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 
Abstract—To optimize the efficiency of the linear compressor, 

its operating frequency must be controlled equal to the system 
resonant frequency. The traditional resonant frequency tracking 
control algorithm relies on the steady state characteristics of the 
system, which suffers from slow convergence speed, low accuracy 
and slow system response. In order to solve these problems, a 
novel resonant frequency tracking control for linear compressor 
based on model reference adaptive system (MRAS) is proposed in 
this paper, and the parameter adaptive rate is derived by the 
Popov's hyperstability theory, so that the system resonant 
frequency can be directly calculated through the parameter 
adaptive rate. Furthermore, the traditional algorithm needs to 
calculate the piston stroke signal by integrating the back-EMF, 
which has the problem of integral drift. The algorithm proposed 
in this paper only needs the velocity signal, and the accuracy of the 
velocity calculation can be ensured by utilizing the self-adaptive 
band-pass filter (SABPF), thereby greatly improving the accuracy 
of the resonance frequency calculation. Simulation results verify 
the effectiveness of the proposed algorithm. 
 

Index Terms—linear compressor, linear oscillating motor 
(LOM), resonant frequency tracking control, model reference 
adaptive system (MRAS).  
 

I. INTRODUCTION 

RADITIONAL compressors are driven by rotary motors, in 
which the crank-shaft mechanism is utilized to convert 

rotational motion into the reciprocating motion of the piston. 
The efficiency of traditional compressors is low because it has 
large mechanical losses due to the crank-shaft mechanism. The 
linear compressors directly driven by linear oscillating motor 
(LOM) have attracted much attention in recent years. Because 
of directly removing the crank-shaft mechanism, not only the  
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efficiency of linear compressor can be greatly improved, but 
also the noise and volume reduced significantly [1]-[8]. 
However, the mechanical system of linear compressor contains 
a resonant spring, in which the efficiency is related to the 
system operating frequency. The system characteristics derived 
by the phasor method indicate that when the operating 
frequency is equal to the system resonant frequency, the linear 
compressor reaches highest efficiency. Therefore, a resonant 
frequency tracking control strategy must be implemented in the 
control system. 

In 2004, Tae-Won Chun with Busan University investigated 
the system characteristics of LOM [9]. He pointed out that 
when the system reaches resonant state, the phase angle 
between piston stroke and motor current is 90°. Inspired by this 
conclusion, several resonant frequency tracking control 
strategies based on the phase angel between piston stroke and 
motor current have been proposed in recent years [10]-12[]. 
The first step of these strategies is to obtain the piston stroke 
signal and the current signal, and then extract the phase angel 
through algorithm. Finally, a hysteresis controller is utilized to 
adjust the system operating frequency ensuring the phase angel 
reaches 90°. Therefore, these strategies are similar except that 
the phase angel detection algorithm is different. Some common 
detection algorithms are commented as follows: The 
zero-crossing detection algorithm is easy to implement, but it is 
sensitive to noise [10]; the fast Fourier transform algorithm 
with high accuracy needs expensive computation; the 
waveform fitting phase detection (WFPD) algorithm requires 
both large data storage space and massive computation [11]. In 
2008, the average value of stroke-current product (ASCP) 
method with less computation was proposed, yet its calculation 
accuracy will decrease when the frequency changes [12]. 
Furthermore, hysteresis regulator is utilized to adjust the 
frequency since the phase angel and the frequency are not 
strictly proportional, leading to convergence difficulty. In 
addition, accurate phase angel can only be detected when the 
system reaches steady state, so the resonant frequency tracking 
control strategy cannot be implemented before the piston stroke 
reaches a steady state, which leads to slow system response.  

In this paper, a novel resonant frequency tracking control 
strategy based on model reference adaptive system (MRAS) is 
proposed and investigated. The system equivalent spring 
coefficient and system equivalent damping coefficient are 
regarded as the adjustable parameters need to be identified. The 
electrical dynamics equation is regarded as the reference model, 
and the mechanical dynamics equation is regarded as the 
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adjustable model. The system resonant frequency can be 
directly calculated through the parameter adaptive rate derived 
by the Popov's hyperstability theory. Furthermore, only the 
velocity signal is required during the calculation, thus 
improving the calculation accuracy. Compared with the 
traditional resonant frequency tracking control algorithm, the 
proposed algorithm has advantages of high accuracy, fast 
convergence speed, fast system response speed, and so on.  

