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Abstract—In order to improve the evaluation process of 
inverter open-circuit faults diagnosis in permanent magnet 
synchronous motor (PMSM) drives, this paper presents a 
diagnosis method based on current residuals and machine 
learning models. The machine learning models are introduced to 
make a comprehensive evaluation for the current residuals 
obtained from a state observer, instead of evaluating the residuals 
by comparing with thresholds. Meanwhile, fault diagnosis and 
location are conducted simultaneously by the machine learning 
models, which simplifies the diagnosis process. Besides, a 
sampling strategy is designed to implement the proposed scheme 
online. Experiments are carried out on a DSP based PMSM drive，
and the effectiveness of the proposed method is verified. 

Index Terms—Current residuals, fault diagnosis, inverter 
open-circuit, machine learning. 

I. INTRODUCTION

N Permanent-Magnet Synchronous Motor(PMSM) drives, 
inverters are the closest link between digital control and 

power output, and also the weak link where faults are diverse 
and occur frequently. According to statistics, about 38% of the 
faults in motor drives are due to failures of inverters [1]. 
Inverter faults can be classified into short-circuit and 
open-circuit. Short-circuit faults will lead to immediate 
over-current. Therefore, protective circuits are required for 
quick response, or short-circuit can be converted to open-circuit 
by thermo-fuse [2]. Conversely, open-circuit will not cause an 
immediate shutdown, but the current imbalance and torque 
ripple caused by faults will lead to secondary damage [3]. 

Generally, diagnosis methods for inverter open-circuit can 
be categorized as signal analysis method, model-based method, 
and data-driven method. Among them, signal analysis method 
was the first broadly applied method [4] [5] [6]. Reference [7] 
proposes a diagnosis method based on the ratio between line 
voltages. Line voltage deviations and phase voltage deviations 
are combined to classify open-circuit faults and current sensor 
faults in [8]. Reference [9] performs diagnosis by monitoring 
the residence time of the park's vector in each sector of the αβ  
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coordinate. Reference [10] carries out a comparative study of 
four current-vector based methods. Signal analysis is easy to 
implement, but as control strategies become more and more 
complex, the fault information hidden in the signals has also 
become increasingly difficult to extract and summarize. 

Aiming at obtaining more informative diagnosis variables, 
model-based method emerged [11]. In [12] [13], the 
three-phase current is estimated using Luenburger observer, 
and an adaptive threshold is designed to evaluate residuals. 
Based on mixed-logic-dynamic model, References [14] [15] 
construct current observer and voltage observer respectively, to 
obtain residuals. Reference [16] employs model reference 
adaptive system to estimate the distortion of phase voltages, 
and diagnostic decisions are made by comparing voltage 
distortion with a threshold. In [17], a sliding mode observer is 
employed to estimate currents, and the faults are also diagnosed 
by comparing the current residuals with thresholds. In the 
model-based method, observation residuals are immune to the 
changes in load and speed, however, evaluating the residuals by 
comparing with a threshold are unable to classify the fault 
patterns whose responses show similarity, which results in 
underutilization of the information in the diagnosis variables. 

For the purpose of comprehensively evaluating the diagnosis 
variables, data-driven method was introduced. In [18], 
normalized current-vector is introduced as diagnosis variable, 
and the diagnosis results are determined by fuzzy inference. In 
[19], a training set consisting of the phase voltage, phase 
current, and torque is used to train a neural network. In [20], the 
discrete-time wavelet transform is performed to extract the 
features of the phase currents, and then the faulty patterns are 
recognized by support vector machine (SVM).  In [21], signal 
features of line voltages are extracted by FFT, and the fault 
diagnosis is performed using a Bayesian network. Data-driven 
method studies the distribution features of the training set to 
fully utilize the diagnostic information in the samples. However, 
the quality of the samples of the diagnosis variables has a 
decisive influence on the results. Meanwhile, data-driven 
method is difficult to implement online. 

This paper proposes a hybrid diagnosis scheme in which the 
machine learning models are introduced to fully evaluate and 
utilize the fault information contained in the current residuals. 
Besides, a sampling strategy is presented to achieve online 
implementation. As depicted in Fig. 1: A observer is introduced 
to obtain current residuals as diagnosis variables; then, the 
residual samples are collected using the designed sampling 
strategy; after that, the machine learning models are trained 
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offline based on the samples; finally, the samples of different 
fault patterns are classified by the machine learning models 
online. The proposed diagnosis method is integrated into the 
control cycles and does not cause any influence on the motor 
control. The experimental results show that the proposed 
method can locate faults in less than half a fundamental period. 
The rest of this paper is organized as follows: In Section II, the 
effects of open-circuit on PMSM drive are analyzed. Section III 
introduces the proposed hybrid diagnosis method. Finally, the 
simulation and experimental results are presented in Section IV 
and Section V respectively. 
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Fig. 1.  Block diagram of the proposed diagnosis method.  

