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Investigation of Surface-inset Machines with Mixed
Grade Magnets Considering Magnet Thickness

Youyuan Ni, Liang Zhang, and Zhiwei Qiu

Abstract—This paper presents a mixed grade magnet model for
surface-inset machines considering the magnet thickness. In the
polar coordinates, on the basis of the Laplace/quasi-Poisson
equations and boundary conditions, the constructed matrix
equations are solved and the air gap magnetic field in the machine
is derived. Taking an 8-pole/12-slot surface-inset motor as an
example, through the presented optimization process, the air gap
field is optimized considering the magnet thickness, remanence
and magnetization angle. In addition, the back-EMF and
electromagnetic torque are analytically obtained. The optimized
results show that the proposed mixed grade magnet model has
larger electromagnetic torque and smaller torque ripple than the
conventional one. Finally, the analytical predictions are evaluated
by finite element analysis (FEA).

Index Terms—Mixed grade magnet, Surface-inset machines,
Magnet thickness, Remanence, Torque ripple.

I. INTRODUCTION

RUSHLESS DC/AC permanent magnet (PM) machines

are extensively applied in various fields because of their
remarkable advantages including the simple structure, high
power density and efficiency [1]-[3].

In order to reduce the magnet usage and increase the machine
performance, the relatively complex magnet structures used for
surface-mounted machines are proposed. A surface-mounted
double-layer Halbach machine is investigated and its
performance is better than the single-layer one [4]. The
trapezoid magnets for surface-mounted machines are proposed
and exhibit good performance in [5]-[8]. The surface-mounted
machines with T-type magnets are proposed and compared in
[9]-[10]. A magnet shape optimization method is proposed to
reduce the harmonic of the air gap flux density in [11]. All of
these various magnet shapes are used for surface-mounted
machines.

Due to the robust structure, high torque density and wide
field weakening region, surface-inset PM machines are also
extensively used [12]. Slotless surface-inset radial/parallel

magnetization machines are analytically investigated [13]—[15].
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Considering the stator slotting effect, a sub-domain model
method is utilized to solve the magnetic field distribution in the
surface-inset machine [16]-[20]. Compared with the traditional
radial/parallel magnetization, Halbach magnetized PM
machine has more sinusoidal magnetic field distribution and
lower torque ripple [21]. A surface-inset machine eccentric
Halbach magnets is analyzed and optimized in [22]. For
surface-inset multi-segment Halbach machines, general
analytical optimization model is used for both odd- and
even-segment Halbach magnets in [23]. However, the mixed
grade magnets have not been applied for surface-inset
machines yet.

In this paper, an analytical model is proposed for
surface-inset machines with novel mixed grade magnets
considering the magnet thickness. The influence of both the
thickness and the magnet remanence on the air gap field is
considered. The optimization process is presented and
explained. The results show that the proposed optimized model
has better performance than the conventional surface-inset
Halbach machine. Finally, the analytical results are validated
by finite element analysis (FEA).

II. PROPOSED MAGNET MODEL

Fig. 1(a) shows the conventional surface-inset two-segment
Halbach magnets. The proposed surface-inset mixed magnet
structure is shown in Fig. 1(b). The magnetic pole structure is
divided into the outer/inner magnets. The outer magnets are
two-segment Halbach array and the inner magnet adopts
parallel magnetization.

Fig. 2 shows the two-dimensional (2-D) parameters of the
slotless machine with proposed mixed magnets. The parameter
relation equations can be written as:

Riy=R,+ hpo (D

Ri=Rntg )
where Rj is the outer radius of inner magnets, g is the air gap
length, R; is the stator inner radius, R, and R,, are the outer radii
of the rotor core and magnets, /,,1 and /> are the thicknesses of
the outer and inner magnets, respectively.

In addition, o, and @, are the magnet pole-arc to pole-pitch
ratios of the outer/inner magnets, respectively, f is the
symmetric magnetization angle of the outer magnets.

=y O

(b)
Fig. 1. Two structures of surface-inset magnets. (a) Conventional magnets. (b)
Proposed mixed grade magnets.
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Fig. 2. Structural parameters of slotless surface-inset machine with proposed
magnets.