II. SYSTEM CHARACTERISTICS ANALYSIS AND TRADITIONAL 

CONTROL STRATEGY 

A. System Model 

The equivalent circuit diagram of linear compressor is shown 
in Fig. 1, the electrical dynamics equation can be written as  

 
di

U Ri L v
dt

     (1) 

where U is the stator voltage, R the stator resistance, i the stator 
current, L the stator winding inductance, α the electromagnetic 
thrust constant, and v the piston velocity. 

 
Fig. 2 shows the simplified kinetic model of linear 

compressor, and the mechanical dynamics equation can be 
expressed as  

 
2

2 m m g e

d x dx
m c k x F F i

dtdt
       (2) 

where m is the mass of piston, x the piston stroke, cm the 
mechanical damping coefficient, km the mechanical spring 
coefficient, Fg the gas force, Fe the electromagnetic force. 

 
In order to analyze system characteristics, the non-linear gas 

forces Fg must be linearized. Fg can be expressed by utilizing 
the Describing Function Method, as illustrated by  
 g g gF k x c v    (3) 

where kg is the equivalent gas spring coefficient, and cg the 
equivalent gas damping coefficient.  

By substituting (3) into (2), the linearized mechanical 
dynamics equation can be expressed as  

 
2

2

d x dx
m c kx i

dtdt
     (4) 

where c is the system equivalent damping coefficient, c=cm+cg, 
and k the system equivalent spring coefficient, k=km+kg. 

B. System Characteristics 

As shown in Fig. 1, the linear compressor is powered by 

single phase inverter, so the stator current and voltage are both 
single phase AC quantities. Phasor method is generally used to 
analyze the characteristics of single-phase AC systems, (1) and 
(4) in frequency domain can be derived as follows, 
respectively: 

 U RI jwLI V        (5) 

 2mw X jwcX kX I         (6) 

The relationship between voltage and current can be derived 
by substituting (6) into (5): 

  
2

( )
U R jwL I

c j wm k w

 
     
    (7) 

Then based on (7), the input power Pin can be calculated by  

 
2

2

2 2
Re( )

( )in

c
P UI R I

c mw k w

  
     

    (8) 

The output power of linear compressor Pout is defined as  

  * * *Re( ) Re ( )out g g g gP F V c V k X V c VV        (9) 

Generally, the efficiency is defined as the ratio of output 
power to input power. By substituting (6) into (9), Pout can be 
expressed as  

(
2

2

2 2( )
i g

out

k c
P I

c mw k w


 
   (10) 

Thus, the efficiency can be derived as  

 
2

2 2 2( )

gout

in

cP

P c R c mw k w





 

    
  (11) 

where w is the system operating frequency.  
It can be seen from (11) that the system reaches maximum 

efficiency when operating frequency equals to the resonant 

frequency k m , and the resonance frequency will vary with 

the change of gas force since kg is contained in k. Therefore, the 
resonant frequency tracking control strategy must be 
implemented to optimize the motor efficiency.  

Furthermore, the phase angel between piston stroke and 
motor current under resonance can be derived from (6): 

 
2( )

X I
k mw jwc




 
   (12) 

 
2

arctan( )x i

wc

k mw
   


  (13) 

As can be seen from (13), when system reaches resonant 
state, the phase angle of piston stroke and motor current will 
equal 90°, which is the theoretical basis of the traditional 
resonant frequency tracking algorithm.  

C. Traditional Resonant Frequency Tracking Algorithm 

The key point of the traditional resonant frequency tracking 
control algorithm is the phase detection algorithm. Among 
various algorithms, the average value of stroke-current product 
(ASCP) algorithm that enjoys less computation is easy to 
implement. This section will briefly introduce this algorithm 
and the corresponding control system.  

