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 
Abstract—To reduce the torque ripple in motors resulting from 

the use of conventional direct torque control (DTC), a model 
predictive control (MPC)-based DTC strategy for a direct matrix 
converter-fed induction motor is proposed in this paper. Two new 
look-up tables are proposed, these are derived on the basis of the 
control of the electromagnetic torque and stator flux using all the 
feasible voltage vectors and their associated switching states. 
Finite control set model predictive control (FCS-MPC) has then 
been adopted to select the optimal switching state that minimizes 
the cost function related to the electromagnetic torque. Finally, 
the experimental results are shown to verify the reduced torque 
ripple performance of the proposed MPC-based DTC method. 
 

Index Terms—Direct torque control, finite control set model 
predictive control, induction motor, matrix converter.  

I. INTRODUCTION 

ATRIX converter (MC) has attracted a lot of attention 
due to its inherent advantages, such as bi-directional 

energy flow, controllable input power factor, the potential for 
high power density, and the lack of bulky dc-link capacitors 
[1-4]. Previous studies are mainly concentrated on the 
modulation and the switching pattern of the MC [5]-[6]. 
High-performance speed control for MC-fed induction motors 
(IM) has received less attention. The direct torque control 
(DTC) method for MC-fed IM was first proposed by Casadei [7] 
and was then experimentally verified [8]. Nevertheless, 
variable frequency operation, torque ripple and flux ripple have 
been identified as the main drawbacks [9]. Several methods 
based  on  constant  switching  frequency [10]  and  switching  
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tables [11] imposition in DTC have been employed to 
overcome these problems. In [10], an improved direct torque 
control-space vector method was proposed, which used the 
space vector method and a flux dead-beat algorithm to decrease 
the torque ripple and obtain unity input power factor. In [11], an 
improved DTC method is proposed, which is based on twelve 
30° sectors of both voltage and flux vectors for MC-fed IM. A 
new lookup table was developed and the optimal switching 
vector was selected for control of the torque with minimized 
variations of the stator flux within the hysteresis band. As a 
result, a lower torque ripple was obtained compared to the 
conventional DTC method, however, the required look-up table 
is complex.  

The FCS-MPC has been developed and applied to the control 
of power converter and motor drives because of its advantages 
such as fast dynamic response, easy inclusion of nonlinearities 
and constraints of the system, and the flexibility to include 
other system requirements in the controller [12]-[16]. In [17], 
an improved model predictive torque control is proposed for a 
2-level voltage source inverter-fed induction motor drive, 
which reduces the control complexity and torque ripple. In [18], 
a weighting factor optimization method for reducing the torque 
ripple of inductions machine fed by an indirect matrix converter 
is presented. In [19], a predictive current control method for an 
IM based on the MC was proposed, which uses MPC to control 
the stator current and hence achieves the control of torque and 
flux of the IM. All 27 valid switching states are utilized in the 
cost function, which is time-consuming. In [20], MPC is used to 
control the electromagnetic torque and the stator flux. 
Nevertheless, it still considers all 27 switching states, so the 
problem of time-consuming calculations is left unsolved. 
Several methods have been proposed to reduce the calculation 
effort for the MC with the FCS-MPC method [21]-[22]. 

To reduce the torque ripple caused by conventional DTC 
strategy, an improved MPC-based DTC strategy for a direct 
matrix converter-fed (DMC-fed) IM is proposed in this paper. 
Consistent with the theory of direct torque control, the 
proposed method achieves the desired control effect through 
the direct control of electromagnetic torque and stator flux.  

Two look-up tables are proposed in order to fully utilize the 
available switching states. Nine switching states are preselected 
according to the two look-up tables, saving considerable 
processor time in the calculations. Then, MPC is used to select 
the optimal switching state, which will be used in the next 
control period. Some principle of the proposed MPC-based  
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TABLE I  
SPACE VECTORS OF DMC 

