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Abstract—This paper introduces a novel method for fast 
calculating the electromagnetic forces in interior permanent 
magnet synchronous machines (IPMSMs) under pulse width 
modulation (PWM) voltage source inverter (VSI) supply based on 
the small-signal time-harmonic finite element analysis (THFEA), 
which has been successfully utilized for fast calculating the PWM-
induced losses in silicon steel sheets and permanent magnets. 
Based on the small-signal THFEA, the functional relationships 
between high-frequency harmonic voltages (HFHVs) and 
corresponding airgap flux densities are established, which are 
used for calculating the flux density spectra caused by each HFHV 
in the PWM voltage spectra. Then, the superposition principle is 
applied for calculating the flux density spectra caused by 
fundamental currents and all HFHVs, which are converted to the 
electromagnetic force spectra at last. The relative errors between 
the force density spectra calculated with the proposed method and 
those obtained from traditional time-stepping finite element 
analysis (TSFEA) using PWM voltages as input are within 3.1%, 
while the proposed method is 24 times faster than the traditional 
TSFEA.  
 

Index Terms—Time-harmonic finite element analysis 
(THFEA), Interior permanent magnet synchronous machines 
(IPMSMs), Electromagnetic forces, Pulse width modulation, 
Vibration and acoustic noise. 

I. INTRODUCTION 

NTERIOR permanent magnet synchronous machines 
(IPMSMs) are widely applied in electrical vehicles and 

industries in modern times [1]. The accurate modeling of the 
electromagnetic noise and vibration characteristics of IPMSMs 
is essential for their optimal design, which requires accurate 
electromagnetic force calculations on the inner surfaces of 
stators [2]-[10]. Because of the nonlinearity of IPMSMs, finite 
element analysis (FEA) is the most widely used methods for the 
accurate force calculation, which is however time-consuming 
[2]-[6]. Especially, when the pulse width modulation (PWM)  

effects are considered, fine steps are needed to distinguish high-
frequency components if the traditional time-stepping FEA 
(TSFEA) is used, disregarding current sources contained high-
frequency harmonic currents (HFHCs) or PWM voltages are 
used as the input for the transient calculation [7]-[11]. 
Numerous researches have been conducted on the influence of 
control and modulation strategies on electromagnetic forces and 
consequent vibrations and noises [12]-[16]. However, these 
investigations are mainly based on experiments, which have not 
addressed a fast and accurate method for calculating high-
frequency electromagnetic forces caused by different PWM-
induced high-frequency harmonic voltages (HFHVs). 

Neglecting the nonlinearity of silicon steel sheets (SSTs), a 
method for fast calculating electromagnetic forces caused by 
HFHCs has been proposed in [17] based on the superposition 
principle, which uses the permeance distribution function to 
describe the relationships between input currents and flux 
density distributions. However, the HFHCs themselves are very 
difficult to be accurately predicted at the design stage because 
of the eddy current reaction effects at high frequency under 
PWM voltage source inverter (VSI) supply [11]. Besides, the 
superposition principle and other analytical methods [17]-[20] 
can only be applied under the assumption of neglecting the 
nonlinearity of SSTs, which is not fit for IPMSMs. To tackle 
the nonlinearity in IPMSMs, the small-signal time-harmonic 
FEA (THFEA) based on the frozen differential reluctivity 
tensor method (FDRTM) has been proposed for fast calculating 
the PWM-induced permanent magnet (PM) eddy current losses 
and iron losses [21]-[23]. In this paper, the small-signal THFEA 
method is further extended for calculating the airgap flux 
densities and electromagnetic forces caused by HFHVs. 

This paper focuses on presenting a detailed procedure for fast 
calculating the electromagnetic forces in IPMSMs under PWM 
VSI supply. Although only the calculation procedure at one 
working condition is given and the eddy current reaction effect 
in PMs is neglected, the proposed method is able to consider 
different working conditions and the eddy current reaction 
effect, just like the calculation of the PWM-induced losses in 
[21]-[23], with more THFEA and interpolation methods, which 
is no longer repeated here. Fig. 1 gives an overview of the 
proposed fast calculation method. In Section II-A, a new 
computational efficient FEA (CE-FEA) method based on the dq 
transformation is proposed for fast calculating airgap flux 
density under sinusoidal current source (SCS) supply, which 
has similar effects with the CE-FEA method in [24] but 
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different ways. In Section II-B, the flux densities under one pole 
generated by independent d- and q-axis HFHV excitations are 
calculated, respectively, which establishes the functional 
relationships between HFHVs and corresponding flux densities. 
In Section II-C, for a simple introduction, the flux density 
spectra generated by one positive rotational HFHV are 
calculated based on the functional relationships, which is 
verified with the TSFEA method. In Section II-D, the flux 

