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1Abstract—Aiming to suppress the influence of uncertain 
disturbances in the drive control of permanent magnet 
synchronous machines (PMSM), such as the parameter 
uncertainties and load disturbance, a robust 
anti-interference control for the angular position tracking 
control of a PMSM servo system has been proposed in this 
paper. During the position tracking, uncertain system 
disturbances being regarded as a lumped unknown term 
will be online observed by a nonlinear disturbance observer 
(NDOB), of which the influence will consequently be 
counteracted by a robust backstepping compensator (RBC). 
The asymptotical stability of proposed control scheme is 
analyzed and designed according to the Lyapunov stability 
criterion, and its convergence against the system uncertain 
disturbance is verified on a prototype PMSM servo 
platform and shows good performance in rotor angular 
position tracking and anti-interference.  

Index Terms—Nonlinear disturbance observer (NDOB), 
permanent magnet synchronous machine (PMSM), position 
control, robust backstepping compensator (RBC), servo system.  

I. INTRODUCTION

ITH the rapid development of power electronic devices, 
microcomputers and modern control theory, the 
permanent magnet synchronous machine (PMSM) have 

been widely used in the textile industry, industrial robots, 
medical equipment, household appliances, etc. [1], [2], thanks 
to its simple structure, light weight, high power density and 
strong driving capability. However, the performance of 
position and speed controls of PMSMs is usually sensitive to 
the machine nonlinearity, time-varying parameters, and 
external load disturbances, and a strong position locking ability 
is usually needed in applications such as robotic arms and 
marine steering gears[3]. In this case, the traditional linear 
control method is usually difficult to ensure the overall 
performance of servo system [4]. 

In order to overcome this issue, related nonlinear control 
methods such as the sliding mode variable structure control [5], 
[6], adaptive control [7], [8], model predictive control [9], [10], 
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active disturbance rejection control (ADRC) [11], feedback 
linearization control [12] and adaptive backstepping control 
[20], [21] are widely investigated for solving the above 
problems. For example, A. T. Nguyen et al. [13] has proposed a 
model reference adaptive control (MRAC) based scheme, 
including an adaptive compensator and a feedback controller to 
improve the speed response against unknown external 
interference. However, the adaptive control scheme is usually 
difficult to eliminate the influence of unmodeled uncertainty. In 
this case, once the influence of uncertainty is out of a certain 
range, the resulting system chaotic responses will cause a 
deterioration of the system stability [14]. Besides, it is reported 
in some articles that the sliding mode control (SMC) is of high 
robustness and simple structure, which can guarantee the 
tracking accuracy in the presence of parameter uncertainty and 
external interference, and also can increase the control gain of 
the sliding mode surface to further improve the system 
robustness. However, a too large control gain tends to increase 
the chattering and then result in a deterioration of the control 
performance [15]-[17]. Similarly, Hebertt Sira-Ramírez et al. 
[18] employs an active disturbance rejection control (ADRC)
scheme to overcome the influence of uncertain disturbance,
which has a simple structure and can be easily operated in
discrete time. However, it is difficult to properly adjust the
parameter setups of the ADRC controller. Recently, a novel
adaptive backstepping control (ARBC) is proposed in [19],
which has taken into account the estimation of load torque for
improving the rotor position tracking. Similarly, the ARBC
with extended state observer (ESO) is also used to deal with the
parameter uncertainty and external interference for the speed
regulation of a wind turbine differential mechanism, while the
unmodeled uncertainty of the system without consider [20].
Besides, the ARBC is also used to cooperate with the estimated
moment of inertia and load torque to achieve good control
performance under ultra-low speed control [21].

In this paper, a RBC combined with a nonlinear disturbance 
observer (NDOB) is proposed for the anti-interference position 
control of PMSM servo system, which has accounted for the 
influences of uncertain modeling errors and external 
disturbances. The proposed scheme has considered the 
influence of mismatched parameters of PMSM servo system 
and the overall system disturbances in current, torque, speed etc. 
Those disturbances are modeled as a lumped term and properly 
online compensated by the proposed method. Besides, the 
asymptotical stability of the proposed control scheme is 
analyzed and designed according to the Lyapunov stability 
criterion, which guarantees the stability and convergence of 
whole system. The performance of proposed method is finally 
verified on a prototype PMSM servo system, and shows quite 
good robustness against unknown parameters and external load 
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disturbances. 