The piston stroke and motor current in steady state can be 
expressed as follows, respectively: 
 sin( )x X wt   (14) 

Fig. 2. Simplified kinetic model of linear compressor. 
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Fig. 1. Equivalent circuit of linear compressor. 
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 sin( )i I wt     (15) 

where θ is the phase angle between stroke and current. 
The ASCP is defined as the average value of the product of 

the stroke and current, as illustrated by  

 
0

0

1
ASCP ( ) ( ) cos

2

t T

t

XI
x t i t dt

T



     (16) 

Fig. 3 shows the relationships between the phase angle θ and 
ASCP, when the operating frequency is adjusted to equal to the 
resonant frequency, the phase angel θ becomes 90°, and 
consequently the value of ASCP is 0; when the operating 
frequency is higher than the resonance frequency, the angle θ is 
over 90◦, and the ASCP is negative. Therefore, the inverter 
frequency should be decreased to keep the ASCP at 0. Similarly, 
if the ASCP is positive, the inverter frequency should be 
increased. 

 
The linear compressor control system based on the ASCP 

algorithm is shown in Fig. 4. The inverter frequency is adjusted 
by the hysteresis controller, ensuring the ASCP value equals to 
0, and thus the resonant frequency tracking control can be 
achieved. 

 
In order to reduce costs and improve system reliability, the 

stroke signal required by the ASCP algorithm is provided by 
the back-EMF integration algorithm. The stroke signal can be 
calculated from voltage and current as follows:  

 
1

( )
di

x U Ri L dt
dt

     (17) 

The pure integral term in (17) is generally replaced by a 
low-pass filter to avoid integral drift problem. However, the 
low-pass filter will inevitably cause the amplitude and phase 
deviations between calculated stroke and actual one. Obviously, 
if the stroke signal with phase deviation is provided to the 
resonance frequency tracking algorithm, the final resonance 
frequency tracking result will be inaccurate.  

III. NOVEL RESONANCE FREQUENCY TRACKING CONTROL 

ALGORITHM 

A. Model Reference Adaptive System 

To construct a MRAS parameter identification system, the 
first step is to determine the adjustable parameters that need to 
be identified. And then the system equations without the 
adjustable parameters are regarded as reference models, and the 
system equations with the adjustable parameters are regarded 
as adjustable models, and the output of these two models must 
have the same physical meaning. Finally, the output difference 
between these two models is input to the parameter adaptive 
mechanism, making the adjustable parameters be continuously 
adjusted by utilizing appropriate parameter adaptive rate. 
Hence, the outputs of these two models tend to be consistent, 
and the adjustable parameters equal to their actual values. Fig. 5 
shows the structure of typical model reference adaptive system. 

 
The key point in designing a model reference adaptive 

system is to choose an appropriate parameter adaptive rate. At 
present, the most commonly used design method is based on 
Popov's superstability theory. This method first constructs an 
error system based on the selected adjustable model, and then 
converts the error system into a form consisting of a linear 
forward path and a non-linear feedback path as shown in Fig. 6. 

 
According to Popov's hyperstability theory, if the input and 

output of the nonlinear feedback path satisfy Popov's integral 
inequality (18), the necessary and sufficient condition for the 
gradual stability of the entire system is that the transfer function 
of the linear forward path is strictly positive real (SPR). 

 
1

0

2 2
0 1 0 0( ) ( )   ( , 0)

t T

t
w t y t dt t t          (18) 

where w is the output of the nonlinear feedback path, y the input 
of the nonlinear feedback path, and γ0 a constant.  

For permanent magnet motors and induction motors, the 
adjustable parameter is generally the rotating velocity, which 
varies much slower than current. But as for linear oscillation 
motors, piston velocity and stroke are sinusoidal quantities with 
the same frequency as voltage and current. Therefore, as for 
linear oscillating motors, either velocity or stroke cannot be 
regarded as the adjustable parameters.  

Linear forward path G(s)

Non-linear feedback path ϕ[y(t)]

y(t)u(t)r(t)

w(t)

+

-

Fig. 6. The structure of typical model reference adaptive system. 
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Fig. 5. The structure of typical model reference adaptive system. 
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Based on the analysis in Section II, it can be seen that the 
parameters k and c are variables related to the gas force load. If 
the load is constant, k and c are constants and the parameter k is 
proportional to the square of the system resonance frequency. 
Therefore, k and c can be regarded as adjustable parameters to 
be identified. According to the selection principle of the 
reference model and the adjustable model, the electrical 
dynamics equation (1) can be regarded as the reference model, 
and its output represents the actual velocity; the mechanical 
dynamics equation (4) is regarded as the adjustable model, and 
its output represents the observed velocity. 