Categories Switching states A B C vom αo iim i  

I +1 a b b 2/3 viab  0 2 / 3 oai  -π/6 

I -1 b a a -2/3 viab  0 2 / 3 oai  -π/6 

I +2 b c c 2/3 vibc 0 2 / 3 oai  π/2 

I -2 c b b -2/3 vibc 0 2 / 3 oai  π/2 

I +3 c a a 2/3 vica  0 2 / 3 oai  7π/6 

I -3 a c c -2/3 vica 0 2 / 3 oai  7π/6 

I +4 b a b 2/3 viab 2π/3 2 / 3 obi  -π/6 

I -4 a b a -2/3 viab 2π/3 2 / 3 obi  -π/6 

I +5 c b c 2/3 vibc 2π/3 2 / 3 obi  π/2 

I -5 b c b -2/3 vibc 2π/3 2 / 3 obi  π/2 

I +6 a c a 2/3 vica 2π/3 2 / 3 obi  7π/6 

I -6 c a c -2/3 vica 2π/3 2 / 3 obi  7π/6 

I +7 b b a 2/3 viab 4π/3 2 / 3 oci  -π/6 

I -7 a a b -2/3 viab 4π/3 2 / 3 oci  -π/6 

I +8 c c b 2/3 vibc 4π/3 2 / 3 oci  π/2 

I -8 b b c -2/3 vibc 4π/3 2 / 3 oci  π/2 

I +9 a a c 2/3 vica 4π/3 2 / 3 oci  7π/6 

I -9 c c a -2/3 vica 4π/3 2 / 3 oci  7π/6 

II 0 a a a 0 — 0 — 
II 0 b b b 0 — 0 — 
II 0 c c c 0 — 0 — 

III — a b c vim αi iom o  

III — a c b -vim -αi iom o  

III — b a c -vim -αi +4π/3 iom 2 / 3o    

III — b c a vim αi +4π/3 iom 2 / 3o   

III — c a b vim αi +2π/3 iom 4 / 3o   

III — c b a -vim -αi +2π/3 iom 4 / 3o    
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Fig. 1.  Topology of direct matrix converter 

DTC for MC-fed IM in this paper is described in [23], more 
principle details and experimental results are added in this 
paper.  

This paper has been structured as follows: Section II 
introduces the topology of a direct matrix converter. Section III 

introduces the conventional direct torque control for the 
MC-fed induction motor and analyses the main reason that 
causes high torque ripple. Section IV proposes an MPC-based 
DTC for DMC-fed IM. Finally, Section V verifies the 
feasibility and correction of the proposed MPC-based DTC 
method. Section VI concludes the findings. Section VII 
discusses the performance of the proposed method with the 
performance of the conventional DTC method and 
conventional FCS-MPC method. 

II. TOPOLOGY OF THE DIRECT MATRIX CONVERTER  

As Fig. 1 shows, there are nine bidirectional switches present 
in the DMC, each of which is here to make sure that 
bi-directional energy flow works. Connected between the grid 
and the converter, the input filter aims to eliminate high 
harmonic distortion in the grid current. According to the 
topology of the DMC, the mathematical model of input and 
output of the DMC can be written as: 

 
oa Aa Ab Ac ia

ob Ba Bb Bc ib

oc Ca Cb Cc ic

v S S S v
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where olv  ( { , , }l a b c ), ijv  ( { , , }j a b c ) represents the output 

voltage and filter capacitor voltage, respectively. oli , iji  

represents the output current and input current. XyS  

( { , , }X A B C , { , , }y a b c ) represents the switching states of 
nine bidirectional switches, which satisfy the following 
equation: 

 
1            is on

0           is off
Xy

Xy
Xy

S
S

S

 


 (4) 

Considering the following restrictions of the DMC: 
(1) No open circuit for the output of DMC; 
(2) No short circuit for the input of DMC. 
Thus, the following equation should be satisfied: 
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 (5) 

There are 27 valid switching states of DMC, and each 
switching state along with their output voltage and input current 
are listed in Table I. All switching states can be divided into 
three categories: 

Category I: each switching state can generate space vectors 
with fixed direction and variable amplitude, named as “active 
vectors”. 

Category II: the amplitude of the space vector is zero with 
variable direction, which is called “zero vectors”. 

Category III: the direction of the space vectors generated by 
the switching states under this category are variable whereas 
the amplitude is fixed, and the vectors are titled “rotating 
vectors”. 

Since each active vector (category I) has a fixed direction, 
the active voltage vector can fall into six directions in the α-β 
plane, as shown in Fig. 2a. 

The output voltage vector vo and input current vector ii can be 
expressed as: 

 (2 /3) (4 /3)2
( )

3
ojj j

o oa ob oc omv v e v e v e     v  (6) 

 (2 /3) (4 /3)2
( )

3
ijj j

i ia ib ic imi i e i e i e     i  (7) 

where omv , imi represent the amplitude of ov  and, ii , 

respectively. o and i  represent the angle of ov  and ii , 

respectively. The source voltage vector , ,sa sb scv v v , source 

current vector , ,sa sb sci i i and output current vector 

, ,oa ob oci i i can be obtained by the same method. 

