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T he success of artificial neural net-
works (ANNs) in carrying out vari-
ous specialized cognitive tasks has 

brought renewed efforts to apply 
machine learning (ML) tools for eco-
nomic, commercial, and societal aims, 
while also raising expectations regarding 
the advent of an artificial “general intelli-
gence” [1]–[3]. Recent highly publicized 
examples of ML breakthroughs include 
the ANN-based algorithm AlphaGo, 
which has proven capable of beating 
human champions at the complex strate-
gic game of Go. The emergence of a 
new generation of ANN-based ML tools 
has built upon the unprecedented avail-
ability of computing power in data cen-
ters and cloud computing platforms. For 
example, the AlphaGo Zero version 
required training more than 64 GPU 
workers and 19 CPU parameter servers 
for weeks, with an estimated hardware 
cost of US$25 million [4]. OpenAI’s 
video game–playing program needed 
training for an equivalent of 45,000 
years of game play, costing millions of 
dollars in rent access for cloud comput-
ing services [2].

Recent studies have more gener-
ally quantified the requirements of 
ANN-based models in terms of energy, 
time, and memory consumption in both 
the training and inference (run-time) 
phases. An example is a recent work by 
researchers from the University of Mas-
sachusetts Amherst [5], which conclud-

ed that training a single ANN-based 
ML model can emit as much carbon as 
five cars during their lifetimes.

The massive resource requirements 
of ANN-based ML raise important 
questions regarding the accessibility 
of the technology to the general public 
and to smaller businesses. Furthermore, 
they pose an important impediment to 
deploying powerful ML algorithms on 
low-power mobile or embedded devices.

The importance of developing suit-
able methods to implement low-power 
artificial intelligence on mobile and 
embedded devices is attested by its cen-
tral role in applications such as digital 
health, the tactile Internet, smart cit-
ies, and smart homes. In light of this, 
key industrial players, including Apple, 
Google, Huawei, and IBM, are investing 
in developing new chips optimized for 
streaming matrix arithmetic that prom-
ise to make ANN-based inference more 
energy efficient through complexity-
reduction techniques such as quantiza-
tion and pruning [6].

Neuromorphic, or  
brain-inspired, computing
In contrast to ANNs, the human brain is 
capable of performing more general 
and complex tasks at a miniscule frac-
tion of the power, time, and space 
required by state-of-the-art supercom-
puters. An emerging line of work, often 
collectively called neuromorphic com-
puting, aims at uncovering novel com-
putational frameworks that mimic the 
operation of the brain, in a quest for 

orders-of-magnitude improvements 
in terms of energy efficiency and re
source requirements.

The unmatched efficiency of the 
human brain as an adaptive learning and 
inference machine may be the result of a 
number of unique factors. Among these, 
none appears to be more fundamental, 
and more fundamentally different from 
the operation of digital computer, than 
the way in which neurons encode infor-
mation: with time, rather than merely 
over time [7]. Biological neurons can 
be thought of as complex dynamic sys-
tems with internal analog dynamics 
that communicate through the timing 
of all-or-nothing—and hence digital—
spikes. This is in stark contrast to the 
static analog operation of neurons in 
an ANN. Biological neurons are con-
nected through networks characterized 
by large fan-out, feedback, and recurrent 
signaling paths, unlike the feedforward 
or chain-like recurrent architectures of 
ANNs. As studied in theoretical neuro-
science, the sparse, dynamic, and event-
driven operation of biological neurons 
makes it possible to implement complex 
online adaptation and learning mecha-
nisms via local synaptic plasticity rules 
and minimal energy consumption.

Based on these observations, brain-
inspired neuromorphic signal processing 
and learning algorithms and hardware 
platforms have recently emerged as low-
power alternatives to energy-hungry 
ANNs. Unlike conventional neural net-
works, spiking neural networks (SNNs) 
are trainable dynamic systems that make 
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use of the temporal dimension, not just 
as a neutral substrate for computing but 
also as a way to encode and process 
information in the form of asynchronous 
spike trains. In SNNs, sparse spiking 
and hence time-encoded signals carry 
out interneuron communications and 
intraneuron computing.

This has motivated the development of 
prototype neuromorphic hardware plat-
forms that are able to process time-encod-
ed data. These platforms include IBM’s 
TrueNorth, SpiNNaker, developed within 
the “Human Brain Project”; Intel’s Loihi; 
and proof-of-concept prototypes based 
on nanoscale memristive devices. These 
systems are typically based on hybrid 
digital–analog circuitry and in-memory 
computing, and they have already pro-
vided convincing proof-of-concept evi-
dence of the remarkable energy savings 
that can be achieved with respect to 
conventional neural networks. Further-
more, SNNs have the unique advantage 
of being able to natively process spik-
ing data as it is produced by emerging 
audio and video sensors inspired by biol-
ogy, such as silicon cochleas or dynamic 
vision sensor cameras.