Rotor

(@ (b)
Fig. 3. Solution regions of slotless machine with proposed magnets. (a)
Solution regions for outer magnets. (b) Solution regions for inner magnets.

III. SOLUTION SLOTLESS OPEN-CIRCUIT FIELD

Required assumptions for a 2-D model include: 1) linearly
demagnetized character of magnets; 2) infinite permeability of
iron; 3) neglected winding end effect.

Fig. 3 shows the regions of solution the open-circuit field in
the slotless machine with proposed magnets.

A. Field Produced by Outer Magnets

As shown in Fig. 3(a), for the field produced by the outer
magnets, three regions are required. Regions 1 and 3 are the air
and region 2 is the magnet. In the polar coordinates, the
expressions of magnetization components, M, and My, can be
written as

M, = ZMU. cos(jpt) (3)
j=135...

My= > Mgsin(jp0) 4)
j=135...

The expressions of Fourier decomposition coefficients of M,
and My are given in [22]. And

M;=M,;+ jpMo; )

According to [24], the scalar magnetic potential from the

general solutions of Laplace/quasi-Poisson equations in the
three regions are

0

o= Z(A,.Ir"” + B,r")cos(ip0) (6)
i=1,3,5..
Z(A,zrfp +B,r ”’)cos(]p )
J=13.5.. r (7)

+i

Jj=1,3,5...

[(Rh By - 1}os<ﬁ)
a

r

,Ur[(]P) -1]

9= D (A" +Br")cos(jpd) (®)
J=135...
where i and j are harmonic orders, 41, Bi, 4j1, Bj1, Aj» and Bj
are coefficients to be solved, p is the number of pole-pairs, wo is
the air permeability, and @ is the rotor position angle.

In the air and magnet regions, the relation equations between
the two magnetic field vectors (i.e., the flux density B and the
field intensity H) are given in [13].

Along the stator bore, the boundary condition is

Hy, r=Ry 0 ©)

According to (6), the field components in region 1, Hy and
B,1, can be obtained as

) ) R 2ip )
H, = z A“{ipr’p'l — }m(ip 0) (10)
i=1,3,5... r
0 ) R 2ip
By==ty D, Ayip| r" 4 leos(ip) (1)
i=1,3,5... r
For regions 2 and 3, the boundary conditions are
Hp, =0 (12)
02| r=r, 11 03| r=R, (13)
Br2 r=Ry = Br3 r=Ry, (14)
Thus, according to (7)—(8) and (12)—(14), the field
components in regions 2 and 3 can be written as
Z [A r? +rP +Q1] sm( Vol ) (15)

Jj=L3,5... r r
00

jpo s
Boy==phf, Y, cose NApjpr'+P,=0y)+ M

Jj=13,5... r
(16)
o0 . 9
Z A - ,,m)”’ sin2%)  (17)
a
Jj=13,5.. r r
0 2fl7
~H Y rdy "+ )cos( ) (18)
j=13,5..
where
M +ij |:(Rh)jp+1 1}
1. (yp? 1) (19)
M .+ M
SRR S
. (jrp* 1)
L+ L+ +1,
. - Jr
Jp(jp—Dr” I, 20)
0 L+t +1,
L Up-Drtig
where
I, =M,R,” (1- jp)
(21)

. ; ip&
=—(M; + jpM ;)R,” cos(%)
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2jp

. R, jp0
I, =(M_ + jpM cos
;=M +jp @) R, (,) 22)
I,=M,R” (jp-1)
ip— L 124
I = A,R " (1= jp)jp COS(%
2/p . (1 )(1+ )) . 6 (23)
I - A,-z A= jp) At p) o IO,
Rh ar
2jp-1 . . jy)@
I; = AR, p, jp(jp—1) COS(a—)
2 2';" (24)
A+p )R, +(A=p)R™" jpb
Iy = o cos( )
R, a,

Thus, only two coefficients 4;; and 4;; are to be determined.
The interface conditions for regions 1 and 2 are

Hy, F=R,, Hy, r=R,, (25)
Brl r=R,, = BrZ r=R,, (26)
The integral equations can be written as
j P H, sin(ip8)do = Izp H,,sin(ip0)d o (27)
2p
.[W B, cos(22%)a0 - j " (28)
,2’7 ar
From (27) and (28), the matrix equation is written as
= (29)
C;, D, \A, F,

where A, By, Cji, Dj, E;, and F; are given matrixs, the column
matrices Ajand A, can be expressed as

All AIZ
P R RN (30)
Ail A/Z

Therefore, the field produced by the outer magnets can be
obtained by solving (29).