According to the mathematical model of the input filter, the 
state-space description is obtained as follow: 
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(a) Input voltage vector 
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(b) Voltage sector division 

Fig. 2. Input voltage vector division in conventional DTC method. 
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where N and M are the matrixes which can be expressed as 
follows: 

 
0 1/ 0 1/

,
1/ / 1/ 0

f f

f i f f

C C
N M

L R L L

   
        

 (9) 

where fC  is the filter capacitor, fL is the filter inductance, 

iR is the passive damping resistor. 

Among those vectors (v1~v6), the α-β axis can be split up into 
six sectors Sn (n=1…6), the range of each sector should satisfy 
the following equation: 
 (2 3) / 6 (2 -1) / 6nn s n     (10) 

Considering the sector where the input voltage is located, 
every two switching states can generate voltage vectors of the 
same direction. For example, as Fig. 2(b) shows, assuming that 
the input voltage located in sector 1, the direction of vsac is not 
fixed, vsac> 0, vsab > 0, so the switching state +1 and -3 can 
generate an output voltage whose direction is the same as that 
of v1. Therefore, the relationship between the voltage vector 
and the switching states in different voltage sectors under the 
DTC method is explained in Table II. 

III. CONVENTIONAL DIRECT TORQUE CONTROL FOR INDUCTION 

MOTOR  

Assuming that the following conditions are satisfied: 
(1) Three-phase winding of induction motor is completely 
symmetrical in the structure;  
(2) The magnetic saturation and the core loss of induction 
motor are ignored; 
(3) The effect on parameters of IM can be ignored when the 
temperature and frequency are variable. 

The mathematical model of IM can be obtained as follow: 
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TABLE II 
RELATIONSHIP BETWEEN VOLTAGE VECTORS AND SWITCHING STATES IN 

DIFFERENT VOLTAGE SECTORS UNDER DTC METHOD 
Voltage 
vector 

Voltage Sector 

 1 2 3 4 5 6 

1v


 -3, +1 +2, -3 -1, +2 +3, -1 -2, +3 +1, -2 

2v


 +9, -7 -8, +9 +7, -8 -9, +7 +8, -9 -7, +8 

3v


 -6, +4 +5, -6 -4, +5 +6, -4 -5, +6 +4, -5 

4v


 +3, -1 -2, +3 +1, -2 -3, +1 +2, -3 -1, +2 

5v


 -9, +7 +8, -9 -7, +8 +9, -7 -8, +9 +7, -8 

6v


 +6, ,-4 -5, +6 +4, -5 -6, +4 +5, -6 -4, +5 

 s
o s o

d
R

dt
 v i


 (11) 

 s s o m rL L i i  (12) 

 r r r m oL L i i  (13) 

 
3

( )
2e s oT p  i  (14) 

where ov , oi , ri , sφ , rφ , eT  are the stator voltage vector, 

stator current vector, rotor current vector, stator flux vector, 
rotor flux vector and electromagnetic torque, respectively. sR , 

sL , rL , mL , p are the stator resistance, stator inductance, rotor 

inductance, mutual inductance and the pole pairs of IM, 
respectively.  

Thus, according to (11)-(14), the following equation can be 
obtained when the voltage of stator resistance is ignored: 
 s o t  v  (15) 

 
3

sin
2

m
e s r

s r

L
T p

L L
  


  (16) 

 
2

1 m

s r

L

L L
    (17) 

where s shows the change of stator flux during the time t , 

while   represents the angle between rotor flux and stator flux. 

The main idea of a DTC based on DMC is to regard DMC and 
IM as a whole, using the space vector analysis method to select 
the appropriate switching state, thereby achieving direct control 
of the stator flux and the electromagnetic torque. As seen in Fig. 
3, it is assumed that s  lies in sector 1 and *

s s  , *
e eT T , 

the selection of voltage vector v2 can increase s  and eT . 

Therefore, the flux and electromagnetic torque errors are 
decreased. The optimal voltage vector can be selected by the 
stator flux vector and the relationship between the actual and 
reference values of stator flux and electromagnetic torque, 
which is summarized in Table III. 