density spectra caused by all the PWM-induced HFHVs are 
calculated and verified. In Section III, the analytical method 
used for converting flux density spectra to force density spectra 
is introduced. In Section IV, conclusions are made, which 
demonstrates the calculation speed of PWM-induced forces is 
improved by 24 times, while relative errors between the 
proposed method and TSFEA are within 3.1%.

 

 
Fig. 1.  Flowchart of the proposed method for fast calculating PWM-induced electromagnetic forces 
 

II. CALCULATION OF HIGH-FREQUENCY FLUX DENSITY 

SPECTRA AT ONE WORKING CONDITION 

The IPMSM reported at [11] is taken as the prototype 
machine for the calculation, which has 3 pole pairs, 36 slots, 
and distributed windings. The skewed-slots effect is neglected 
for simplicity in this paper. One working condition shown in 
Table I is analyzed in this Section to illustrate the detailed 
procedure of the proposed method. The fundamental frequency 
fo is 50 Hz according to the parameters in Table I. 

 

TABLE I 
THE WORKING CONDITION ANALYZED IN SECTION II 

Speed n D-axis current id Q-axis current iq 

1000 r/min 0 13 2A  

PWM strategy DC-bus voltage Udc Carrier frequency fc 

Space vector PWM 554 V 4 kHz 

A. Fast Calculation of Airgap Flux Density Under SCS 
Supply Based on DQ Transformation 

The common practice to calculate the radial electromagnetic 
force is the Maxwell tensor method, i.e., to first calculate the 
airgap flux density under one pole over one electrical period. 
Then, the radial electromagnetic force density is computed as: 

2 2 2

0 02 2
r t r

r

B B B
F

 


       (1) 

where μ0 is the permeability of the air. Br and Bt are radial and 
tangential flux densities in the airgap, respectively. Because the 
slot opening in the IPMSM [11] is small, the tangential 
component is neglected when calculating Fr in this paper. 

According to the idea of CE-FEA [24], the flux density in the 
stator over one electrical period can be reconstructed with the 
results obtained from 1/6 electrical period by fully exploiting 

the symmetries of electric and magnetic circuits, which is 
obviously also applicable for the flux density in the airgap layer 
near the stator. Here, another method for achieving the CE-FEA 
is introduced based on the dq transformation. For clearly 
illustrating this method, the airgap flux density under one pole 
over one electrical period is first analyzed. As shown in Fig. 2, 
it is assumed that there are N points under one pole for sampling 
the flux density, where N is the integer multiple of 3. Then, the 
points from 1 to N/3 belongs to the +A phase belt, points from 
N/3+1 to 2N/3 belongs to the -C phase belt, and points from 
2N/3+1 to N belongs to the +B phase belt, where ABC is used 
to denote the three-phase system. In this case, point i (1≤i≤
N/3), point i+N/3, and point i+2N/3 form a three-phase system.  

 
Fig. 2.  N uniformly distributed points for calculating flux density. 

For example, Fig. 3 shows the radial flux density Br
1 at point 

1, Br
2N/3+1 at point 2N/3+1, and the opposite of the flux density 

Br
N/3+1 at point N/3+1. They clearly form a three-phase system 

with a positive sequence. Hence, the dq transformation can be 
applied to obtain the flux density in the rotor reference frame 
as: 
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where θm is the rotor mechanical angle, p is the number of pole 
pairs, θer is the rotor electrical angle. θe is the electrical angle of 
the d-axis ahead of the A-axis and θe is equal to θi when θm is 0, 
as shown in Fig. 4. fA, fB, and fC are three-phase quantities in the 
stator reference frame, while fd, fq, and f0 are corresponding 
quantities in the dq reference frame.  

Fig. 3. Flux density waveforms at three points forming a three-phase system. 

Fig. 4. Diagram of dq transformation. 