II. INFLUENCE OF INVERTER OPEN CIRCUIT 

The inverter in PMSM drive is shown in Fig. 2. When no 
faults occur, the inverter has six inherent space voltage vectors 
and two zero vectors. When open-circuit occurs, the faulty 
devices are no longer controlled by the PWM signals, resulting 
in changes on the inherent vectors. Also, the magnitudes and 
directions of the synthesized vectors that control the motion of 
the stator flux are changed. This section takes T1 open-circuit 
as an example to study the impacts of open-circuit on voltage 
vectors and stator flux and analyzes the system responses. 
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Fig. 2.  Three-phase inverter topology.  

A. The Influence on Space Voltage Vectors and Stator Flux 

The inherent space vectors and their corresponding 
three-phase PWM signals are shown in Fig. 3, where "1" 
indicates that the driving signal for the upper arm is "High", and 
"0" indicates that the driving signal for the lower arm is "High". 

As can be seen from Fig. 3, T1 open-circuit will affect the 
inherent vectors u4ሬሬሬ⃗ , u5ሬሬሬ⃗  and u6ሬሬሬ⃗ . For u4ሬሬሬ⃗ , since the current path 
connected to the positive pole of the DC source is blocked, 
there is no circuit paths in the inverter, resulting in u4ሬሬሬ⃗  turning 
into a zero vector. For u5ሬሬሬ⃗  and u6ሬሬሬ⃗ , T1 open-circuit also blocks 
the positive current path flowing through the phase-A leg, but 
there are still current paths flowing through the other two legs. 
So, T1 open-circuit causes changes on the magnitudes and 
spatial directions of these two space vectors and turns them into 

u5ሬሬሬ⃗
f
 and u6ሬሬሬ⃗

f
. The impacts on u5ሬሬሬ⃗  and u6ሬሬሬ⃗  are shown in Fig. 4: 
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Fig. 3.  Six inherent space voltage vectors.  
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Fig. 4. The influence of T1 open circuit on u5ሬሬሬ⃗ . (b)  The influence of T1 open 
circuit on u6ሬሬሬ⃗ . 

Therefore, when T1 open-circuit occurs, the inverter has five 
inherent space voltage vectors, as shown in Fig. 5: 
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Fig. 5.  Inherent space voltage vectors after T1 open circuit.  

In FOC, uiሬሬ⃗  is orthogonal to the stator flux Ψsሬሬሬሬ⃗ , and determines 

the direction and magnitude of the increment of Ψsሬሬሬሬ⃗ , which 

represents as ∆Ψsሬሬሬሬ⃗ . The magnitude of ∆Ψsሬሬሬሬ⃗  depends on the acting 

time of each uiሬሬ⃗ , that is,  ∆Ψsሬሬሬሬ⃗ =uiሬሬ⃗ ×∆t . In SVPWM, Ψsሬሬሬሬ⃗  is 
controlled to move in a round trace by alternating action of two 
adjacent inherent vectors and zero vectors in each switching 

period. When controlling Ψsሬሬሬሬ⃗  to rotate counterclockwise, the 
two space vectors corresponding to each spatial sector before 
and after the fault occurs are shown in Fig. 6: 
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Fig. 6.  Acting vectors in each spatial sector. (a)before T1 open circuit and 
(b)after T1 open circuit. 
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It is known from Fig. 6 and Fig. 5 that the vectors acting at 
sector I, IV, V, and VI change after T1 open-circuit. Suppose 
the synthesized vector is usሬሬሬ⃗ , the acting time of two adjacent 
space vectors and zero vectors in each sector is t1, t2, and t3. 
Then the changes of usሬሬሬ⃗  in each sector are shown in Table I: 

TABLE I 
THE INFLUENCE OF T1 OPEN CIRCUIT ON SYNTHESIZED VECTOR 

Sectors 
Synthesized vector 
before fault occurs 

Synthesized vector 
after fault occurs 

I usሬሬሬ⃗ =t1u6ሬሬሬ⃗ +t2u2ሬሬሬ⃗ +t3(u0ሬሬሬ⃗ +u7ሬሬሬ⃗ ) usሬሬሬ⃗ =t1u6ሬሬሬ⃗
f
+t2u2ሬሬሬ⃗ +t3(u0ሬሬሬ⃗ +u7ሬሬሬ⃗ ) 