However, there are still some shortages of conventional DTC 
such as relatively high torque ripple. For example, from Fig. 3, 

if  / 6,0   , voltage vector v1 should also be regarded as a 

candidate which can reduce errors between s and s
 , but 

result in a large torque ripple. In order to decrease the torque 
ripples of the DTC, an MPC-based DTC strategy for a 
DMC-fed IM is proposed. 

TABLE III 
VOLTAGE SELECTION TABLE OF THE CONVENTIONAL DTC 

Comparison of actual value and 
reference value 

Stator flux sector 
1 2 3 4 5 6 

*
s s   

*
e eT T  2v


 3v


 4v


 5v


 6v


 1v


 

*
e eT T  6v


 1v


 2v


 3v


 4v


 5v


 

*
s s   

*
e eT T  3v


 4v


 5v


 6v


 1v


 2v


 

*
e eT T  5v


 6v


 1v
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Fig. 3.  Effect of voltage vector on stator flux 

IV. PROPOSED MPC-BASED DTC STRATEGY FOR A DMC-FED 

IM 

Fig. 4 illustrates the control diagram of the MPC-based DTC 
strategy. The main idea of the MPC-based DTC strategy for a 
DMC-fed IM is to establish an alternative voltage vector table 
that contains all available voltage vectors and switching states, 
as shown in Table IV and Table V, and use model predictive 
control to choose the optimal switching state to act on the DMC 
in the next control period. 

TABLE IV 
RELATIONSHIP BETWEEN VOLTAGE VECTORS AND THE NEW VOLTAGE 

SECTORS UNDER MPC-BASED DTC METHOD 

Voltage vector New voltage sector 

 1 2 3 4 5 6 

1v


 +1,+2,-3 -1,+2,-3 -1,+2,+3 -1,-2,+3 +1,-2,+3 +1,-2,-3 

2v


 -7,-8,+9 +7,-8,+9 +7,-8,-9 +7,+8,-9 -7,+8,-9 -7,+8,+9 

3v


 +4,+5,-6 -4,+5,-6 -4,+5,+6 -4,-5,+6 +4,-5,+6 +4,-5,-6 

4v


 -1,-2,+3 +1,-2,+3 +1,-2,-3 +1,+2,-3 -1,+2,-3 -1,+2,+3 

5v


 +7,+8,-9 -7,+8,-9 -7,+8,+9 -7,-8,+9 +7,-8,+9 +7,-8,-9 

6v


 -4,-5,+6 +4,-5,+6 +4,-5,-6 +4,+5,-6 -4,+5,-6 -4,+5,+6 

A. Determination of alternative switch table 

The torque ripple of a DTC is mainly caused by two reasons: 
(1) Losses of alternative voltage vector. 
(2) Division of the sector leading to the uncertainty in the 
direction of the output voltage of DMC. 

In order to solve the above problems, a new voltage selection 
table of DTC and a new definition of voltage sector are 
obtained as Table IV and Fig. 5. In Table IV, all voltage vectors 
that can reduce the errors between the references and 
corresponding actual values are included, and in Fig. 5, the 
range of the new voltage sector is redefined as follows: 

 ( 1) / 3 / 3nn s n     (18) 
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Fig. 4.  Control diagram of the proposed method 

As shown in Fig. 5, in sector 1, sa sb scv v v  , switching 

state +2 can produce the voltage vector whose direction is the 
same as v1, therefore, Table II can be expanded into Table V. 
Hence, according to Table IV and Table V, in each control 
period, there are nine possible switching states (containing zero 
voltage vectors) that can be used to reduce errors between the 
reference and actual value since there is only one switching 
state needed for the following control period, the MPC is here 
to predict and choose the optimal switching state among those 
nine switching states. 

25 / 34 / 32 / 3/ 30

sav sbv scv

 
Fig. 5 New Input Voltage sector division under the proposed MPC 

TABLE V 
VOLTAGE SELECTION TABLE OF PROPOSED MPC-BASED DTC METHOD 

Comparison of 
actual value and 
reference value 

Stator flux sector 

1 2 3 4 5 6 

*
s s 

 

*
e eT T

 
1 2,v v
 

 2 3,v v
 

 
3 4,v v
 

 
4 5,v v
 

 
5 6,v v
 

 
6 1,v v
 

 

*
e eT T

 
6 1,v v
 

 1 2,v v
 

 
2 3,v v
 

 
3 4,v v
 

 4 5,v v
 

 
5 6,v v
 

 

*
s s 

 

*
e eT T

 
3 4,v v
 

 4 5,v v
 

 
5 6,v v
 

 
6 1,v v
 

 1 2,v v
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B. Model predictive control 

To obtain the optimal switching state in each control period, 
model predictive control plays a crucial role in the MPC-based 

DTC. In MPC, the Euler formula shown in (19) is used to 
discretize the control objectives. 