Fig. 5 shows the calculated flux density waveforms in the dq 
reference frame when submitting the three-phase flux densities 
in Fig. 3 into  

(2). θi is 165° for the IPMSM in this paper. It can be clearly 
seen that: 
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where Bd, Bq, and B0 are flux densities at d-, q-, and 0-axis 
respectively. Hence, the flux density waveforms in the dq 
reference frame over one electrical period can be directly 
obtained by repeating the waveforms obtained in the first 60°.  

After obtaining the flux densities in the dq reference frame 
over one electrical period, the flux densities in the stator 
reference frame can be calculated by applying the inverse dq 
transformation as: 
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(a) d-axis 

(b) q-axis 

(c) 0-axis 

Fig. 5.  Flux density waveforms in the dq reference frame. 

The above procedure can be repeated when i increases from 
1 to N/3, so that the flux densities at N points under one pole 
over one electrical period can be calculated with those obtained 
in 1/6 electrical period. For the prototype machine, N is chosen 
as 144. Fig. 6 compares the flux densities at three arbitrarily 
chosen points calculated with common FEA over one electrical 
period and those reconstructed with the FEA results obtained in 
60° based on the dq transformation. They agree with each other 
very well demonstrating the effectiveness of the proposed 
method. 

Fig. 6.  Comparison of calculated and reconstructed flux densities at three 
arbitrarily chosen points.  

B. Fast Calculation of Airgap Flux Densities under
Independent D- or Q-axis HFHV Excitation with THFEA

PWM harmonic voltages can be viewed as the combination 
of a series of high-frequency components whose frequencies 
are usually near the integer multiples of the carrier frequency. 
With the FDRTM, the IPMSM model can be linearized and 
THFEA can be utilized to investigate the relationships between 
HFHVs and high-frequency flux densities in PMs and SSTs 
[21]-[23]. It is a natural idea that this method can also be applied 
to investigate the high-frequency flux densities in the airgap. 
According to [21]-[23], the PWM-induced losses in PMs and 
SSTs can be fast calculated with the THFEA results under 

-1.6

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

1.6

0 60 120 180 240 300 360

R
ad

ia
l F

lu
x 

de
ns

ity
 (T

)

Rotor electrical angle (°)

A B C

e m ip   

0.8
0.9

1
1.1
1.2

0 60 120 180 240 300 360Fl
ux

 d
en

si
ty

 (T
)

Rotor electrical angle (°)

d-axis

-1.05

-0.95

-0.85 0 60 120 180 240 300 360

Fl
ux

 d
en

si
ty

 (
T

)

Rotor electrical angle (°)

q-axis

-0.3
-0.2
-0.1

0
0.1
0.2
0.3

0 60 120 180 240 300 360

Fl
ux

 d
en

si
ty

 (
T

)

Rotor electrical angle (°)

0-axis

-1.6

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

1.6

0 60 120 180 240 300 360

R
ad

ia
l f

lu
x 

de
ns

ity
 (T

)

Rotor electrical angle (°)

Point 1 Calculated Point 1 Reconstructed
Point 60 Calculated Point 60 Reconstructed
Point 138 Calculated Point 138 Reconstructed



70 CES TRANSACTIONS ON ELECTRICAL MACHINES AND SYSTEMS, VOL. 6, NO. 1, MARCH 2022 
 

 

independent d- and q-axis HFHV excitations. Hence, in this 
Sub-section, the same THFEA results are utilized to investigate 
the relationships between HFHVs and airgap flux density 
variations without repeating more THFEA. The relationship 
between the injected three-phase HFHVs for the THFEA and 
the d- and q-axis HFHVs at different rotor positions can be 
expressed as [21]:  
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where vdh and vqh are d- and q-axis HFHVs, respectively. Note 
that the frequency of vdh and vqh is the same as that of vAh, vBh, 
and vCh because the rotor is assumed to be stationary in the 
THFEA. This transformation is named as the stationary dq 
transformation because the rotor speed is assumed as 0, 
although the d- and q-axes rotate with the rotor. The 0 sequence 
HFHVs are neglected because the three-phase windings are 
connected in the Y style.  