II usሬሬሬ⃗ =t1u2ሬሬሬ⃗ +t2u3ሬሬሬ⃗ +t3(u0ሬሬሬ⃗ +u7ሬሬሬ⃗ ) No changes 

III usሬሬሬ⃗ =t1u3ሬሬሬ⃗ +t2u1ሬሬሬ⃗ +t3(u0ሬሬሬ⃗ +u7ሬሬሬ⃗ ) No changes 

IV usሬሬሬ⃗ =t1u1ሬሬሬ⃗ +t2u5ሬሬሬ⃗ +t3(u0ሬሬሬ⃗ +u7ሬሬሬ⃗ ) usሬሬሬ⃗ =t1u1ሬሬሬ⃗ +t2u5ሬሬሬ⃗
f
+t3(u0ሬሬሬ⃗ +u7ሬሬሬ⃗ ) 

V usሬሬሬ⃗ =t1u5ሬሬሬ⃗ +t2u4ሬሬሬ⃗ +t3(u0ሬሬሬ⃗ +u7ሬሬሬ⃗ ) usሬሬሬ⃗ =t1u5ሬሬሬ⃗
f
+t3(u0ሬሬሬ⃗ +u4ሬሬሬ⃗ +u7ሬሬሬ⃗ ) 

VI usሬሬሬ⃗ =t1u4ሬሬሬ⃗ +t2u6ሬሬሬ⃗ +t3(u0ሬሬሬ⃗ +u7ሬሬሬ⃗ ) usሬሬሬ⃗ =t1u6ሬሬሬ⃗
f
+t3(u0ሬሬሬ⃗ +u4ሬሬሬ⃗ +u7ሬሬሬ⃗ ) 

The magnitudes of u5ሬሬሬ⃗  and u6ሬሬሬ⃗  are reduced to √3 2⁄  of the 
original, and the acting time of u4ሬሬሬ⃗  is allocated to zero vectors. 

These effects reduce the magnitude of ∆Ψsሬሬሬሬ⃗  and change the trace 

of Ψsሬሬሬሬ⃗ , resulting in decreases in motor speed and torque 

B. System responses of PMSM drive under T1 open-circuit 

From the analysis in the previous part, it is known that the 
reasons for the drops on motor speed and torque are that the 
magnitudes of the voltage vectors are reduced, and the acting 
time of zero vectors is increased. However, with the drop of 
motor speed, the duty cycle of PWM signals will rise due to the 
closed-loop regulation, so that the acting time of non-zero 
vectors will increase, leading to the motor speed rebound, and 
finally the speed fluctuation will occur. 

The T1 open-circuit is simulated on an inverter fed PMSM. 
The speed command is 1500 rpm, with a constant load of 5 N.m, 
and the simulation time is 1s. At 0.5s, T1 open-circuit is 
simulated by blocking the driving signal of T1. The three-phase 
current regulation and speed fluctuation caused by T1 open 
circuit are shown in Fig. 7: 

 
(a) 

 
(b) 

 
(c) 

Fig.  7. Three-phase current under T1 open circuit, Three-phase current under 
T1 open circuit from 0.5 s to 0.52 s :(c)  Speed response under T1 open circuit. 

In simulation, T1 open-circuit occurs at 0.5 s when Ψsሬሬሬሬ⃗  is 
moving in sector III (acting vectors are u1ሬሬሬ⃗   and u3ሬሬሬ⃗ ) where Ic> 0> 

Ib> Ia. At about 0.502 s, Ψsሬሬሬሬ⃗  moves to the upper half of sector IV 

(acting vectors are u1ሬሬሬ⃗  and u5ሬሬሬ⃗
f
), where Ic> 0> Ia> Ib. Starting 

from around 0.503 s, Ψsሬሬሬሬ⃗  rotates in the lower half of sector IV 

and sector V (acting vector is u5ሬሬሬ⃗
f
), and at about 0.508 s, Ψsሬሬሬሬ⃗  

moves to sector VI (acting vector is u6ሬሬሬ⃗
f
). When Ψsሬሬሬሬ⃗   rotates in 

sector V and sector VI, motor speed drops due to the decrease 
in the magnitudes of the non-zero vectors and the increase in 

the acting time of zero vectors. Until around 0.512 s, Ψsሬሬሬሬ⃗   moves 

to the upper half of sector I (acting vectors are u2ሬሬሬ⃗  and u6ሬሬሬ⃗
f
). At 

this time, due to the closed-loop regulation, the acting time of 
non-zero vectors increases and motor speed starts to rise. 