II. PMSM MODEL 

The mathematical model of PMSM on the dq-axis can be 
expressed as 
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where id, iq represent the dq-axis currents; ud, uq represent the 
dq-axis voltages; Rs, L, ψf  and Pn represent the stator resistance, 
dq-axis inductances, permanent magnet flux linkage and the 
number of pole pairs, respectively; J, TL and B represent the 
moment of inertia, the load torque and the viscous friction 
coefficient, respectively; θm, ωm represent mechanical position 
angle and the rotor angular speed; f1 and f2 represent other 
uncertainties, including modeling errors, external disturbances, 
etc. 
 Taking into account the parameter variations, (1) can be 
expressed as 
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where θ1n, θ2n, θ3n are the nominal parameters; Δθ1, Δθ2, Δθ3 are 
the parameter variations, d represents the lumped disturbance, 
which includes internal parameter variations, external load 
disturbances, and other uncertainties. 
 To facilitate the controller design, the system needs to meet 
the following assumptions 
Assumption 1: The lumped disturbance d is bounded and has a 
slow change with time  
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where μ represents the boundary value of d. 
Assumption 2: Other uncertain terms f1, f2 satisfy the following 
conditions 
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where h1, h2 represent the boundary values of f1 and f2, 
respectively 

III. DESIGN OF POSITION CONTROL STRATEGY FOR PMSM 

A. Design of Nonlinear Disturbance Observer 

To reduce the influence of internal parameter variations and 

external load disturbances, a NDOB for compensation control 
is introduced. 

To estimate the system disturbances, the NDOB [22] applied 
in this paper can be given as follows 
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where d̂ , p, and l are estimates of the lumped system 
disturbance, intermediate variables of NDOB and gains of 
NDOB, respectively. 
 Define the disturbance error as ed which satisfies the 
following conditions 
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where ξ is the boundary value of the disturbance error ed. 

It can be proved that d̂  will asymptotically approach the 
actual value d by selecting the appropriate parameter l. 
Proof: By combined of (3), (7) and Assumption 1, de is got as 

follows 
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It is worth to note that l > 0 in (9) and magnitude of this 
parameter determines the speed of convergence, which means 
the convergence speed increases with l. The schematic diagram 
of NDOB is shown in Fig. 1. The advantage of the NDOB 
introduced in the paper is that its structure is much simpler and 
it can effectively estimate and compensate a wide range of 
uncertainty and interference without sacrificing the overall 
control performance. 

 

B. Design of Robust Backstepping Controller 

The RBC can simplify the high-order system to several 
first-order subsystems by introducing virtual control variables 
[19], [20]. A RBC based on NDOB is proposed to control 
PMSM servo system considering parameter uncertainties and 
external load disturbances. The overall control block diagram 
of the RCB with NDOB is shown in Fig. 2. 

According to the basic design principle of backstepping 
controller, the error variables z1, z2, z3 and z4 of the system can 
be defined as 
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Fig. 1.  Schematic diagram of NDOB 
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where xr is the desired signal; α1, α2 are the desired virtual 
control signals. 
Step 1: Select the first Lyapunov function V1 as follows 

2
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By differentiating (11), 1V  can be obtain from (12) 
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The virtual control variable α1 is represented as follows 
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where k1 is an adjustable positive parameter, 1V  can be written 

as follows 
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Step 2: Select the second Lyapunov function V2 as follows 
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By differentiating (15), 2V  can be obtained below 
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The virtual control variable α2 is represented as follows 
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where k2 is an adjustable positive parameter, α2a is the model 
compensation control to achieve tracking control and α2r is the 
robust control rate used to reduce the effects of system 
uncertainties. 

Combining (16) and (17) yields (18): 
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According to (18), the selection of α2 should meet the 
following conditions to ensure the system stability: 
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where ε1 is an arbitrarily small positive parameter which 
represents the attenuation level of system uncertainties. 