B. Construction of Error System 

To construct the error system shown in Fig. 6, (4) is rewritten 
as  

 
k c

pv x v i
m m m


      (19) 

where p is the differential operator. 
To facilitate calculation, define parameters K = -k/m and C = 

-c/m. Then express parameters and variables in (19) as 
estimated values and observed values, the adjustable model can 
be expressed as  

 ˆˆˆ ˆ ˆpv Kx Cv i
m


     (20) 

where v̂  is the observed velocity, x̂ the observed piston stroke, 

K̂  and Ĉ  are estimated values of adjustable parameters. 
The error equation is obtained by subtracting (19) from (20): 

 ˆˆ ˆ ˆ( ) ( )v x vpe Ke Ce K K x C C v        (21) 

where ev is the velocity error, and ex the stroke error. 
According to the requirements of Popov's hyperstability 

theory, the error system should be converted into a form 
consisting of a linear forward path and a non-linear feedback 
path, so the error equation is rewritten as  
 v x vpe Ke Ce W     (22) 

where ˆˆ ˆ ˆ( ) ( )W K K x C C v    , W is the input of the linear 

forward path and the output of the non-linear feedback path. 
Defining the output of the linear forward path as y=ev, the 
transfer function of the linear forward path can be derived 
according to (22).  

The relationship between piston stroke and velocity is  
 ˆ ˆ    px v px v    (23) 

Therefore, the relationship between stroke error and velocity 
error is  
 x vpe e   (24) 

The s-domain form of (22) and (24) can be expressed as 
follows, respectively: 
 ( ) ( ) ( ) ( )v x vse s Ke s Ce s W s     (25) 

 ( ) ( )x vse s e s   (26) 

 The transfer function of the linear forward path can be 
derived by substituting (26) into (25): 

 
2

( )
( )

( )
ve s s

G s
W s s Cs K

 
  

  (27) 

Combing (20)-(27), the error system is established. 

C. Parameter Adaptive Rate and System Stability 

According to the error system constructed in the previous 
section, we substitute W and y into Popov's inequality (18): 

 
1

0

2
0

ˆˆ ˆ ˆ( ) ( )
t

vt
K K x C C v e dt           (28) 

Equation (28) can be decomposed into two inequalities as 
follows: 

 
1

0

2
1 1

ˆ ˆ( )
t

vt
K K xe dt       (29) 

 
1

0

2
2 2

ˆ ˆ( )
t

vt
C C ve dt       (30) 

where γ1 and γ2 have the same meaning as γ0.  
The parameter adaptive rate is generally in the form of 

proportional integral, taking adaptive rate of K as an example: 

 1 2
ˆ ˆ( , , ) ( , ) (0)K F y t d F y t K      (31) 

By substituting (31) into (29), the Popov's inequality is 
expressed as  

1

0

2
1 1 2 1

ˆ ˆ( , , ) ( , ) (0)
t

vt
F y t d F y t K K xe dt              (32) 

Equation (32) can also be decomposed into two inequalities 
as follows: 

 
1

0

2
11 1 11

ˆ ˆ( , , ) (0)
t

vt
F y t d K K xe dt             (33) 

 
1

0

2
12 2 12ˆ( , )

t

vt
F y t xe dt      (34) 

where γ11 and γ12 have the same meaning as γ0. 
To satisfy inequality (34), a function f(t) that satisfies the 

following conditions is constructed: 

 

1

( )
ˆ

ˆ( ) ( , , ) (0)

v

df t
xe

dt

nf t F y t d K K 

 

    

  (35) 

where n is a constant and n>0.  
By substituting (35) into (33), inequality (33) is derived as  

 

1

0
11

2 2 2 2
1 0 0 11

( ) ( )

( ) ( ) ( )
2 2

t

t
nf t df t

n n
f t f t f t







       


  (36) 

It can be seen that the constructed function f(t) can satisfy 
inequality (33), and the expression of function F1 can be 
obtained by deriving the second formula in (35): 
 1 ˆ( , , )   ( 0)I v IF y t k xe k     (37) 

For inequality (34), if the integral term is regular, the 
inequality will obviously hold, and hence the function F2 can be 
taken as  
 2 ˆ( , )   ( 0)P v PF y t k xe k    (38) 