 

 
(a)   

 
(b) 

Fig. 8.(a) iq  and id  under T1 open circuit, (b)  The trace of the magnitude of the 
current vector in dq coordinate. 

At about 0.508s, the magnitude of the current-vector in dq 
coordinate is zero, which represents the electromagnetic torque 

is zero. This is because Ψsሬሬሬሬ⃗  moves to the junction of sector V 

and sector VI at this moment, and  u4ሬሬሬ⃗  orthogonal to Ψsሬሬሬሬ⃗  here 
turns into a zero vector, making the inverter unable to supply 
power to the motor. It can be seen from Fig. 8 that the trace of 
the current vector varies in a large range around the q-axis, and 
a large part of the current vector acts on d-axis, which generates 
reactive power. Thus, even if the speed does not continuously 
drop but fluctuates around the speed command under the 
regulation of the controller, the efficiency of PMSM drive 
declines severely. 

Inverter open-circuit will cause changes in the responses and 
state variables. But the system feedbacks and state variables are 
susceptible to changes in motor load and speed, and applying 
these changes directly for diagnosis can easily lead to 
misdiagnosis. Hence, before making evaluation and decisions, 
obtaining qualified diagnosis variables is essential. 

III. THE HYBRID DIAGNOSIS METHOD BASED ON CURRENT 

RESIDUALS AND MACHINE LEARNING MODELS 
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A. Diagnosis variables based on Luenburger observer 

The qualified diagnosis variables should have the following 
characteristics, which are a) When the system operating with no 
faults, the diagnosis variables should remain constant even the 
operating condition changes, and b) When faults occur, the 
variables can deviate from the constant point rapidly and show 
different features according to different fault patterns. 

A Luenburger observer is introduced to obtain current 
residuals as the diagnosis variables. Firstly, when the inverter is 
healthy, the observer can quickly track id and iq, regardless of 
changes in the load and speed, to meet the first characteristic. 
Secondly, due to the sudden changes of currents while faults 
occur, the feedback gains of the observer are unable to make the 
residuals converge rapidly, so the residuals deviate from zero 
which meet the second characteristic. 

id and iq are estimated, and then the estimated three-phase 
current are obtained through inverse coordinate transformation. 
The dynamic model of PMSM is shown below: 
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where id, iq, ud, uq, and L are currents, voltages, and inductance 
on dq-axes; Rs is the stator resistance; ωe is the electrical 
angular velocity and ψf indicates the rotor flux linkage. 

Transform the dynamic model into the general form of the 
linear system as below: 
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The observability matrix of this linear system is shown as: 

             
1

1 0
[ ]

0 1

s
e

n T

s
e

R

LO C CA ... CA
R

L







  
  
   
 

      (4) 

It can be seen that O is a nonsingular matrix. Therefore, the 
state observer can be constructed to observe id and iq as shown 
below, and then the three-phase current can be reconstructed 
through inverse coordinate transformation. 
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         (5) 

where xො(t) and  yො(t) are the estimated values of x(t) and y(t); K 
is the feedback gain matrix which represents as: 
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K
K

K
                                    

(6) 

The feedback gains determine the dynamic performance of 
the observer. Assume the error between the observed value and 
the feedback is e: 

ˆ

ˆ

 


    
e x x

e x x                                            

(7) 

Substituting equation (2) and (5) into (7) gives: 

( ) e A KC e                                     (8) 

Equation 8 is a homogeneous differential equation, which 
can be solved as: 

                        0( ) exp(( ) ) ( ) 0  ，e t A KC t e t t              
(9) 

It can be seen that when the eigenvalues of ( )A KC  have 

negative real parts, e has asymptotic stability. The larger the 
absolute values of the negative real parts are, the faster the error 
e converges. In this paper, by configuring the feedback gains, e 
can either converge when the inverter is healthy or deviate from 
zero when current feedbacks are lost. 

B. The evaluation process based on PCA and SVM 

Indeed, the observer can provide stable and informative 
diagnosis variables. However, because different open-circuit 
faults share same conduction paths in the inverter, the 
responses of the observer under different open-circuit faults 
show similarity. In these cases, it is difficult to distinguish these 
faults by comparing with thresholds.  

The main defect of comparing residuals with thresholds is 
that only the magnitude relationship is concerned, but the 
dynamic feature of current residuals in a range of phase is 
neglected. Another defect is that the magnitude relationship is 
inducted empirically, which generally leads to excessive 
margins to avoid false trigger but degrades the sensitivity.  