B. Field Produced by Inner Magnets

The inner magnets are parallel magnetized, and the
magnetization components, M- and My, are given in [22].

The solution subdomains for the inner magnets is shown in
Fig. 3(b). Similarly, the scalar magnetic potentials ¢"1, ¢ and
s in the three subdomains can be obtained from
Laplace/quasi-Poisson equations.

The boundary conditions are

Hp|,p, =0 @31)
Hyy|,r =0 (32)
1'91 r=R,, :Ht'92 r=R,,

33)

’ _n'
Brl r=R,, _Br'Z r=R,,

r=Ry

Héz | r=R,, :Hé3| (34)
=B’

'
B r3

r2

r=Ry r=Ry

According to (31)—(40), the field components in regions 1
and 2 can be obtained as

2ip
Z A{lpr R l}sin(ipﬁ) (35)

i=1,3,5..

—Hy z A;11p|:

j=13.5..

! p—
Ht‘)l

2ip
R }cos(zp o) (36)

, o0 . , . , . . 6
Hpy= 3 Ly + 0)sin(222) (37)
i=1,3,5... %r a,
! N . ! ip— Q' ]pa
Bio==ty D, jp(Apr” = Ecos* =) (39)
j=1,3,5... r

where Q' is the known coefficient obtained by the boundary
conditions, A’ and A4’ are the unknown coefficients to be
solved.

According to (33) and (34)—(38), the integral equations can
be given as

Ii H), sin(ip 0)d6 = I 2 Hj,sin(ip0)do  (39)
"2 T
J.“ B!, cos( Jro VdO = IZ” B!, cos( )d@ (40)
2]7 aV r
From (39) and (40), the matrix equatlon is written as
Al B)YA])_(E
' ' = e (41)
Cﬁ D]j AZ Fj

where Ay, B, C’i, D', E', and F’; are known matrixs, the
column matrices A and A, can be expressed as

A A
AI A!

Ap=| 7L A= 42)
A A

Therefore, the field produced by the inner magnets can be
obtained from (41).

IV. ANALYTICAL PERFORMANCE OF SLOTTED MODEL

A. Air Gap Field of Slotted Model

Based on a linear superposition method, the radial air gap
field in the slotless machine with proposed magnets can be
obtained as

Br-slotless = Brl +B ,rl (43)

For the slotted machine having the parallel teeth, the air gap

flux density can be written as

Bisiotted = Cx Bslotless (44)
where C is the Carter’s coefficient in terms of the stator slot,
and its detailed expression is given in [4].

B. Back-EMF

For one stator coil with N, turns, the flux linkage can be
expressed as
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+agp

@,
yl = RsLch Br-sloned (Rv H H)dg

.t
where o, is the angular frequency, L; is the coil active length,
and a, is the coil pitch angle.
Then, the back-EMF can be obtained as

d¥v = . npm, .
E==ZF=2RIN, D By e S0 S)sin(mp@,0) (46)

n=1,3,5... s
where N is the slot number.
For an 8-pole/12-slot machine, each phase winding has four
coils. The induced electromotive forces of all coils are

(45)

Eal = ZRSLS Nc Z Br-slotted Sln(gj) Sin(npa)rt)
n=1,3,5... s

N . . 6
E,=2RLN, z B, goed sm(%) sin(npw,t _Tn)

n=1,3,5... K

) (47)
Ea3 = ZRSLS Nc Z Br-slotted Sln(’Zl) Sin(npa)rt - Tn)

n=1,3,5... s s

N . npm._ . 18n
E, =2R LN B sin(——)sin(npw,t ———
a4 ss cn:;m r-slotted ( NX ) ( p r NX )
Therefore, the back-EMF of phase A is
ExmEq+ Ex+t Eg+ Ew (48)
The back-EMF of phases B and C can be obtained similarly.

