The volume, variety, and velocity of medical imaging data are exploding, making it impractical for clinicians to properly utilize such available information resources in an efficient fashion. At the same time, the interpretation of such a large amount of medical imaging data by humans is significantly error prone, reducing the possibility of extracting informative data. The ability to process such large amounts of data promises to decipher encrypted information within medical images, develop predictive and prognosis models to design personalized diagnosis, allow comprehensive study of tumor phenotype, and allow the assessment of tissue heterogeneity for diagnosis of different types of cancers.
Abstract:
The volume, variety, and velocity of medical imaging data are exploding, making it impractical for clinicians to properly utilize such available information resources in ...Show MoreMetadata
Abstract:
The volume, variety, and velocity of medical imaging data are exploding, making it impractical for clinicians to properly utilize such available information resources in an efficient fashion. At the same time, the interpretation of such a large amount of medical imaging data by humans is significantly error prone, reducing the possibility of extracting informative data. The ability to process such large amounts of data promises to decipher encrypted information within medical images, develop predictive and prognosis models to design personalized diagnosis, allow comprehensive study of tumor phenotype, and allow the assessment of tissue heterogeneity for diagnosis of different types of cancers.
Published in: IEEE Signal Processing Magazine ( Volume: 36, Issue: 1, January 2019)