The airgap flux densities under one pole when vdh or vqh is 
applied independently are first calculated at different rotor 
positions with the small-signal THFEA. In the calculation, they 
are all assumed as 40ej0V and their frequencies are set as 4200 
Hz, which is equal to fc+4fo. To obtain the high-frequency flux 
densities over one fundamental electrical period, the 
reconstruction method based on the dq transformation 
presented in Section II-A is also applied so that only the flux 
densities while the rotor rotates over 1/6 electrical period needs 
to be calculated. Taking point 1 in Fig. 2 as an example, Fig. 
7(a) and (b) compare real and imaginary parts of the flux 
densities at this point calculated over one electrical period and 
those reconstructed with the THFEA results over 1/6 electrical 
period under vdh or vqh independent excitation, respectively. 
Bsd0

C_r and Bsd0
R_r are the calculated and reconstructed real parts 

of the airgap flux densities under vdh excitation, respectively, 
while Bsq0

C_r and Bsq0
R_r are those obtained under vqh excitation. 

Meanwhile, Bsd0
C_i and Bsd0

R_i represent the calculated and 
reconstructed imaginary parts under vdh excitation, respectively, 
while Bsq0

C_i and Bsq0
R_i are those obtained under vqh excitation. 

Obviously, the calculated and reconstructed flux densities agree 
with each other very well, hence the reconstruction method 
shown in section II-A can also be applied for the complex flux 
densities. The same conclusion can be obtained at the other N-
1 points in the airgap, which is no longer repeated here. The 
airgap flux densities obtained under independent vdh and vqh 
excitations form the foundation for fast calculating the flux 
densities generated by arbitrary HFHVs. 

 
(a) Real part 

 
(b) Imaginary part 

Fig. 7.  Comparison of calculated and reconstructed complex flux densities 
under vdh or vqh independent excitation at point 1 when the frequency is 4200Hz 

C. Calculation of High-Frequency Densities Caused by One 
Rotational HFHV 

Before introducing the method for computing flux densities 
causing by all HFHVs in the PWM voltage spectra, the airgap 
flux densities caused by one rotational HFHV is first calculated 
based on the results obtained in section II-B and compared with 
those calculated using the traditional TSFEA method. It is 
assumed that a rotational HFHV with a positive sequence is 
injected into the machine together with the fundamental 
currents. However, it is impossible to use the three-phase 
current source and three-phase voltage source at the same time 
for conducting the TSFEA. Hence, the sum of the fundamental 
voltage and the HFHV is used as the input to conduct the 
TSFEA, which is expressed as: 
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where V1 and φ1 are amplitude and initial phase angle of the 
applied fundamental voltage in phase A, respectively, which are 
determined from the TSFEA results under SCS supply [25]. Vh, 
fh, and φh are amplitude, frequency, and phase angle of the 
injected HFHV, respectively. In this subsection, fh is also 
assumed as fc+4fo, Vh is 40V, and φh is 0.  

When conducting the TSFEA under voltage source supplies, 
the first step TSFEA still needs be conducted under SCS supply 
using the initial three-phase currents as input to minimize the 
transition process, so that one electrical period calculation is 
enough to analyze the steady-state characteristics [11]. From 
the second step on, voltage sources are used as the input for the 
calculation. When the backward Euler method is used to 
approximate the differential operation and the voltage drop in 
the resistance is neglected, the numerical voltage applied at θe 
is expressed as: 
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where Ψ represents the flux linkage which varies with θe, Δt is 
the time step of the TSFEA, Δθe is the variation of rotor 
electrical angle during Δt. va represents the analytical voltage 
shown in (9). It can be seen from (10) that there exists a phase 
difference of Δθe/2 between the numerical voltage and the 
analytical one. For example, the numerical voltage applied at 
the second step TSFEA when rotor is located at Δθe should be 
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the analytical voltage at Δθe/2. Hence, the numerical three-
phase voltages applied for conducting the TSFEA are: 
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      (11) 

It can be seen form (11) that the phase difference for the 
HFHV whose frequency is fh becomes Δθefh/2/fo, which will 
increase with fh when Δθe is fixed.  
For the THFEA analysis, the positive sequence HFHV in (9) 
can be transferred to the dq reference frame using the static dq 
transformation by substituting it into  

(2), which is shown as: 
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where vdh(t) and vqh(t) are transient harmonic voltages at d- and 
q-axes, respectively. In (12), θe varies with the rotor position 
but is not considered as a function of t, hence the frequency of 
vdh(t) and vqh(t) is still fh. For conducting the THFEA, vdh(t) and 
vqh(t) can be written in complex phasors, which are shown as: 

   2 2 2,h h e h h ej f t j f t
h hV e V e           dh qhv v        (13) 