C. Electromagnetic Torque

For a three-phase machine, the electromagnetic torque can be
given as
Tem:(EAIA +EB[A +ECIC)/60r
where 4, I and Ic are three-phase balanced currents.

(49)

V. ANALYTICAL OPTIMIZATION AND VERIFICATION
For comparion, the usage and the average remanence per unit
volume of magnets are constant, i.e.,
{S =S +8,

B, =(S,B 50

o~ rel

+S.B

where S, and S; are the areas of the outer/inner magnets,
respectively, By, and B, are the remanences of the outer/inner
magnets, respectively. And

So = arn[Rmz - (Rr + hm2 )2 ] /(2p)
S.=am[(R, +h,,)" —R>1/(2p)
According to (50) and (51), /4,1 and By can be represented

by hwmx and B.p. The fundamental components of air gap
magnetic density B,rare the function of /.2, B> and f, i.e.,

B’f?:-f(hmZ ’Bre2 ’ﬁ)

The objective function and the constraint conditions of the
optimization variables can be written as

maX{B;jf (hm2’Brf32’ﬂ)}
0<h,, <4mm

Subjectto. <1T<B,,<14T
0°< B <90°

)/ S

e

(1)

(52)

(53)

If the magnet thickness is fixed, since the outer magnets have

a changerable magnetization angle, the optimal value can be
obtained by

0B
—L=0 (54)
op

Based on the aforementioned analysis equations,

8-pole/12-slot machines with proposed mixed magnets are
analyzed. The main parameters are shown in Table 1.

TABLE 1

DESIGN PARAMETERS OF 8-POLE/12-SLOT MACHINES
Item Value Unit
Rated speed 2000 r/min
Rated phase current 7.7 A
Stator outer radius, Ry, 60 mm
Stator inner radius, R, 35 mm
Magnet inner radius, R, 30 mm
Total thickness of magnets, / 4 mm
Active length, L, 40 mm
Magnet-arc ratio of outer magnets, a, 0.78
Number of coil turns, N, 53
Average remanence per unit volume, B, 1.2 T
Magnet relative permeability, u, 1.05

The optimization process is relatively complex, and the flow
chart is presented, as shown in Fig. 4. B, is the fundamental
amplitude of air gap flux density when the inner /outer magnets
are of equal thickness and the magnetization angle and
remanence are both optimal. Firstly, the thickness of the
inner/outer magnets are given and » is the number of
combinations of the inner/outer magnets with different
thicknesses. According to (54), the corresponding optimal
magnetization angle S can be derived. Secondly, the influence
of the remanence on the fundamental magnetic density B, is
considered. Considering different inner magnet thicknesses
with different optimal magnetization angles, the variation of
fundamental magnetic density with the remanence of inner
magnets is presented, as shown in Fig. 5. It should be noted that
the dotted line in this figure are unrealistic points. It can be seen
that the fundamental flux density changes monotonically with
the increase of B, independent of inner magnet thickness.
Thirdly, the relatively optimal /,,; (i.e., 2.6 mm) can be selected
in Fig. 5. According to (54), f is derived as 70.5°. With derived
these two parameters, the influence of the inner magnet
remanence on the fundamental flux density is shown in Fig. 6.
If Bz 1s equal to 1.06 T, the maximum fundamental amplitude
and minimum total harmonic distortion (THD) are determined.
Thus, the relatively optimal parameters are derived as: f=70.5°,
hmi=1.4 mm, h,,=2.6 mm, B,.;=1.4 T and B,..=1.06 T. Finally,
the optimal back-EMF and electromagnetic torque can be
obtained.

It can be seen from Fig. 5 that within the available range,
when £,,,=2.6 mm, the fundamental amplitude of the air gap
magnetic density is relatively large, so 4,,2=2.6 mm is selected
as the optimal thickness of the inner magnets.