The parameter adaptive rate of K can be obtained by 
substituting (37) and (38) into (31): 

 ˆ ˆˆ ˆ (0)p v I vK k xe k xe dt K     (39) 

The parameter adaptive rate of C can also be derived after 
similar derivation: 

 ˆ ˆˆ ˆ (0)p v I vC k ve k ve dt C     (40) 

The parameter adaptative rate specified by (39) and (40) can 
satisfy the Popov integral inequality. According to Popov's 
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hyperstability theory, the necessary and sufficient condition for 
the asymptotic stability of the entire system is that the transfer 
function of the linear forward path is a strictly positive real 
function. According to the definition of positive reality, if the 
following three conditions are met, the rational function G(s) = 
N(s)/D(s) for the complex variable s=σ+jω is a strictly positive 
real function: 

(1) G(s) is defined when s is real; 
(2) G(s) has no poles on the right half-closed plane; 
(3) Re[G(jw)]>0 when -∞<w<∞. 
Condition (1) is obviously satisfied, and the poles of G(s) are 

all on the left plane by utilizing the Routh Criterion, so 
Condition (2) is satisfied.  

The transfer function G(s) can be derived by substituting 
s=jw into (27), as illustrated by  

 

2 2

2 2 2

( )
( )

( ) ( )

c k
w jw w

m mG jw
k c

w w
m m

 


 
  (41) 

The real part of G(jw) is  

 

2

2 2 2

Re[ ( )]
( ) ( )

c
w

mG jw
k c

w w
m m


 

  (42) 

From the physical meaning of the parameters, it is known 
that c/m> 0 and k/m> 0, so Condition (3) is satisfied. 

According to the above proof, the constructed error feedback 
system satisfies Popov's hyperstability theory. So after that the 
corresponding signals are input to the parameter adaptive 
mechanism, the error between the reference model output and 
the adjustable model output will eventually converge to zero, 
which indicates the adjustable parameters will converge to their 
actual values. 

D. Construction of Reference Models 

The actual velocity can be calculated by (1): 

 
1

( )
di

v U Ri L
dt

     (43) 

Compare to (17), (43) does not contain pure integral term, so 
there is no integral drift problem. However, (43) contains a 
differential term for current, which will cause the noise in the 
current signal to be amplified. In order to solve this problem, a 
self-adaptive band-pass filter (SABPF) is used to obtain the 
fundamental component of the calculated velocity signal. Fig. 7 
shows the structure diagram of SABPF.  

 
Overall, using (43) in combination with SABPF can achieve 

resonant frequency tracking control without a speed sensor. 
Compared with the ASCP method, the proposed algorithm 

estimates velocity rather than piston shift, so the accuracy of the 
proposed algorithm will suffer from neither integral drift error 
caused by the pure integral term, nor the amplitude and phase 
deviations caused by low-pass filter. 

The transfer function between the output signal v' and the 
input signal v is: 

 1
2 2

1 1

( )
nw sv

D s
v s nw s w


 

 
  (44) 

where n is a constant, and w1 the center frequency of SABPF. 
Setting the center frequency w1 = 100rad/s, then the Bode 

diagram of D(s) at different values of n is shown in Fig. 8: 

 
Fig. 8 illustrates that when the fundamental frequency w of 

the input signal v equals to the filter center frequency w1, the 
output signal v' has no phase and amplitude offset from the 
input signal v, and the harmonics of other frequencies will be 
filtered. The parameter n is a scaling factor for adjusting the 
filtering bandwidth. Smaller n has better filtering effect, but the 
dynamic response speed will be slower. Since the frequency of 
velocity signal is same as the operating frequency of LOM, the 
center frequency of SABPF can be set equivalent to the system 
operating frequency, and then the harmonics caused by the 
derivative can be filtered without affecting the magnitude and 
phase of calculated velocity signal.  