Therefore, the robust control rate α2 satisfies (19) can be 
chosen as 
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Proof: Combining (8), (19) and (20) yields (21): 
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Step 3: Select the third Lyapunov function V3 as follows 
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By differentiating z3, 3z can be obtained below 
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By combining (22) and (23), 3V  is derived as follows 
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According to (25), the expression of control output uq is 
expressed as follows 
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where k3 is an adjustable positive parameter, uqa is the model 

 
Fig. 2.  Overall control block diagram of RBC with NDOB 
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compensation control, uqr is the robust control rate. 
By combining (25) and (26), (27) can be obtained as follows 

3 3 2 2 3 4

2
3 2 3 3 3 4 1 2

|

| | ( )

equal

equal equal qr d

V V g x z z

V V k z z g u f eϕ

 = −


= − + + −

 

        (27) 

Similarly, the selection of uqr should meet the following 
conditions 
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where ε2, ε2r are arbitrarily small positive parameters. 
Therefore, the robust control rate uqr can be chosen as 

follows 
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Proof: By combining (6), (8), (28) and (29), (30) can be derived 
as follows 
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Step 4: Select the last Lyapunov function V4 as follows 
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By differentiating (30), 4V  can be obtained as follows 
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Similarly, according to (31), the control output ud is 
expressed as follows 
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where k4 is an adjustable positive parameter, uda is the model 
compensation control to achieve tracking control, udr is the 
robust control rate. 

By combining (32) and (33), (34) is got as follows 
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Similarly, udr should meet the following conditions: 

4 4

4 4 2 3

0

( )
dr

dr

z g u

z g u f ε
≤

 + ≤
                         (35) 

where ε3 is an arbitrarily small positive parameter. 
Therefore, the robust control rate udr can be chosen as 

follows 
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Proof: Combined (6), (35) and (36), (37) can be derived as 
follows 
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C. Stability Analysis 

Construct a Lyapunov function V as follows  
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The solution of differential equation of (39) can be expressed 
as follows 

2 2( ) (0) (1 )
2

kt ktV t e V e
k

ε− −≤ + −                (41) 

According to (41), it can be determined that the closed-loop 
control system is asymptotically stable, and its exponential 
convergence rate is k, and the final convergence error e satisfies 
following formula 
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ε
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Therefore, the convergence speed and error of the control 
system can be changed by adjusting the parameters ε and k. 

IV. EXPERIMENTAL VERIFICATION 

In this section, a Speed_goat control platform is adopted to 
drive a 750W surface mounted PMSM to verify the 
effectiveness of the proposed control strategy. In order to test 
the performance under different conditions, the external load 
will be given by the magnetic powder brake, heavy hammer and 
DC load motor, respectively. The experimental platform and 
parameters of PMSM are shown in Fig. 4 and TABLE I, 
respectively. The DC bus voltage is 60V and the IGBT 
switching frequency is 10kHz. The speed measurement uses the 
M/T hybrid measurement method integrated in Speed_goat 
control platform. In addition, a 2500-lines incremental encoder 
has been applied to achieve an accurate measurement of speed, 
which cooperates with a low-pass filter for the sake of 
suppressing high frequency noise. The performance of the 
proposed control in this paper is compared with the optimal PI 
control with and without NDOB. The latter two control 
methods are briefly introduced in the Appendix. The related 
parameters of the three control methods are given below 

(1) RBC with NDOB: the control gain of the NDOB is 
selected as l = 200; the boundary value h1, h2 of the uncertain
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(a) 

(b) 

Fig. 3.  Estimated combined moment of inertia of PMSM under different 
conditions. (a) bare rotor, rotor with coupling and with magnetic powder 
brake, respectively. (b) rotor with a flywheel and with a DC load motor, 
respectively 

 
(a) 

 
(c) 

 
(b) 

 
(d) 

Fig. 5.  Comparative experimental tests with an addition of external load TL=1N·m at t=1.5s. (a) rotor position. (b) rotor speed. (c) q-axis current. (d) rotor position 
error 

 
Fig. 4.  Speedgoat controller based PMSM test rig. 

TABLE I 
PARAMETERS OF PMSM 

Symbol PMSM parameters Value 

UN rated voltage 220V 
IN rated current 3A 

PN rated power 750W 
TN rated torque 2.4N·m 
nN rated speed 3000r/min 
Rs stator resistance 1.86Ω 
L dq-axis inductances 2.8mH 
ψf permanent magnet flux linkage 0.109Wb 
Pn number of pole pairs 4 
J moment of inertia of bare rotor 2.95×10-4kg·m2 
B viscous friction coefficient 0.001 
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variable f1, f2 is set as h1 = h2=20; the boundary value ξ of the 
disturbance error is set to ξ = 10; RBC control parameters are 
set as k1 = 50, k2 = 100, k3 = 500, k4 = 200, ε1 = 100, ε2 = 200, ε2r 
= 0.01, ε3 = 0.01. 