The role of signal processing  
in neuromorphic computing
Work on neuromorphic computing has 
been carried out by researchers in ML, 
computational neuroscience, and hard-
ware design, often in parallel. While the 
problems under study—regression, 
classification, control, and learning—
are central to signal processing, the sig-
nal processing community, by and 
large, has not been involved in the defi-
nition of this emerging field. Neverthe-
less, with the increasing availability of 
neuromorphic chips and platforms, the 
guest editors believe that progress in the 
field of neuromorphic computing calls 
for an interdisciplinary effort by 
researchers in signal processing in con-
cert with researchers in ML, hardware 
design, system design, and computa-
tional neuroscience.

From a signal processing perspec-
tive, the specific features and constraints 
of neuromorphic computing platforms 
open interesting new problems concern-
ing regression, classification, control, 

and learning. In particular, SNNs con-
sist of asynchronous distributed archi-
tectures that process sparse binary time 
series by means of local spike-driven 
computations, local or global feedback, 
and online learning. Ideally, they are 
characterized by a graceful degradation 
in performance as the network’s number 
of spikes, and hence, the energy usage, 
increases. For example, recent work has 
shown that SNNs can obtain satisfac-
tory solutions of the sparse regression  
problem much more quickly than con-
ventional iterative algorithms [8]. Solu-
tions leverage tools that are well known 
to signal processing researchers, such 
as variational inference, nonlinear sys-
tems, and stochastic gradient descent.

In this issue
The field’s scope encompasses neurosci-
ence, hardware design, and ML, which 
makes it difficult for a nonexpert to find 
a suitable entry point in the literature. 
This special issue brings together key 
researchers in this area to provide read-
ers of IEEE Signal Processing Maga-
zine with up-to-date and survey-style 
articles on algorithmic, hardware, and 
neuroscience perspectives on the state-
of-the-art aspects of this emerging field. 

Overview
The first special issue article, “The 
Importance of Space and Time for Signal 
Processing in Neuromorphic Agents,” by 
Indiveri and Sandamirskaya, introduces 
the role of time-encoded information 
and parallel neuromorphic computing 
architectures in enabling more efficient 
learning agents as compared to state-of-
the-art ANNs.

Sensing and time-encoded 
representations
Neuromorphic computing architectures 
take as inputs time-encoded signals that 
are either produced by neuromorphic 
sensors or converted from natural signals 
such as images, video, or audio. The 
next two articles in this special issue 
describe these two scenarios. In “Event-
Driven Sensing for Efficient Perception” 
by Liu et al., the authors discuss the 
main properties of the data produced by 
neuromorphic sensors and show how 

these features enable energy-efficient, 
low-latency, and real-time computing on 
neuromorphic platforms. In their article, 
“Signal Processing Foundations for 
Time-Based Signal Representations,” 
Sevüktekin et al. discuss signal process-
ing foundations for time-based signal 
representations of exogenous signals and 
for the reconstruction of these signals 
from their time-encoded versions.

Learning and signal  
processing applications
Neuromorphic platforms can be trained 
to carry out a variety of inference and 
control tasks. The next set of articles 
review training algorithms and applica-
tions. In “Surrogate Gradient Learning 
in Spiking Neural Networks,” Neftci, 
Mostafa, and Zenke review training 
algorithms for standard deterministic 
models of SNNs via surrogate gradient 
methods, which aim at overcoming the 
nondifferentiability of the relevant loss 
functions. The next article, “An Intro-
duction to Probabilistic Spiking Neural 
Networks,” by Jang et al., discusses an 
alternative solution that is based on the 
use of probabilistic models by reviewing 
the resulting learning rules and applica-
tions. To further reduce the complexity 
of training, reservoir-computing tech-
niques have been proposed, which are 
based on adapting only a subset of 
weights while others are randomly 
selected. Soures and Kudithipudi next 
present an overview of this topic in 
“Spiking Reservoir Networks.” Finally, 
in “Neuroscience-Inspired Online Unsu-
pervised Learning Algorithms,” Pehle-
van and Chklovskii  focus on the 
special class of unsupervised learning 
algorithms, for which they provide a 
principled derivation of similarity-based 
local learning rules that are applied to 
problems such as linear dimensionality 
reduction, sparse or nonnegative fea-
ture extraction, and blind nonnegative 
source separation.

Hardware platforms
Standard computing systems based on 
the von Neumann architecture are not 
well suited to harness the efficiency of 
computing in SNNs. In “Low-Power 
Neuromorphic Hardware for Signal 
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Processing Applications,” Rajendran et al. 
review architectural and system-level 
design aspects that underlie the operation 
of neuromorphic computing platforms 
for efficient implementation of SNNs.
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