IV. SIMULATION RESULTS 

A. Control System and Startup Performance 

To verify the effectiveness of the proposed algorithm, an 
LOA control system with the proposed algorithm is constructed 
in Matlab/Simulink as shown in Fig. 9.  
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Fig. 9. Structure diagram of linear compressor control system. 
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The motor parameters in simulation are given as follows: the 
stator resistance is 18 Ω, the stator inductance 0.59 H, the thrust 
coefficient 47.08 N/A, the piston mass 0.93 kg, the system 
equivalent damping coefficient 20 N.s/m, and the system 
equivalent spring coefficient 30 kN/m, i.e. the system resonant 
frequency 28.59 Hz. The initial values of k and c are k(0) = 
20000 and c(0) = 15, so that the initial values of K and C are 
K(0) = 21505 and C(0) = 16.13. In the startup process, the target 
amplitude is set to 5 mm, and the system startup frequency is 
23.34 Hz, the parameters of PI controller are set to be: kp=40, 
ki=400 for stroke controller; kp=500, ki=60000 for K controller; 
kp=5, ki=500 for C Controller. In addition, in order to improve 
the accuracy of calculation and control, the original piston 
stroke signal is amplified by 1000 times.  

 
The center frequency of SABPF is set to be consistent with 

the system operating frequency as shown in Fig. 9, and the 
parameter n is set to 1.5. As shown in Fig. 10, the output of 
SABPF is almost the same as the actual speed after only one 
cycle. Therefore, the output of SABPF can be regarded as the 
output of the reference model, which represents the actual state 
of motor.  

 
Fig. 11 shows the convergence process of the adjustable 

parameters K and C, the dotted lines represent the actual values 

of K and C, which are K = 30000/0.93 = 32258 and C = 20/0.93 
= 21.51. It can be seen from Fig. 11 that the adjustable 
parameters K and C can quickly converge from the initial value 
to their actual values, and the ±1% settling time of K is about 
0.5s, the ±1% settling time of C is about 0.7s.  

 
Fig. 12 shows the identification results of resonant frequency 

f. The dotted lines represent the actual value of the system 
resonant frequency of 28.59 Hz. The parameter K is 
proportional to the square of the resonance frequency, so the 
convergence process of the resonance frequency and the 
parameter K is similar, and the ±1% settling time of f is also 
0.5s. Fig. 11 and Fig. 12 illustrate the correctness of the derived 
parameter adaptive rate, demonstrating that the proposed 
algorithm has the advantages of fast convergence speed and 
high accuracy. 
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Fig. 14. Phase angel between piston stroke and motor current at steady-state 
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Fig. 12. Identification results of resonant frequency f. 
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Fig. 11. The convergence process of the adjustable parameters K and C. 
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Fig. 13. Simulation results of piston stroke and motor current. 
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Fig. 10. The output of SABPF and the actual velocity 
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Figs. 13 and 14 show the variation of piston stroke and motor 
current during startup process, and the phase angel between 
piston stroke and motor current at steady-state, respectively. 
Under the calculation of the MRAS algorithm, the operating 
frequency quickly rises close to the system resonant frequency, 
that is, the stroke current ratio increases quickly, so the spike 
current only appears at the instant of startup. As shown in Fig. 
13, under the adjustment of the stroke closed-loop controller, 
the stroke peak value quickly reaches a given value and the 
overshoot is small. Fig. 14 illustrates that the phase angle 
between piston stroke and motor current at steady state is 90°, 
which verifies the accuracy of the estimated resonance 
frequency from another aspect. 

B. Response to Step Load Change 

For linear compressors, a step load change means a sudden 
increase in the discharge pressure of the compressor. Several 
literatures indicate that the increase in the discharge pressure of 
linear compressors will cause the equivalent gas spring 
coefficient kg and the equivalent gas damping coefficient cg to 
increase. Therefore, the system equivalent spring coefficient k 
increases, and consequently the system resonance frequency 
goes up.  

 
Fig. 15 shows the response to step load change. Before 1.2s, 

the system is in the startup state, and the relevant parameters are 
consistent with the previous section. At 1.2s, the system 
equivalent damping coefficient c increases from 20 to 30, and 
the system equivalent spring coefficient k increases from 30000 
to 35000, so that the adjustable parameter C increases from 
21.51 to 32.26, and parameter K increases from 32258 to 37634. 
It means the system resonant frequency increases from 28.59Hz 
to 30.88Hz. As shown in Fig. 15, the MRAS algorithm 
responds quickly after step load change, the adjustable 
parameters K and C quickly converge to the new actual values. 
The ±1% settling time of K and C is about 0.17s and 0.27s 
respectively.  