Assuming that in one electrical period, there are Ns sample 
points, which means there are Ns steps TSFEA under SCS 
supply and Ns steps corresponding small-signal THFEA. 
Hence, the d- and q-axis HFHVs applied for the THFEA at step 

k (1≤k≤Ns) can be expressed as: 
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where k is an integer. It can be seen from (14) that the phase 
angle of vdh and vqh vary as the rotor rotates. Rather than 
conducting the THFEA to calculate the flux densities caused by 
the combination of vdh and vqh, they can be directly calculated 
with the results obtained in Section II-B, which is shown as: 
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where α is the distribution angle along the inner surface of the 
stator. Bsd0(α, θer) are flux densities obtained from the small-
signal THFEA using the d-axis HFHV Vsej0 as input, whose 
frequency is fs. Similarly, Bsq0(α, θer) are those obtained from 
the THFEA using the q-axis HFHV Vsej0 as input, whose 
frequency is also fs. The real and imaginary parts of Bsd0 and 
Bsq0 has been calculated in Section II-B when Vs is 40V and fs 
is fc+4fo. χsd0 and χsq0 are two constant matrices when neglecting 
eddy current reaction effects at one fixed working condition, 
because the flux density is proportional to the voltage amplitude 
and inversely proportional to the frequency [21]-[23]. Besides, 
the simple superposition principle can be applied because the 
model has been linearized with the FDRTM. When considering 
more working conditions and the eddy current reaction effects, 
χsd0 and χsq0 will be functions of id, iq, and frequency, which can 
be modeled with interpolation methods and more THFEA 
considering the eddy current reaction effect [21]-[23].

 

  
(a)  TSFEA     (b) Small-signal THFEA 

Fig. 8.  Comparison of the flux density spectra caused by one rotational HFHV calculated with different methods. 
 

After obtaining the flux densities under one pole, they can be 
simply extended to calculate those under one pole pairs by 
exploiting the symmetry characteristics of the flux density. 
Then, 2D FFT can be applied to calculate the spectra of the flux 
density caused by the combination of vdh and vqh. On the other 
hand, 2D FFT can also be applied to obtain the spectra of the 
flux densities calculated with the traditional TSFEA using (11) 
as input. When conducting the TSFEA, there are 2000 steps in 
one fundamental period and there are about 28.3 sample points 
in one high-frequency period. Fig. 8 compares the spectra of the 
flux densities calculated with different methods, which are 

caused by the positive rotational HFHV shown in (9). Clearly, 
a series of flux density harmonic components are generated and 
they agree with each other very well. The preponderant 
components are (u=84, v=-p) and (u=86, v=-3p), because fh is 
84 times of fo. The other components attenuate as they become 
further away from the preponderant components. Table I further 
compares several preponderant components in Fig. 8 
quantitatively, which demonstrates that (15)-(16) can be 
effectively applied for calculating the high-frequency airgap 
flux density. 
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TABLE I 
COMPARISON OF PREPONDERANT COMPONENTS IN FLUX DENSITY 

SPECTRA OBTAINED WITH DIFFERENT METHODS CAUSED BY ONE HFHV 

Time order 
 u 

Space order 
 v (p) 

Amplitude (mT) Phase angle (°) 
TSFEA THFEA TSFEA THFEA 

84 -1 2.124  2.119  -165.0  -165.2  
86 -3 1.225  1.221  -68.4  -68.5  
84 11 0.804  0.802  -163.1  -163.2  
82 1 0.146  0.142  -144.4  -145.8  
80 3 0.572  0.569  -141.1  -140.6  
86 9 0.547  0.546  -76.7  -76.6  

D. Fast Calculation of High-Frequency Flux density Spectra 
Caused by All PWM-Induced HFHVs 

The method shown in Section II-C can be further extended to 
calculate the high-frequency flux density spectra caused by all 
the PWM-induced HFHVs based on the superposition principle. 
The PWM voltage spectra can be generated analytically or 
numerically [21], [25]. In this paper, the PWM voltages are 
generated with the numerical method shown in [25]. The space 
vector pulse width modulation (SVPWM) method is used, and 
there are 4000 steps in one fundamental period and hence 50 
steps in one carrier period to distinguish the HFHVs in the 
PWM voltages. Then, the three-phase PWM voltages are first 
analyzed with the FFT to calculate the spectra of each phase, 
which are then substituted into  

(2) to conduct the static dq transformation, with which θe is 
considered as independent of t. Unlike the rotational dq 
transformation in the rotor reference frame or the static αβ 
transformation in the stator reference frame [22], the spectra of 
the PWM voltages vary with the rotor position. For example, 
according to (12), the phase angle of a rotational HFHV with 
the positive sequence at the static dq reference frame decreases 
with the increase of θe, although the amplitudes of vdh(t) and 
vqh(t) keep unchanged.  