 
( 1) ( )

s

dx x k x k

dt T

 
  (19) 

where Ts represents the sample period, k represents the control 

period. Therefore, the value of  1s k   and  1eT k   under 

all feasible switching states can be considered as the predictive 
value of stator flux and electromagnetic torque, and is 
evaluated in the cost function.  

 ( 1) ( ) ( )s s o s s o sk T v k T R i k      (20) 

where 
 ( ) ( ) ( )s s o m rk L i k L i k    (21) 

and  1eT k   could be obtained as follows: 

  
3

( 1) ( 1) ( 1) ( 1) ( 1)
2e s o s oT k p k i k k i k              (22) 

where ( 1)s k  , ( 1)s k   are the prediction of stator flux 

in (k+1)th sample period under the two-phase stationary 
coordinate system(α-β axis), and can be obtained as follows: 
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 (23) 

Besides, the stator current ioα(k+1), ioβ(k+1), can be obtained 

in the same way.  
To achieve the grid current control, the prediction of reactive 

power is also considered as a part of the cost function. The 
equation of the prediction of reactive power is as follows: 

 ( 1) ( 1) ( 1) ( 1) ( 1)s s s sQ k u k i k u k i k           (24) 

where Q(k+1) represents the input reactive power prediction, 

, ( 1)su k   and , ( 1)si k    represent the predicted value of grid 
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voltage and grid current under α-β axis, and can be obtained by 
discretizing (8):  

 
( 1) ( ) ( )

( 1) ( ) ( )
i i s

s s i

v k v k v k
D E

i k i k i k

     
           

 (25) 

 ( 1) ( )s sv k v k   (26) 

where 

 sNTD e  (27) 

 1( )E N D I M   (28) 

Considering the huge computation of the MPC method, as well 
as the delay caused by the processor, the value of (k+2)th 
sample time is usually adopted as the predictive value. And to 
obtain the predictive values of (k+2)th sample time, the same 
method is used as that of (k+1)th sample time. To control stator 
flux and electromagnetic torque, and achieve sinusoidal source 
current, the square of the error between ( 2)s k  , ( 2)eT k  , 

( 2)Q k  , and their references are chosen as a part of the cost 

function. Therefore, the cost function can be expressed as (29). 

 
* 2 * 2

1

* 2
2

[ ( 2) ] [ ( 2) ]

      [ ( 2) ]

T e e s sf T k T k

Q k Q

   



      

 
 (29) 

where λT,,λ1, λ2 are weighing factors. The values of these 
parameters will determine the priority of corresponding control 
variables [24-25]. 
Then, the optimal switching state of the next control period can 
be obtained by choosing the switching state minimizing the cost 
function f. 

Hence, the overall control flow of the MPC-based DTC 
strategy for a DMC-fed IM can be summarized as follows: 

Step1: Sampling of currents, voltages and speed. 
Step2: Using the closed-loop flux observer [26]-[27] based 

on voltage and current model to observe ( )s k , and 

calculate ( )eT k . 

Step3: ( 1)s k  , ( 1)eT k  , ( 1)Q k  are the predictive 

values of (k+1)th sample time, which can be derived according 
to the load motor model and input filter model. 

Step4: By comparing the reference value of stator flux and 
electromagnetic torque with their actual value, choosing 9 
switching states that can reduce the error between actual and 
references joint Table IV and V. 

Step5: Prediction of ( 2)s k  , ( 2)eT k  , ( 2)Q k   with the 

9 switching states selected in step4 according to the load motor 
model and input filter model. 

Step6: Choosing the optimal switching state. 