Different from comparing with thresholds, machine learning 
models evaluate residuals by extracting and classifying the 
distribution features of the samples in a range of phase. These 
features are not extracted empirically, but have statistical 
significance. Also, the machine learning models simplify the 
diagnosis process by simultaneously diagnosing and locating 
the faults.  

Compared with the typical tasks of machine learning, such as 
text recognition, diagnosis of inverter open-circuit is a small 
sample case. First of all, the quantity of sample patterns is small. 
There are 21 types of single IGBT open-circuit and double 
IGBTs open-circuit, which are far less than the sample patterns 
of text recognition. Secondly, the sample dimension is small. 
Taking the system sampling frequency of 10 kHz and sampling 
the three-phase current residual in half an electrical cycle, the 
dimension of each sample varies from tens to hundreds 
depending on different sampling rates. Therefore, machine 
learning models for diagnosis of inverter open circuit faults 
should be suitable for small sample task. In this paper, 
diagnosis variables are evaluated using Principal Component 
Analysis (PCA) and Support Vector Machine (SVM) due to 
their suitability for small sample task.  

Set N samples as ൛൫xiሬሬ⃗  , yi൯ൟ
i=1

N
, where xiሬሬ⃗  is a sample vector, yi 

is the label of xiሬሬ⃗  and yi∈[-1,1]. The basic problem of machine 
learning is to find a classification hyperplane, expressed as 

ωሬሬ⃗
T
x⃗+b, where ωሬሬ⃗  is the coefficient vector, x⃗ is the sample vector, 

and b is a coefficient. SVM first finds support vectors closest to 
the hyperplane. The margins between the support vectors and 
the hyperplane are expressed as: 

, ,

1
( , , ) min

i

T
i i

x b
margin x b x b


 


  
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(10) 

According to the maximal margin principle, the optimization 
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objective and constraints of SVM are as follows: 
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(11) 

Simplifying the optimization objective and combining the 
constraints. The optimization problem is transformed into a 
standard quadratic programming problem with N constraints to 
solve ωሬሬ⃗  and b: 
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(12) 

ωሬሬ⃗  and b are solved by finding the extremum under the 
constraints of the samples, instead of based on the maximum 
likelihood estimation. Therefore, SVM is independent of the 
probability density of the samples. The goal is to obtain the 
optimal solution under limited samples, not only when the 
number of samples tends infinity. Hence, SVM is suitable for 
the case of limited and small samples. 

PCA does not involve the probability density of samples as 
well but is based on the variances and covariances of the 
projections of samples. PCA looks for a new coordinate system 
so that a few coordinates of the samples in the new coordinate 
system can represent most of the information. The dimension 
reduction model is a set of the unit vectors of an orthogonal 
coordinate system. Suppose the dimension of each sample is n, 
then the original sample set is an n×N matrix expressed as A. 
The dimension reduction model is an r×n matrix P, and the 
reduced sample set is an r×N matrix Y: 
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  (13) 

The new coordinates need to meet two requirements, which 
are a) the variance of the projection of each sample on each axis 
should be as large as possible and b) the covariances between 
the projections of samples on any two different axes is zero. 

The two requirements can be meted by diagonalizing the 
covariance matrix of Y, expressed as CV： 
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Transform CV as: 

   1 1 1 1
( ) )T T T T T TCV YY PA PA PAA P P( AA P

m m m m
        (15) 

Equation (15) shows that diagonalizing the covariance 
matrix of A is equivalent to diagonalizing the CV, and P is the 
eigen matrix of the covariance matrix of A. After obtaining P, 
the r eigenvectors with the largest eigenvalues are retained as 

the dimension reduction model. The projections of the samples 
on the r orthonormal vectors are larger than projections on 
other vectors, so the r projections are the principal components. 

PCA is based on the linear transformation, and does not 
involve probability theory, so PCA also fits for small sample 
cases. Dimension reduction can bring two benefits, which are a) 
reduced the amount of calculation when training the classifier 
and running the classifier online and b) the extracted 
components are the projections with the largest variances in the 
new coordinate system, which makes the differences between 
different types of samples more obvious and concise. 

C. A sampling strategy to implement the hybrid method online 

The samples used to train the models should be obtained by 
sampling the three-phase current residual in a fixed phase range 
in each electrical cycle to comprehensively evaluate the 
three-phase current residual. In the PMSM variable speed 
system, the current sampling frequency is fixed, so the 
dimensions of the current residual samples within a fixed range 
of electrical cycle at different current frequencies are not equal. 
However, the offline trained models have fixed dimensions. 
Therefore, it is necessary to design a sampling strategy to make 
the dimensions of the residual samples at different current 
frequencies equal, so that the machine learning models can 
adapt to the variable speed system. 