Assuming that the PWM-induced HFHVs in the static d- and 

q- axes are denoted as dhj
dhV e   and qhj

qhV e  , respectively, where 

Vdh and Vqh are amplitudes and φdh and φqh are phase angles at 
different θe. Fig. 9 shows Vdh and Vqh when θm is 0, which is 
similar to the PWM voltage spectra obtained from the static αβ 
transformation [22]. Components with the frequencies of fc-2fo, 
fc+4fo, 2fc+fo, and 3fc-2fo have the positive sequence, while those 
with the frequencies of fc-4fo, fc+2fo, 2fc-fo and 3fc+2fo have the 
negative sequence [8]. Fig. 10 shows the variations of φdh and 
φqh with θer for two positive and negative components. For the 
component with a positive sequence, φqh always lags φdh by 90°, 
and they both decrease as θer increases. For the negative 
component, φqh is always 90° leading φdh, and they both 
increase with θer.  

 
Fig. 9.  Amplitudes of each HFHV in the static dq coordinate when θm is 0. 
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Fig. 10.  Variations of φdh and φqh with θer for different components. 

 
Similar to (15), the flux density generated by each HFHV can 

be calculated as: 
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where fh is the frequency of the HFHV. 2D FFT is then applied 
for calculating the spectral of the flux density caused by this 
HFHV. After that, the flux density spectra caused by each 
HFHV is superimposed in the frequency domain to obtain the 
flux density spectra caused by all the HFHVs.  

To correctly superimpose the flux density spectra caused by 
each HFHV, several important points to be addressed are listed 
as follows. First, the time order of the flux density component, 
no matter how high its frequency is, obtained from the 2D FFT 
of the complex flux densities in (17) will always fall in the range 
between 0 and Ns-1 because there are Ns sample points in one 
fundamental electrical period. Hence, the flux density spectra 
directly obtained from the 2D FFT need to be modified for 
conducting the superposition. To clearly demonstrate the 
modified method, the flux density spectra caused by the HFHV 
component whose frequency is 3fc-2fo is taken as an example 
for the illustration. Because 3fc-2fo is 238 times of fo, the time 
order of the maximum flux density component should be also 
238 according to Fig. 8. However, the time order of this 
component becomes 118 in the directly obtained spectra, as 
shown in Fig. 11(a). The other preponderant components must 
distribute around this component, which is similar to Fig. 8. 
However, the component whose time order should be 240 
becomes the 0 in Fig. 11(a). Hence, the modification process 
for the flux density spectra caused by the voltage component 
whose frequency is fh can be expressed as: 

    mod , , 1
2 2
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T T s T

o o

f N f N
i i N i

f f
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(18) 
where iT denotes the time orders of the flux density components 
caused by the fh harmonic voltage, which are assumed to be 
within fh/fo-Ns/2 and fh/fo+Ns/2-1. The function mod(iT, Ns) 
means the remainder after division of iT by Ns. Bini represents 
the initial spectra directly obtained from the 2D FFT, as shown 
in Fig. 11(a). Bmod represents the right flux density spectra, as 
shown in Fig. 11(b), which can be calculated with the 
modification method shown in (18).  

The flux density spectra caused by each component in the 
PWM-induced HFHVs can be obtained from the above 
procedure. Then, the superposition method can be applied for 
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calculating the total spectra caused by all the HFHVs. In this 
case, the harmonic voltage components ranging from 2.5kHz to 
25kHz are submitted into (17) to calculate the flux density 
spectra. Fig. 12 and Fig. 13 compare the flux density spectra 
calculated with the traditional TSFEA method and the proposed 
method. When conducting the TSFEA, SVPWM voltages are 

used as the input to conduct 4000-step transient calculations in 
one electrical period to compute the flux density waveforms 
[21]-[23], [25]. Then, 2D FFT is applied to obtain their spectra. 
Obviously, the spectra obtained from the two methods agree 
with each other very well.  