(2) Optimal PI: according to the optimal PI control method  
introduced in the Appendix, the control parameters are set to ωi 
= 2π×600rad/s, ωs = 2π×30rad/s, ωp = 2π×6 rad/s. 

(3) Optimal PI with NDOB: this control method is introduced 
in the Appendix, and its PI control constants and NDOB gain 
are the same as hereinbefore. 

To optimize the performance of PI control, a moment of 
inertia identification experiment of PMSM is carried out. The 
identification method is also introduced in the Appendix, and 
the experimental results are shown in Fig. 3. The moment of 
inertia of bare rotor, rotor with coupling, rotor with magnetic 
powder brake, rotor with flywheel and rotor with DC load 
motor are 3.11×10-4kg·m2, 5.55×10-4kg·m2, 7.2×10-4kg·m2, 
3.28×10-3kg·m2 and 6.63×10-3kg·m2, respectively. 

(1) Tracking the slope change of rotor position: In the 
comparative experiment, the PMSM is loaded by a DC load 

motor. As shown in Fig. 5, the reference rotor position of 
PMSM is θr = 10·(t-0.5) rad at t = 0.5s and the motor is loaded 
with 1N·m at t = 1.5s. As can be seen from Fig. 5(a) that the 
proposed method has less fluctuation during the position 
tracking. It can be seen that the proposed method has high 
tracking accuracy and can quickly converge to a given position 
even if there is an abrupt change in the external load as shown 
in Fig. 5(d). Fig. 8 (a) is the observed torque of NDOB, which 
settles down to 0 N·m between 0 and 0.5s. Further, it fluctuates 
around 0.05 N·m from 0.5s to 1.5s, then after 1.5s, it fluctuates 
around 1.05 N·m. It is obvious that the observed result of the 
NDON algorithm can quickly converge to the true value within 
0.06s even there is a load change. 

(2) Tacking the sinusoidal change of rotor position: As 
shown in Figs. 6 and 7, the comparative experiments with and 
without external load torque (1N·m), have the same sinusoidal 
input θr=3·sin(2π·t) rad. It can be seen that the proposed method 
has smoother speed and current responses compared to the 
other two control schemes. Fig. 6(d) and Fig. 7(d) show that at 
no load condition, the dynamic position errors |eθ| (eθ = θr-θm) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6.  Sinusoidal position tracking test at no load condition. (a) rotor position. 
(b) rotor speed. (c) q-axis current. (d) rotor position error. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7.  Sinusoidal position tracking in loaded condition. (a) rotor position. 
(b) rotor speed. (c) q-axis current. (d) rotor position error. 



LI et al: ROBUST POSITION ANTI-INTERFERENCE CONTROL FOR PMSM SERVO SYSTEM WITH UNCERTAIN DISTURBANCE 157 

of three control methods (PI, PI+NDOB and RBC+NDOB) are 
less than 0.02rad, 0.025rad and 0.01rad, respectively, while in 
loaded condition TL = 1N·m, |eθ| is less than 0.2rad, 0.15rad and 
0.05rad, respectively. Therefore, the proposed method has less 
position tracking errors at both no load and loaded conditions. 
Fig. 8(b) is the corresponding observed torque result of NDOB 
under load (1 N·m). It can be seen from the results of Fig. 8 that 
the proposed NDOB shows faster convergence speed and 
accuracy. According to the comparison tests shown in Figs. 5-7, 

it can be seen that the proposed method is robust to the variation 
of the load’s moment of inertia. 
 (3) Holding the rotor position: In this experiment, the PMSM 
rotor will be held to the position of zero rad and connected to a 
flywheel with a heavy hammer and the weight will be removed 
at t = 0.5s. The equivalent load of the PMSM after the addition 
of a heavy hammer is about TL = 0.88N·m. From the results 
shown in Fig. 9-11, it can be seen that the RBC+NDOB and 
PI+NDOB control have a small position change once the heavy 
hammer is removed. Furthermore, as can be seen in Fig. 12, 
which is the curve of integrated absolute position error (IAPE), 
it shows that the RBC+NDOB and PI+NDOB control have 
better anti-interference (when t=1s, IAPE of RBC+NDOB is 
3.56×10-4rad·s, IAPE of PI+NDOB is 3.66×10-4rad·s and IAPE 
of PI is 10.46×10-4rad·s). Besides, since the estimation error of 
the NDOB may cause an over-compensation or 
under-compensation in q-axis current, the employed RBC will 
eliminate this kind of influence to achieve a better control 
performance.  