For the purpose of avoiding the interference of current 
distortion on the sampling process, the electrical angle, 
expressed asθe , calculated by the rotor position feedback is 
introduced in sampling. When the phase of A-phase current is 
zero, the corresponding θe  is π. Assuming that the sampling 
process starts from the moment when θe is π, and a sample with 
fixed dimension n is sampled within 1 T⁄  electrical cycle, then 
the specific electrical angles triggering the sampling are: 

(2 ( 1) ), 0,1... 1e j n T j n      
             

(16) 

By configuring the T and n, the dimensions and sampling 
range of the samples can be flexibly configured. 

IV. SIMULATION STUDIES 

The simulation of the proposed hybrid method is performed 
in MATLAB/ SIMULINK. The responses of the Luenberger 
observer under different conditions are simulated first. The 
feedback gains are K1=K2=12000. The initial speed command 
and load are 1000 rpm and 2 N.m, and T1 open-circuit is 
injected at 0.5 s. From 0.2 s, the load rises to 5 N.m and the 
speed command increases to 1500 rpm between 0.3 s and 0.4 s. 
The simulation results of speed, A-phase current, A-phase 
estimated current and the current residual are shown in Fig. 9. 

Fig. 9 shows that current residuals satisfy the two 
characteristics of diagnosis variables. When there are changes 
in the load and speed, the current feedbacks vary in a relatively 
uniform manner, so the responses of the observer are quick 
enough to track the feedbacks well. So that the current residual 
fluctuates within a small range around zero.  When a fault 
occurs, the A-phase current suddenly decreases to zero, and the 
feedback gains are not large enough to eliminate the errors, thus 
the current residual deviates from zero immediately.  
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Fig. 9.  Responses of the system and the observer under different conditions 

Taking T1 open-circuit and T1T3 open-circuit as examples, 
the three-phase current residuals under these two conditions are 
shown in Figure 10: 

Fig. 10  Current residuals under T1 open-circuit and T1T3 open-circuit 

Comparing the current residuals of T1 open-circuit and T1T3 
open-circuit, these two faults have the same conduction path in 
the first quarter cycle when A-phase current is positive, that is, 
the A-phase leg of the inverter has no conduction path, and the 
B-phase and C-phase legs alternately conduct the positive and 
negative current. This leads to the similarity of the three-phase 
current residuals in polarity and change trend. If the diagnosis is 
carried out by comparing with a threshold value, the same 
diagnosis results would occur.  

Then, using the designed sampling strategy, the samples with 
a fixed dimension of 100 are sampled in half an electrical cycle 
while the current frequency varies. The simulation results are 
shown as follows: 

(a) 

Fig. 11. (a)  A-phase current and electrical angle under speed regulating (b)  

Current residual and residual samples under speed regulating 

Fig. 11 shows the corresponding relationship between the 
A-phase current and the electrical angle, as well as the samples
obtained by the sampling strategy during speed regulation. It
can be seen that in a variable speed system, this sampling
strategy can sample current residuals with a fixed dimension at
different current frequencies.

As shown in Fig. 11. b, the current residual is expressed as a 
single value function in time domain. In this paper, PCA 
considers each residual sample as a vector in a high- 
dimensional space in which the number of coordinates, also can 
be called the dimensions, is equal to the number of sampling 
points. The directions and magnitudes of sample vectors are 
determined by the variation trend of three-phase residual along 
time. In other words, Different trends of residuals cause 
different vector distributions in the high-dimensional space. To 
highlight the different distributions of samples in different 
classes, PCA transfers the samples into a new coordinate 
system in the high-dimensional space according to the principle 
of maximizing variances. In this way, PCA extracts the 
principle distribution of the original samples in high- 
dimensional space and reduces sample dimension by storing 
the coordinates of the axes with the largest variances.  

In this paper, each 30 residual samples are collected 
separately under the condition of no faults, T1 open-circuit, 
T1T3 open-circuit, and T1T4 open-circuit. Each sample 
consists of three-phase current residuals, and the residuals of 
each phase are sampled 100 times in half an electrical cycle. So 
the obtained original sample set is a 300×120 matrix, expressed 
as X=[Xhealth, XT1, XT1T3, XT1T4], in which Xhealth ,  XT1 ,  XT1T3 , 
and XT1T4 represent the 30 samples of no faults, T1 open fault, 
T1T3 open fault, and T1T4 open fault, respectively. 