V. EXPERIMENT RESULTS 

This section conducts an experiment test under a low-voltage 
model, which can be seen in Fig. 6. The experimental setup is 
based on a 1.3kW induction motor, with a DMC driving the IM, 
whose parameters are shown in Table VI. The source 
line-to-line voltage is 200V (root mean square). The sample 
time is 70μs for the proposed MPC-based DTC method and 
conventional DTC method. The execution time of the proposed 
algorithm in DSP is 44μs. The weighing factors λT,, λ1, λ2 are 10, 
48, and 0.003, respectively. The switches of the MC are 
implemented by the insulated gate bipolar transistor (IGBT, 

TABLE VI 
EXPERIMENTAL PARAMETERS 

Parameters Values 

Number of pole pairs 2 

Stator resistor (Ω) 6.4 

Stator inductance (mH) 0.575 

Rotor resistor (Ω) 4.8 

Rated power (kW) 1.3 

Rated speed (r/min) 1500 

Source line to line voltage (V) 200 

Input filter inductance (mH) 0.6 

Input filter capacitance (μF) 66 

Sample time(μs) 70 

FF200R12KT3_E). To get the signals of the optimal switching 
state, a digital signal processor (DSP, TMS320F28335) and the 
field-programmable gate array (FPGA, EP2C8J144C8N) are 
used. In order to obtain an equal load torque, a resistor (R=30Ω) 
is connected into each phase of the permanent magnet 
synchronous motor’s stator, whose rotor is coaxial with the 
rotor of an IM. 

Fig. 7a and 7b show the waveform of the stator voltage, 
stator current of the IM and grid current by using the 
conventional DTC method and the proposed method, 
respectively, in which the load torque is set at 0 (N.m), the 
stator flux reference equals to 0.8 (Wb) and the speed reference 
is 600 (r/min). The input and output current are nearly 
sinusoidal in both methods.  

Fig. 8a is the performance of rotor speed and stator flux 
amplitude of the conventional DTC method under the same 
condition of Fig. 7. As seen in Fig. 8a, the rotor speed tracks the 
reference with a deviation of 1.6% approximately, and the 
stator flux amplitude tracks references more accurately.  

Fig. 8b shows the performance of the proposed MPC-based 
DTC method. As shown in Fig. 8b, the waveform of rotor speed, 
as the same with the conventional method, and the rotor speed 
tracks reference with a deviation of 1.6% approximately. Fig. 
8b also shows the stator flux amplitude ripple of the 
MPC-based DTC method, which is smaller than the stator flux 
amplitude ripple under the conventional DTC. 

The comparison of electromagnetic torque between the 
conventional DTC and MPC-based DTC method is shown in 
Fig. 8c. The red line is the electromagnetic torque under the 
conventional DTC method, and the blue line represents the 
electromagnetic torque under the MPC-based DTC method. 

Driver Controller Driver

Capacitor

Permanent magnet 
synchronous motor

Resistor

Induction motor

 
Fig. 6.  Experimental setup 



96 CES TRANSACTIONS ON ELECTRICAL MACHINES AND SYSTEMS, VOL. 5, NO. 2, JUNE 2021 

Though the load torque is set at 0, considering the factors such 
as friction that will affect the rotor rotation, the electromagnetic 
torque with both methods can only be maintained nearly to zero. 
However, compared to the conventional DTC method, the 
torque ripple under the proposed method is considerably 
smaller. The torque ripple when using the conventional DTC 
method is roughly 1.1 (N.m), but changes to 0.7 (N.m) with the 

vab:500V/div

ioa:2A/div

isa:5A/div

 
(a) 

vab:500V/div

ioa:2A/div

isa:5A/div

 
(b) 

Fig. 7.  Input and output waveforms of DMC with load torque equal to 0 (N.m) 
(a) under conventional DTC method [10ms/div] (b) under the proposed 
MPC-based DTC method [10ms/div]  

 
(a) 

 

 
(b) 

 
(c) 

Fig. 8.  Mechanical performance of IM with load torque equal to 0 (N.m) (a) 
Rotor speed and stator flux amplitude under conventional DTC method (b) 
Rotor speed and stator flux amplitude under the proposed MPC-based DTC 
method (c) Comparison of electromagnetic torque (Red: the proposed 

MPC-based DTC method, Blue: the conventional DTC method) 

proposed method. 
Fig. 9a and Fig.9b show the rotor speed and stator flux 

amplitude with the conventional DTC method and the proposed 
method. The reference speed is 600 (r/min), and the reference 
stator flux is 0.9 (Wb). The load torque of the IM is 2.5 (N.m) 
approximately. Fig. 9a represents the rotor speed and stator flux 
amplitude under the conventional DTC method and Fig. 9b 
represents the rotor speed and stator flux amplitude under the 
proposed method. As shown in these figures, both methods 
have similar effects on speed tracking and flux tracking. 