 
Fig. 16 shows the response of system resonant frequency f, 

and the estimated value of the resonance frequency converges 
from 28.59Hz to the new actual value of 30.88Hz in 0.17s, 
which illustrate that the proposed MRAS algorithm has fast 
response speed and high convergence accuracy to step load 
change. 

 

 
Fig. 17 shows the response of piston stroke and motor 

current. As seen from this figure, under the adjustment of the 
stroke closed-loop controller, the stroke amplitude reaches its 
given value after about 0.3s, and the current response is smooth 
without spike. Fig.18 illustrates that the phase angel between 
piston stroke and current at new steady-state is still 90°, which 
illustrates the new resonant frequency estimated by the MRAS 
algorithm is accurate. 
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Fig. 18. Phase angel between piston stroke and motor current at new 
steady-state. 
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Fig. 17. Response of piston stroke and motor current. 

Fr
eq

ue
nc

y 
f(

H
z)

 
Fig. 16. Response of system resonant frequency. 
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Fig. 15. Response of parameters K and C. 
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C. Comparison with Traditional Algorithms 

An LOM control system based on the ASCP algorithm is 
also constructed in Simulink so as to demonstrate the 
advantages of the proposed algorithm. The structure diagram of 
traditional linear compressor control system is shown in Fig. 4, 
and the motor parameters, operating conditions settings and the 
PI parameters of the closed-loop stroke controller are same as 
the previous section. 

 

 

 
Figs. 19-21 show the first type of operating condition, the 

ASCP algorithm starts to adjust the frequency at the beginning 
of the simulation. Fig. 21 illustrates that the MRAS algorithm 
has faster convergence speed compared with the ASCP 
algorithm under this operating condition. The reason for the 

slow convergence speed of the ASCP algorithm is that the 
algorithm uses the ASCP value as a reference for frequency 
adjustment. When the ASCP value is large, the operating 
frequency and the resonance frequency are considered to be 
quite different, and the frequency adjustment rate should be 
increased. On the contrary, if the ASCP value is small, the 
operating frequency at this time is considered to be very close 
to the resonance frequency, and the frequency adjustment rate 
should be reduced. However, the ASCP value is not only 
related to the phase angle between piston stroke and motor 
current, but also related to the product of stroke peak and 
current peak, according to (16). Therefore, when the motor is 
just started, the piston stroke and motor current have not 
reached their steady state, and the ASCP value is very small. 
Therefore, a lower frequency adjustment rate is adopted, which 
causes the algorithm to converge slowly, as shown in Figs. 19 
and 20, respectively.  

Figs. 22-24 show the second type of operating condition, in 
which the ASCP algorithm does not start until stroke and 
current reach steady state. As shown in Figs. 22 and 23, after 
that the stroke and current reach steady state, the ASCP value is 
basically stable and much larger than when the motor starts. 
Therefore, a higher frequency adjustment rate is adopted, as 
shown in Fig. 24, the ASCP algorithm has slightly slower 
convergence speed than MRAS algorithm.  
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Fig. 23. The value of ASCP under the second type of operating condition. 
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Fig. 22. Simulation results of piston stroke and motor current with ASCP 
algorithm under the second type of operating condition. 
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Fig. 19. Simulation results of piston stroke and motor current with ASCP 
algorithm under the first type of operating condition. 

V
al

ue
 o

f A
S

C
P

 
Fig. 20. The value of ASCP under the first type of operating condition. 
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Fig. 21. Comparison of MRAS algorithm and ASCP algorithm under the first 
type of operating condition 
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However, in this operating condition, the frequency cannot 

be adjusted when the stroke is in a dynamic process, so the 
response speed of the whole system is greatly reduced. 

V. CONCLUSION 

In this paper, a novel resonant tracking control strategy for 
linear compressor based on MRAS is proposed and 
investigated. The electrical dynamics equation is regarded as 
the reference model, and the mechanical dynamics equation is 
regarded as the adjustable model, of which the parameter 
adaptive rate and system stability are proved by Popov's 
hyperstability theory. Simulation results have verified the 
correctness of the derived parameter adaptive rate. Moreover, 
comparative simulation results with traditional algorithms 
indicate that the proposed control strategy takes into account 
both the convergence speed of the algorithm and the response 
speed of the system, so that the whole system has demonstrated 
better performance.  
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