Fig. 6 shows the variation trend of the fundamental
amplitude and THD of the air gap magnetic density with the
remanence of the inner magnets when £,,=2.6 mm. When
B,»=1.06 T, there is the maximum fundamental amplitude and
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| star |—>| i=1Max-B, By

v

| Derive f corresponding to /,paccording to (54) |

v

Obtain fundamental magnetic density B,, with remanence By
(ie., By =f(B2)) according to (52)

v

Determine optimal B,., from maximum fundamental
amplitude and minimum THD

Max-B,=B,s

Derive optimal B,y

according to (52)

Fig. 4. Flow chart of optimization of magnet parameters.
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Fig. 5. Variation of fundamental amplitude of air gap magnetic density with
remanence of inner magnets considering different inner magnet thickneses.

1.01 : : : : : : : 152

1.011F 15

OO
o Lo ey 1148
% |
2 1009 | 1 146
e | S
< | ~
S 1.008 ! 11440
Z ! =
- |
3 1007 ! 1142
=1 |
= |
= 1.006F ! {14
| %o
®%000 ! ———
1.005] cor Optimal B 1138
tima re2
1.004 i : : : : : 136
1 105 1.1 115 12 125 13 135 14
Bre2 (T)

Fig. 6. Influence of inner magnet remanence
THD of air gap field.

on fundamental amplitude and

the minimum THD of the air gap magnetic density, as marked
in Fig. 6, so B,»=1.06 T is selected as the optimal remanence of
the inner magnets.

The changes of the fundamental amplitude and THD of
magnetic flux intensity with the magnetization angle of the
outer magnets and the remanence of the inner magnets are
shown in Fig. 7(a) and 7(b), respectively. It can be observed the
maximum fundamental amplitude and minimum THD derived
in Fig. 6 are in good agreement with those in Fig. 7.
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Fig. 7. Variation of fundamental amplitude and THD of air gap flux density
with remanence of inner magnets and magnetization angle of outer magnets. (a)
Variation of fundamental amplitude. (b) Variation of THD.

Fig. 8 shows the air gap flux density waveforms and their
harmonics of the conventional/proposed machines with optimi-

15 T T T T T T
Conventional

Air-gap flux density (T)

0 50 100 150 200

Mechanical angle(®)

(a)

250 300 350
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Fig. 8. Waveform/harmonic comparison of air gap magnetic density between
two slotless machines. (a) Waveform comparison. (b) Harmonic comparison.
zed magnets. The optimal magnetization angle for the
conventional magnet is derived as 79.5°. It can be seen from
Fig. 8(b) that the air gap flux density waveforms in both two
machines have no even harmonics. The proposed machine has a
larger fundamental amplitude, and the 3rd and 5th harmonics
are significantly smaller than those of the conventional
machine.

Fig. 9 shows the back-EMF waveforms and their harmonics
150 T T T

Conventional
Proposed

100

Back-EMF (V)
W
o o

&
)

-100

-150

Time (ms)
(2
120 T T T T T T T

I Conventional
[ Proposed

100

0
(=]

Back-EMF (V)
3

40

20 -

1 3 5 7 9 11 13 15
Harmonic order

(b)
Fig. 9. Waveform/harmonic comparison of back-EMFs between two machines.
(a) Waveform comparison. (b) Harmonic comparison.

of the conventional/proposed machines with optimized
magnets machine. Similarly, the back-EMF waveforms of both
two machines have no even harmonics. Obviously, compared
with conventional machine, the proposed machine model with
optimized magnets has a larger fundamental component and
smaller THD.

Fig. 10 presents the comparison of electromagnetic torque
waveforms of two different machines. Obviously, the machine
with optimized combined magnets has a higher average torque
and a lower torque ripple, this is mainly because the magnetic
field waveform of the proposed machine model has larger
fundamental and smaller harmonic components.

Fig. 11 shows the magnetic line of force distributions in
machines with conventional/proposed optimized magnets by a
FEA technique. The optimal magnetization angles are 79.5°
and 70.5°, respectively, which are in good agreement with
those from analytical method. It can be observed that the
magnetic leakage occurs at the space between the magnets and
rotor salient iron for both two structures. It can be also observed
that the magnetic leakage in the proposed machine reduces
significantly.

8 T T T T T
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P Proposed

[o)

|

Electromagnetic torque (Nm)
w -

]
T
L

0 1 2 3 4 5 6 7
Time (ms)

Fig. 10. Electromagnetic torque waveform comparison between two machines.