Fig. 12.  Curve of integral absolute position error (IAPE = 
0

( )
t
e dθ τ τ ) 

 
(a) 

 
(b) 

Fig. 8.  Observed torque of NDOB. (a) suddenly add a load of 1N·m at t = 1.5s. (b) square wave load with 1N·m 

 
(a) 

 
(b) 

Fig. 9.  Curve of PMSM rotor lock performance (RBC with NDOB). (a) rotor position. (b) q-axis current 

 
(a) 

 
(b) 

Fig. 10.  Curve of PMSM rotor lock performance (PI control with NDOB). (a) rotor position. (b) q-axis current 

 
(a) 

 
(b) 

Fig. 11.  Curve of PMSM rotor lock performance (PI control). (a) rotor position. (b) q-axis current 
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According to above experiments, it is proved that the 
proposed method has a high position tracking accuracy and a 
good anti-interference performance. 

V. CONCLUSION 

In this paper, a RBC with NDOB is proposed with 
considering the influence of uncertain system disturbances such 
as the parameter uncertainties and load disturbance. The 
proposed method estimates the lumped unknown terms by the 
NDOB and can effectively improves the robustness of the 
system through the application of RBC. Its tracking 
performance and robustness are analyzed and design according 
to the Lyapunov theorem, which ensures that the proposed 
control method is asymptotically stable. Further comparative 
experiment tests on a prototype PMSM servo system indicate 
that the proposed method has a high position tracking 
performance and good robustness against unknown parameters 
and external load disturbances. A further consideration on the 
resonance suppression and anti-interference control of two 
mass servo systems will be reported in future works. 

APPENDIX 

A. Optimal PI Control 

According to the methods described in [23] and [24], the 
expression of the optimal PI control as follows, and its control 
block diagram is shown in Fig. 13. 
1) PI control expression for current regulator 

*

*

( )( )

( )( )

id
d pd d d

iq
q pq q q

k
u k i i

s
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u k i i
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 = + −

 = + −

                       (43) 

where kpd, kpq are the proportional gains; kid, kiq are the integral 
gains.  

In this paper, Ld =Lq = L, so the PI parameter of the current 
regulator is given by the following expression 
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ω
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                          (44) 

where ωi is desired bandwidth of current regulator. 
2) PI control expression for speed regulator 

* *( )( )is
q ps m m

k
i k

s
ω ω= + −                    (45) 

where kps and kis are the proportional gains and the integral 
gains, their values are given by the following expression  

 
Fig. 13.  Block diagram of the optimal PI 
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where ωs is desired bandwidth of speed regulator.  
3) PI control expression for position regulator 

* * *( )m pp m m mk sω θ θ θ= − +                   (47) 

where kpp is the proportional gain which is as follows 

pp pk ω=                                 (48) 

where ωp is desired bandwidth of position regulator.  
It is obvious from (44)-(48) that PI constants of each 

regulator are related to PMSM parameters such as dq-axis 
inductances, the stator resistance, the moment of inertia of rotor 
and the friction coefficient. In servo control system, different 
control objects correspond to different moments of inertia and 
identifying the moment of inertia before designing the speed 
loop control is needed. Therefore, this paper mainly considers 
the influence of the moment of inertia to the optimized PI.  

A moment of inertia identification is proposed to optimize 
speed regulator in [23]. The core of this method is to give a 
sinusoidal current on the q-axis to produce a sinusoidal speed at 
steady state, and the moment of inertia can be calculated by 
finding the zero crossing of the speed. The expression of this 
method is as follows 

( )01.5 sinn f qp h

p h

P i t
J

ψ ω
ω ω

=                          (49) 

where iqp, ωh are the magnitude and angular frequency of the 
given q-axis sinusoidal current; t0 represents the time point 
when the speed is zero; ωp is the magnitude of sinusoidal 
angular speed at steady state. 

B. Optimal PI Control with NDOB 

According to (3), the expression of iq is shown as follows and 
its control block diagram is shown in Fig. 14 

2

1 1

n m m
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d
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θ ω ω
θ θ

+
= −
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                          (50) 

* *

1

ˆ
( )( )is

q qPI qD ps m m
n

k d
i i i k

s
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θ
= − = + − −           (51) 

where iqPI, iqD are the speed PI control output and compensation 
current. 
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