After obtaining X, the dimension of each sample in X is 
reduced to two by PCA. The obtained matrix after the reduction 
is called the training set which is a 2×120matrix, expressed 
as XP = [XPhealth, XPT1, XPT1T3, XPT1T4]. The distribution of XP 
is shown as: 

Fig. 12.  The distribution of the training set in two-dimensional space 

In Fig. 12, the two-dimensional space is the projection of the 
two axes with the largest variances in the high-dimensional 
space, and the ‘x1’ and ‘x2’ are the coordinates in these two 
axes. It can be seen that the four classes of samples in XP are 
linearly separable in two-dimensional space. If reducing the 
dimensions to one, the XPhealth and XPT1T3 will overlap on the 
horizontal axis, and XP will become inseparable, so reducing 
the dimension of the original sample set to two is most 
appropriate. By reducing the dimensions, the distribution 
features of the three-phase current residuals in the 
high-dimensional space are retained, so that the differences 
between the four classes of samples are more obvious and 
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concise. Besides, the data amount of the original sample set is 
greatly reduced. These two benefits reduce the burden for 
subsequent training and online implementing. 

Finally, a directed acyclic support vector machine 
(DAGSVM) is introduced to train the multi-classifier for fault 
diagnosis. DAGSVM can effectively reduce the calculation 
amount of multi-classifying process. Assume that there are K 
classes of samples. First, K (K-1)/2 binary classifiers need to be 
trained. Then, when making multi-classification decisions, 
DAGSVM only needs to call K-1 classifiers. For the four 
classes of samples, the six trained linear binary classifiers are 
shown in the Fig. 13: 

Fig. 13.  The six binary classifiers for the four classes of samples 

Test the multi-classifier with test samples. Taking a test 
sample of T1T3 open circuit as an example, the 
decision-making process of DAGSVM is shown as:

ix


Tends to XPhealth

Classifier1
XPhealth

vs XPT1T4

Classifier2
XPT1

vs XPT1T4

Classifier3
XPhealth

vs XPT1T3

Classifier4
XPT1T3 

vs XPT1T4

Classifier5
XPT1

vs XPT1T3

Classifier6
XPhealth 
vs XPT1

XPT1T4 XPT1T3 XPT1T1 XPhealth

Tends to 
XPT1T3

Tends to 
XPT1T3

Fig. 14.  The decision-making process of DAGSVM. 

In Fig. 14, the red route represents the diagnosis route of the 
test sample. In each classifier, the diagnostic results tending to 
the left route are labelled as ‘-1’ while the results tending to the 
right route are labelled as ‘1’. In the process of 
multi-classification, the test sample is evaluated by three binary 
classifiers for decision-making, and the final result is 
determined by the classifier conducting the last diagnosis and 
its corresponding diagnostic labels. The margins between the 
test sample and three classifiers are shown in Table II: 

TABLE II 
MARGINS BETWEEN THE TEST SAMPLE AND THREE DECISIVE CLASSIFIERS 

Decisive classifiers 
Margins between the sample and 

classifiers 

Classifier1: XPhealth vs XPT1T4 0.6019 

Classifier3: XPhealth vs XPT1T3 -1.0873 

Classifier5: XPT1 vs XPT1T3 -1.0428 

It is known from Fig. 13 that XPhealth and XPT1T3 are on the 
same side of Classifier1 in the two-dimensional space. So the 
classification result of the test sample on Classifier1 tends to 
XPhealth, and in the subsequent evaluations of Classifier3 and 

Classifier5, the test sample is classified to XPT1T3. 

V. EXPERIMENTAL VERIFICATION

A PMSM drive based on TMS320F28335 is employed to 
verify the proposed online diagnosis method and is shown in 
Fig. 15. 

Fig. 15.  The experimental platform 

The ePWM module of TMS320F28335 contains a Trip-Zone 
(TZ) submodule which can flexibly configure the PWM signals 
as High, Low, or High-impedance, so TZ submodule is used in 
this paper to inject open circuit faults. The state variables inside 
the controller are transmitted to the oscilloscope for 
observation and acquisition through a D/A converter.  A host 
computer sends commands to the controller via RS485. The 
parameters of PMSM used in this experiment are shown in 
Table III. 

TABLE III 
THE PARAMETERS OF THE EXPERIMENTAL PMSM 

Parameter Value 
Number of pole pairs 4 
Resistance of stator 0.306Ω
d axis inductance 2.4 mH 
q axis inductance 2.4 mH 
The flux of the rotor 0.281 Wb 

DC voltage 60 V 

Fig. 16 shows the dynamic responses of the Luenburger 
observer when the load varies between 3 N.m and 6 N.m. The 
load is increased from 3 N.m to 6 N.m in about 0.5 seconds. 
After 6 seconds, the load is reduced to the 3 N.m in a very short 
time. Regardless of whether the load gradually increases or 
drops abruptly, the current residual varies periodically within a 
constant range and is not affected by the changes of load. 

