be measured at

first. The time function printf() takes is measured by printing

ten lines continuously. After calculating, the average times

a printf() command takes is less than 1ms. As times it

taken is too small, so the times printf() taken are ignored in

experiments.

After experiment. The times of each component in the

implementation has been measured as TableI.

TABLE I
ESTIMATED TIME FOR EACH MODULE.

Function part Time
AES128 Decryption 5ms

HMAC SHA1 10ms
Server+Protocol (Response Time)94ms

D. Power Consumption Evaluation

The energy consumption of the CoAP has been evaluated

by Powertrace [8], which is a tool for network-level power

profiling in low-power wireless networks. The Powertrace

can estimate energy consumption for each component on the

board, such as the radio module and the microcontroller. The

Powertrace record how long each component spend in specific

model to estimate how much energy it consumpt. For example,

there are two model for CPU(microcontroller), one is the

working model, which shows as CPU in powertrace record.

The other one is suspended model, which shows as LPM(Low

power model) in its record. So does radio chip. The two

models of radio chip is RX and TX. RX denotes the radio

chip is listening while TX means the radio chip is sending

message.

To determine energy consumption for each hardware com-

ponent, the electrical specification (voltage and current) of

each component is necessary. The Contiki OS website declared

the mote exp5438 use TI cc2420 as radio chip. [9]And

the mote exp5438 refers to the TI experimental board us-

ing MSP430F5438 as microcontroller. From the datasheet

of MSP430F5438 and cc2420, we found that the electrical

specification for both of them. In particular, the MSP430F5438

microcontroller consumes 2.5mA in active mode for ROM

program and 0.5 uA in standby mode(low power mode). The

cc2420 radio chip consumes 17.4mA in TX mode and 18.8mA

in RX mode. [10], [11].

After obtaining all information for calculation, the power

consumption can be calculated from following conversion

formula:

E =
∑

j∈M

ij · v · �tj

Where M is the set of all operation modes of all hardware

components on device(including cpu active, cpu LPM, RX,

TX); i is the system current in each mode; v is the nominal

voltage of the device; the t is the time the device stand on j

mode.

The Fig.8 is the aggregate energy consumption evaluation

for different protocol implementation on Contiki system. It

shows how much energy will be consumed for processing

one request in three different protocol. The aggregate energy

consumption is broken down into energy consumption of CPU,

radio transmission and low power mode. As the radio chip

keep listening to radio signal, the RX mode consumes a great

amount of energy every second. So the energy consumption

of RX didnt be included in the Fig.8. In our evaluation, the

RX mode (radio listening) consumed 28.5mJ per second.

The energy consumption of our protocol is 0.61mJ totally

for processing one request. Among three modes shows in

the Fig.8, the CPU active mode consumed most energy in

the process because there are six cryptograph computing (5

HMAC SHA1 hash computing and 1 AES128 decryption)are

done in the process. As we only send one packet which is

the response, so the TX mode doesnt consume much energy.

As for LPM , our CPU is really busy when processing the

request, so it is not much time left for low power mode. As a

result of that, the power consumption of LPM can almost be

ignored in the request processing.

The energy consumption data of other protocols are pro-

vided in the thesis about IoT-OAS [5]. So we can do a

comparison of energy consumption between our protocol and

theirs. The OAuth protocol consumes less energy than ours

in processing one request. The power consumption of CPU

active mode is much less than ours. This is reasonable as the

OAuth token validation is much simpler than ours. And the

36

Fig. 8. Aggregate energy consumption

OAuth only sending one packet which is same as ours, so the

power consumption of TX mode is similar as ours.

Comparing with the IoT-OAS protocol, ours CPU active

mode consumes much more energy than theirs. Thats because

they do the validation through another validation server. This

mechanism make their device can only do a little part com-

puting. But the price of less CPU computing is spending great

amount of energy in communicating with the validation server,

so their power consumption on TX mode is pretty high.

V. DISCUSSION

In this paper, we have present an implementation for access-

control protocol for IoT home scenario. According to the ar-

chitecture of this implementation and the experimental result,

the following aspects need to be discussed. The security issue

will not be discussed in this paper because the design of the

implementation will be discussed in my partner paper.

The advantage of this implementation is can support a large

amount validate user at the same time. As the counter-based

token expiration mechanism, the amount of validate user at

the same time can be modified just by changing the size of

the window. In OAuth, one more user may cost much more

memory space for store the user information. Compared with

OAuth, our protocol is more lightweight. In our protocol, the

cost of adding one more user is only 1 byte in RAM footprint.

The memory footprint is the drawback of this implementa-

tion. As we can see in the memory footprint at experimental

results, our implementation takes larger memory in ROM than

other protocol. As some low-power chip can not offer such

large ROM space, we can only deploy the implementation

to some chip having large ROM. However, most chips with

large ROM consuming more energy when CPU is activated.

So the ROM size of the implementation affect the energy

consumptions in some ways.

VI. CONCLUSION

In this paper, we proposed implementation of the protocol

designed by my partner. The implementation details and

some challenges in implementation has been described. The

implementation approach has been applied to significant IoT

home scenario device characterized by constrained memory

space and limited computational power. The response time of

the server is also considered and the experimental result shows

the response time of the device is feasible.

In further research, we will try to compress memory foot-

print of Contiki OS and the Erbium CoAP server. With lower

memory footprint, we can deploy our protocol to chips whose

power is lower and make this implementation more feasible

for IoT home scenario.

REFERENCES

[1] F. Liu, “A survey of the internet of things,” in International Conference
on E-Business Intelligence, 2010.

[2] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application
protocol (coap),” 2014.

[3] A. Ukil, S. Bandyopadhyay, A. Bhattacharyya, and A. Pal, “Lightweight
security scheme for vehicle tracking system using coap,” in International
Workshop on Adaptive Security, 2013, p. 3.

[4] M. Kovatsch, S. Duquennoy, and A. Dunkels, “A low-power coap for
contiki,” in IEEE Eighth International Conference on Mobile Ad-Hoc
and Sensor Systems, 2011, pp. 855–860.

[5] S. Cirani, M. Picone, P. Gonizzi, and L. Veltri, “Iot-oas: An oauth-based
authorization service architecture for secure services in iot scenarios,”
IEEE Sensors Journal, vol. 15, no. 2, pp. 1224–1234, 2015.

[6] “The contiki operating system,” 2016, http://www.contiki- os.org.
[7] D. Hardt, “The oauth 2.0 authorization framework,” 2012.
[8] A. Dunkels, J. Eriksson, N. Finne, and N. Tsiftes, “Powertrace :

Network-level power profiling for low-power wireless networks low-
power wireless,” Swedish Institute of Computer Science, 2011.

[9] “Contiki hardware,” http://www.contiki-os.org/hardware.html.
[10] T. Instruments, “Cc2420 datasheet,” Reference SWRS041B, 2007.
[11] T. Instruments, “Msp430f5438 datasheet,” Reference SLAS655B, 2010.

37

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