 
Fig. 11.  Illustration of the flux density spectra modification procedure for those caused by the 3fc-2fo HFHV 

       
  (a) TSFEA      (b) Small-signal THFEA 

Fig. 12.  Flux density spectra around fc. 

       
(a) TSFEA                  (b) Small-signal THFEA 

Fig. 13.  Flux density spectra around 2fc. 
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TABLE II 
COMPARISON OF PREPONDERANT COMPONENTS IN THE FLUX DENSITY 

SPECTRA OBTAINED WITH DIFFERENT METHODS UNDER PWM VSI SUPPLY 

Time 
order 

u 

Space 
order 
v (p) 

Amplitude (mT) Phase angle (°) 
TSFEA THFEA TSFEA THFEA Difference 

78 -1 2.258 2.256 -16.2 -19.5 -3.3 
78 11 0.970 0.969 -22.0 -25.3 -3.3 
80 -3 1.824 1.820 75.5 71.9 -3.6 
82 1 2.149 2.147 -157.0 -160.9 -3.9 
159 -11 0.827 0.825 -127.8 -134.9 -7.1 
159 1 2.624 2.613 -112.3 -119.5 -7.2 
161 -1 2.588 2.577 -53.4 -60.6 -7.1 
242 1 0.681 0.678 30.0 19.4 -10.6 
321 -1 0.609 0.600 -46.2 -60.4 -14.2 

 
For a quantitative comparison, both amplitudes and phase 

angles of several preponderant components are shown in Table 
II. It can be seen that the amplitudes agree with each other very 
well. However, there exist errors in the phase angles, which 
increase with the increase of the time order. This is because the 
PWM voltages are generated numerically and submitted for 
conducting the TSFEA without modifying the phase angle of 
each component using (11). Numerical errors generated 
because of the backward Euler method used to approximate the 

differential operation, which has been explained in Section II-
C. It will be shown in the next subsection that the phase angle 
errors will not result in significant errors in the magnetic forces, 
which are the sources of vibrations and noises.  
 

III. CALCULATION OF ELECTROMAGNETIC FORCE SPECTRA 

WITH FLUX DENSITY SPECTRA 

The total flux density spectra under PWM VSI supply can be 
obtained with the sum of those calculated under SCS supply in 
Section II-A and those caused by HFHVs in Section II-D, which 
is expressed in the frequency domain as: 
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where Nu is the maximum time order and pNv/2 is the maximum 
space order. Buv and φ are the amplitude and phase angle of the 
component (u, vp). ωo is the fundamental angular frequency. By 
submitting (19) into (1), the PWM-induced electromagnetic 
force spectra can be calculated analytically as:
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where k and l are integers, which denote the time and space 
order of the electromagnetic forces, respectively. Frl and φkl are 
amplitudes and phase angles of the component (k, lp), 
respectively. Nk and pNl/2 are the maximum time and space 
orders of the electromagnetic force spectra, respectively. The 
subscripts 1 and 2 are used to distinguish the two multiplied 
components. 

Theoretically, it is straightforward to compute Fkl of each 
component according to (21). However, a quadruple cycle is 
needed in the program, which makes it very time-consuming 
for computing the electromagnetic forces generated by all the 
flux density components. Fortunately, for the PWM-induced 
high-frequency force components, only those with low space 
orders are important for the vibration and noise calculation [8]. 
In this case, Nk is set as 400, which is corresponding to the 
highest audible frequency. Nl is set as 36 so that the maximum 
space order of the force is 54 (18p). Nu is set as 560 and Nv is 
72, which are larger than Nk and Nl because some high-order 
flux density components may also contribute to low-order force 
components [20]. The high-frequency force density spectra 
calculated with different methods are compared in Fig. 14 and 
Fig. 15. Obviously, they agree with each other very well. For a 
quantitative comparison, the amplitudes of several components 
are shown in Table III. The relative errors between the 
traditional TSFEA and the proposed method are with 3.1% at 
11 preponderant components, which shows that the proposed 

method has rather good accuracy for engineering applications. 
The possible reasons for the errors are summarized as follows. 
(1) The phase resistance makes the assumption that the voltage 
is proportional to the flux density no longer true when the 
frequency is low. (2) The PWM flux density harmonics may 
also contribute to the saturation in the SSTs, which is assumed 
to be only determined by the fundamental current with the 
FDRTM. (3) The Phase angle difference between the high-
frequency flux densities calculated with the proposed method 
and the traditional TSFEA shown in Table II may also cause the 
error in the calculated electromagnetic force. Besides, the used 
traditional TSFEA may also has errors when compared with the 
experiment results [11]. More researches in the future are still 
needed to conduct the experimental verification. By the way, it 
is suggested to use the transient flux density waveforms 
obtained under SCS supply for computing the force density 
spectra caused by fundamental currents and the PM, rather than 
using (21), because the investigated maximum space order of 
the low-frequency force components is usually high. In this 
case, using (21) will be time-consuming.  