Fig. 16.  The dynamic responses of Luenburger observer. 
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Figure 17 shows the three-phase current residual under T1 
open-circuit, T1T3 open-circuit, and T1T4 open-circuit. In fault 
injection experiments, the three-phase current residual quickly 
deviate from zero and show different features according to 
different faults. As can be seen from Fig. 16 and Fig. 17, the 
current observation residuals meet the characteristics of being 
the diagnosis variables proposed in Section III. 

Fig. 17.  The three-phase current residuals under T1 open-circuit, T1T3 
open-circuit, and T1T4 open-circuit. 

Fig. 18 shows the residual samples collected using the 
proposed sampling strategy under T1T3 open-circuit. Channel 
1 of the oscilloscope is the A-phase current, and channels 2 to 4 
are the current residuals of phase A, B, and C, respectively. It 
can be seen that the proposed strategy can sample current 
residuals with a fixed dimension in a fixed phase range of 
electrical cycle, to facilitate offline training and online 
implementation of machine learning models. After the original 
sample set is collected, the dimension reduction and training 
are performed offline. The resulting training set and six binary 
classifiers are shown in Fig. 19 

Fig. 18.  Samples collected using the proposed strategy. 

Fig. 19.  The distribution of the training set and six trained binary classifiers. 

T1 open-circuit is injected to test the performance of the 
proposed diagnosis method. The performance of the binary 
classifiers is tested first. Fig. 20 shows the evaluation result of 
the Classifier 6(XPhealth vs XPT1) before and after T1 
open-circuit occurs. It can be seen that after the fault occurs, the 
calculation results are all smaller than -1 , which is, the 
diagnosis result is T1 open-circuit.  

Then, test the performance of the DAGSVM. From Fig. 14, 
It is known that the samples of T1 open-circuit will be 
evaluated by the Classifier 1/2/5 sequentially to finally 
determine the diagnosis result. Fig. 21 shows the evaluation 
results of the Classifiers 1/2/5. Channel 1 of the oscilloscope is 
the A-phase current, and channels 2 to 4 are the evaluation 
results of the Classifier 1/2/5. It can be seen that the evaluation 
result of the Classifier 1 is negative, which leads the diagnosis 
result to T1T4 open-circuit, and then the evaluation results of 
the Classifiers 2/5 locate the diagnosis result to T1 open-circuit.  

Fig. 20.  The evaluation results of Classifier 5. 

Fig. 21.  The evaluation results of Classifier 1/2/5 when T1 open-circuit occurs. 

The experimental result shown in Fig. 22 shows the shortest 
diagnosis time of the proposed method. In Fig. 22, the channel 
1 is the A-phase current, and the channel 2 is the flag indicating 
the completion of the diagnosis. The High level represents that 
a fault has been located. As can be seen from Fig. 22, the 
diagnosis was completed in less than half an electrical cycle 
after the fault occurred in the experiment. 

Fig. 22.  The shortest diagnosis time in experiments. 
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Also, the computation of the proposed diagnosis scheme is 
tested and reported as below: In experiments, the 
TMS320F28335 works at 150 MHz. The switching period is 
100 μs, and the PI controller, SVPWM and the observer 
account for maximum 25 μs. The process of dimension 
reduction requires 600 floating-point multiplications for each 
sample. Besides, the DAGSVM model is a series of binary 
linear equations, and each equation introduces 2 floating-point 
multiplications. The 600 floating-point multiplications are 
distributed over 6 switching cycles so that the total computation 
time at each cycle can be constrained below 50 μs. Therefore, 
the online implementation of the proposed diagnosis scheme 
does not cause influence on the motor control. 

VI. CONCLUSION 

PCA and SVM are introduced in this paper to 
comprehensively assess the three-phase current residuals 
obtained through a Luenburger observer. Besides, a sampling 
strategy is designed to implement this hybrid method online. 
The experiments verify that the proposed method can locate 
faults in less than half an electrical cycle and is able to classify 
the fault patterns whose responses show similarity. Online 
implementation and offline sampling are two major concerns 
for utilizing machine learning in electric drives. The proposed 
sampling strategy fulfills the requirements of online 
implementation, and improving the sampling process to reduce 
the data amount and the number of fault categories can be the 
next procedure of the research on machine learning based fault 
diagnosis.  
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