B=79.5°

(®)
line of force distributions
conventional/proposed optimized magnets. (a) Conventional. (b) Proposed.

Fig. 11. Magnetic in machines with
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Fig. 12 shows the magnetic force of the magnets of the
conventional machine. It can be seen that the average force of
the magnets is 23.82 N. Fig. 13 shows the magnetic force of the
outer/inner magnets of the proposed machine. It can be
observed that the average forces of the outer/inner magnets are
17.35 and 30.68 N, respectively. Although the total force of the
proposed machine is larger than the counterpart of the
conventional machine, the force ripple of the proposed machine
is much less than the counterpart of the conventional machine.

45

30

W

Magnetic force (N)
(=)

-30
45 ; i i i ;
0 5 10 15 20 25 30
Time (ms)
Fig. 12. Magnetic force of magnets of conventional machine.
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(=]
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-45
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Time (ms)
(®)
Fig. 13. Magnetic force of outer/inner magnets of proposed machine. (a) Outer
magnets. (b) Inner magnets.

For the proposed optimized model, the analytical and FEA
predictions of air-gap flux density, back-EMF and
electromagnetic torque waveforms are shown in Fig. 14. FEA
predictions verify the correctness of the analytical model. Table
II lists the given/optimized magnet parameter comparison
between conventional and proposed machines. Table III lists
the optimized electromagnetic performance comparison
between the two machines. Compared with the traditional
machine, the fundamental amplitudes of the air gap flux density

1.5 T T T
—o— Analytical
—+—FEA

05

Air gap flux density (T)
o

0 50 100 150 200 250 300 350
Mechanical angle (°)

@

150

—>— Analytical
—+—FEA

Back-EMF (V)

-150

Time (ms)
(b)

8 T T T T T T

—e— Analytical
—+—FEA

=)

w

Electromagnetic torque (Nm)
o £

(S}
T

0 . . . I L . .
0 1 2 3 4 5 6 7

Time (ms)
(0)
Fig. 14. Analytical and FEA predictions of waveforms of 8-pole/12-slot
machine with proposed magnets. (a) Air gap flux density waveforms. (b)
Back-EMF waveforms. (c) Electromagnetic torque waveforms.
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and back-EMF of the proposed machine increase by 4.12% and
2.63%, respectively, and the average value of the
electromagnetic torque increases by 2.36%. At the same time,
the THD values of the air gap flux density and back-EMF of the
proposed machine reduce by 37.1% and 39.76%, respectively,
and the torque ripple reduces by 57.83%. Furthermore, due to
the increase of the average value of electromagnetic torque, the
efficiency of the proposed machine is also improved.

TABLE II
COMPARISON OF MAGNET PARAMETERS BETWEEN TWO MACHINES
Conventional Proposed
Optimized mag;letlzatlon 795 705
angle (°)
Given/optimized magnet 4 hni=1.4
thickness (mm) =26
Given/optimized magnet 12 Bra=l4
remanence (T) B,.=1.06
TABLE Il
COMPARISON OF OPTIMIZED PERFORMANCE BETWEEN TWO MACHINES
Conventional Proposed
Fundamental
. 0.97 1.01
Slotless amplitude (T)
flux density
THD (%) 22.27 14.03
Fundamental 102.52 105.22
amplitude (V)
Back-EMF
THD (%) 17.43 10.50
Average value 543 561
Electromagnetic (Nm)
torque Ripple value
%) 16.22 6.84
. Rated value
Current density (A/mm?) 5.96 5.96
Efficiency Rated value 94.73 94.84

(%)

VI. CONCLUSION

A surface-inset machine model with mixed grade magnets
has been presented. For this model, the scalar magnetic
potential can be used to implement the analytical optimization
easily and quickly. Through the subdomain model analysis and
a linear superposition method, the magnetic field produced by
all the magnets can be solved. Considering the magnetization
angle, the thickness and the remanence of magnets, the
optimization process is proposed and the optimization results
are presented. It is shown that the electromagnetic performance
of the proposed magnet model is better than that of the
conventional magnet model. The correctness of the analytical
results is verified by FEA.
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