Fig. 9c compares the electromagnetic torque by means of 
conventional DTC and the proposed MPC-based DTC method 
with the load torque equal to 2.5 (N.m), as shown in Fig. 9c. 
Both methods track load torque accurately, but the torque ripple 
using the proposed method is smaller. There is only 1.3(N.m) 
torque ripple under the MPC-based DTC method, but nearly 
2(N.m) torque ripple under the conventional method. 
Fig. 10 illustrates the waveform of the output line-to-line 
voltage, output current and grid current by means of the 
conventional DTC method and the MPC-based method under 
the same condition of that in Fig. 9. As for Fig.10, it shows that 
both methods have the ability to make grid current and output 
current sinusoidal with small distortion. 

Fig. 11 illustrates the experimental results of the proposed 
method when the load torque changes suddenly. The proposed 
MPC-based DTC method inherits the advantage of the FCS- 

 

 
 (a) 

 

 
(b) 

 
 (c) 

Fig. 9.  Mechanical performance of IM with load torque equal to 2.5 (N.m) (a) 
Rotor speed and stator flux amplitude under conventional DTC method (b) 
Rotor speed and stator flux amplitude under the proposed MPC-based DTC 
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method (c) Comparison of electromagnetic torque (Red: the proposed 
MPC-based DTC method, Blue: the conventional DTC method) 
MPC method, such as quick dynamic response, which can be 
seen in Fig. 11. The electromagnetic torque responds quickly 
when load torque changes and remains steady with no more 
than 0.5 seconds, the rotor speed drops a little because of the 
rapid change of load torque, but also remains steady with no 
more than 0.5 seconds. 

 : 500 /abv V div

 : 2 /oai A div

 : 10 /sai A div

 
(a) 

 : 500 /abv V div

 : 2 /oai A div

 : 10 /sai A div

 
(b) 

Fig. 10.  Input and output waveforms of DMC with load torque equal to 2.5 
(N.m) (a) Under conventional DTC method [10ms/div] (b) Under the proposed 
MPC-based DTC method [10ms/div]  

 : 2 /oai A div

 : 500 /abv V div

 : 10 /sai A div

 
(a) 

 
(b) 

 
(c) 

Fig. 11. Experimental results of the proposed MPC-based DTC method when 

the load torque changes suddenly (a) Input and output waveforms of DMC 
[10ms/div] (b) Rotor speed of IM (c) Electromagnetic torque of IM 

VI. CONCLUSIONS 

An MPC-based DTC method for a DMC-fed IM is presented 
in this paper. Six voltage vectors selected from two look-up 
tables along with three zero voltage vectors are utilized for 
prediction. The switching state which minimizes the cost 
function is selected as the optimal switching state for the next 
switching period. Compared with conventional DTC, the 
method in this paper not only considers the unused voltage 
vectors but also manages to achieve a similar control effect 
with the reduced torque ripple. Finally, experimental results 
have been presented to demonstrate and validate the 
effectiveness and correctness of the proposed MPC-based DTC 
method.  

VII. DISCUSSIONS 

The electromagnetic torque ripple of the proposed 
MPC-based DTC method is less than that of the conventional 
DTC method under the same experimental condition. 
Compared with the conventional FCS-MPC method which 
evaluates 27 switching states, nine switching states are 
preselected and used to select the optimal switching state in the 
proposed MPC-based DTC method. Thus, the calculation effort 
of the proposed MPC-based DTC method is reduced compared 
with the conventional FCS-MPC method. The performance of 
the proposed MPC-based DTC strategy is nearly the same as 
the conventional FCS-MPC. This advantage will make the 
higher predictive horizon possible or implement the total 
algorithm on a cheaper microcontroller. This advantage is an 
expansion of the idea in [28]. The comparison among the 
conventional DTC method, conventional FCS-MPC method 
and proposed MPC-based DTC method is shown in Table VII. 
More number of signs “+” represent better performance in 
Table VII. 

TABLE VII 
Experimental Parameters 

Parameters 
Conventional 
DTC method 

Conventional 
FCS-MPC 

method 

MPC-based 
DTC method 

Speed tracking +++ +++ +++ 
Torque ripple ++ +++ +++ 

Calculation effort + +++ ++ 
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