Table IV compares the calculation time of the traditional 
TSFEA and the proposed method. The FEA model in this paper 
has 12864 nodes and 24606 first order triangular elements and 
the calculation is conducted in a personal computer with an Intel 
Core i7-9750H CPU @ 2.60GHz. With the traditional method, 
4000 steps nonlinear TSFEA are needed, which takes 46min. 
Additional 46s is needed for 2D FFT to calculate the force  
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(a) TSFEA                                                                                            (b)Small-signal THFEA 

Fig. 14.  Force density spectra around fc. 

  
(a) TSFEA         (b) Small-signal THFEA 

Fig. 15.  Force density spectra around 2fc. 
 

TABLE III 
COMPARISON OF PREPONDERANT COMPONENTS IN FORCE DENSITY 

SPECTRA OBTAINED WITH DIFFERENT METHODS UNDER PWM VSI SUPPLY 

Frequency Time 
order u 

Space order 
v (p) 

Force density (Pa) Relative 
Error TSFEA THFEA 

fc-3fo 77 0 1866.0  1860.8  -0.28% 
fc-fo 79 -2 550.9  536.7  -2.57% 
fc+fo 81 2 527.9  511.5  -3.10% 

fc+3fo 83 0 1746.4  1742.3  -0.24% 
2fc-2fo 158 2 1114.5  1095.3  -1.72% 

2fc 160 12 361.2  351.3  -2.75% 
2fc+2fo 162 -2 1091.7  1081.2  -0.95% 
3fc-3fo 237 0 589.7  582.6  -1.20% 
3fc-fo 239 4 170.6  165.8  -2.82% 

4fc+2fo 322 -2 266.8  261.0  -2.18% 
4fc+6fo 326 0 251.7  246.1  -2.25% 

 
density spectra. With the proposed method, only 42s is needed 
for the FEA. However, another 68s is still needed to use (21) 
for the force density spectra. By the way, when applying the 
proposed method for force density spectra calculations caused 
by other PWM voltages with different dc-bus voltages, carrier 
frequencies, or modulation strategies at the same working point, 
it is no longer to repeat 20 steps TSFEA and 40 steps THFEA, 
although additional time for the analytical force density spectra 
calculation is still needed.  

TABLE IV 
COMPARISON OF CALCULATION TIME WITH DIFFERENT METHODS 

Methods Traditional Proposed 
FEA calculation 4000 steps 

TSFEA 
20 steps TSFEA+40 steps 

THFEA 
FEA time 46 min 42 s 

Additional Time 46 s 68 s 

 

IV. CONCLUSION 

This paper proposed a fast PWM-induced force density spectra 
calculation method for IPMSMs based on the small-signal 
THFEA. The detailed calculation procedure has been presented. 
The relative errors between the preponderant components with the 
proposed method and those obtained from the traditional TSFEA 
have been shown to be within 3.1%, while the proposed method 
improves the calculation speed for over 24 times at one working 
condition. Some conclusions can be drawn as follows. 

(1) Based on the small-signal THFEA, the functional 
relationships between HFHVs and high-frequency flux densities in 
the airgap can be established with χsd0 and χsq0 without calculating 
HFHCs. Besides, χsd0 and χsq0 can be obtained together with zd1, 
zd2, zq1, and zq2 in [21] as well as χds, χdr, χqs, and χqr in [22] 
without additional THFEA.  

(2) One HFHV component at fh generates a series of high-
frequency flux density components distributing around fh. The 
time order modification using (18) on the initial spectra directly 
obtained from the 2D FFT is essential for obtaining the correct 
flux density spectra.  

(3) The proposed method can be used for fast evaluating the 
influence of inverters’ parameters on the high-frequency 
electromagnetic forces, as well as corresponding vibrations and 
noises, which will be investigated in the future.  
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