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1 Abstract—Inter-turn fault is a serious stator winding 
short-circuit fault of permanent magnet synchronous machine 
(PMSM). Once it occurs, it produces a huge short-circuit 
current that poses a great risk to the safe operation of PMSM. 
Thus, an inter-turn short-circuit fault (ITSCF) diagnosis 
method based on high frequency (HF) voltage residual is 
proposed in this paper with proper HF signal injection. First, 
the analytical models of PMSM after the ITSCF are deduced. 
Based on the model, the voltage residual at low frequency (LF) 
and HF can be obtained. It is revealed that the HF voltage 
residual has a stronger ITSCF detection capability compared 
to the LF voltage residual. To obtain optimal fault signature, a 
3-phase symmetrical HF voltage is injected into the machine 
drive system, and the HF voltage residuals are extracted. The 
fault indicator is defined as the standard deviation of the 
3-phase HF voltage residuals. The effectiveness of the 
proposed ITSCF diagnosis method is verified by experiments 
on a triple 3-phase PMSM. It is worth noting that no extra 
hardware equipment is required to implement the proposed 
method. 
 

Index Terms—Inter-turn short-circuit fault (ITSCF), 
Permanent magnet synchronous machine (PMSM), High 
frequency (HF) injection, Voltage residual, Fault diagnosis.  
 

I. INTRODUCTION 

MSM are widely used in military fields, transportation 
electrification and industrial equipment, which require a 

high level of reliability for the machine drive system [1]-[3]. 
The common faults of PMSM can be divided into mechanical 
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faults and electrical faults, among which stator-related faults 
account for about 21% of total failures [4]. The insulation of the 
stator winding is prone to degradation due to excessive heat, 
vibration and chemical corrosion [5]. Once the insulation is 
damaged, it may develop into inter-turn fault, phase-to-phase 
fault and phase-to-ground fault [6], and inter-turn fault is the 
worst fault which attracts widespread concern. ITSCF usually 
occurs between several turns of the phase winding, resulting in 
low impedance of the fault turns. Therefore, a fantastic 
short-circuit current will be caused by inter-turn fault, which 
usually reaches ten times of the rated value [7]. The 
short-circuit current will generate a considerable amount of 
heat to further damage the winding insulation, causing a vicious 
cycle until completely breakdown. To solve the problem, 
prominently efforts have been invested in fault-tolerant 
machine design [8]-[10], fault-tolerant strategies [11], [12] and 
fault detection methods [13]-[18]. At present, it is still an 
irreplaceable protective measure to adopt an appropriate fault 
diagnosis method to alarm faults and take mitigation measures. 

The insulation monitoring and fault diagnosis of stator 
winding have been widely studied by researchers. As a 
non-invasive fault detection method, machine current signal 
analysis (MCSA) [13], [14] achieves ITSCF detection by 
analyzing the spectrum of machine current and identifying the 
spectrum signal related to the fault. However, the measured 
signal is easily influenced by the transient process of the 
machine, and it is difficult to achieve reliable detection in the 
actual system. In [15]-[17], the zero-sequence voltage and 
negative sequence voltage were studied to obtain the fault 
signature. While these methods can achieve good detection, the 
measurement of voltage signal requires adding voltage sensors. 
Besides analyzing the signal directly, the model-based 
diagnosis method is also employed. In [18], [19], the second 
harmonic of current residual and voltage residual is used to 
detect ITSCF. Unlike directly measuring the signal, the 
model-based method uses the difference between the reference 
signal and the estimated signal to obtain the residual caused by 
the fault. Since both the reference signal and the estimated 
signal are both affected by the ITSCF, the fault signatures of the 
model-based method are enhanced. 

 Due to the inter-turn short-circuit that occurs inside the phase 
winding, a weak fault signal will be generated, especially when 
only one single-turn short-circuit. It is revealed in [20] that 
single-turn fault generate the largest fault current with weakest 
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featured harmonics. The above-mentioned LF signal-based 
methods are difficult to detect minor ITSCF. Inspired by rotor 
position sensorless technology, HF injection strategy has been 
employed for fault detection. Currently, HF injection methods 
can be divided into HF voltage injection and HF current 
injection. In [21], [22], the variations of zero-sequence voltage 
and phase voltage after HF current injection are used as fault 
characteristics to detect ITSCF. Nevertheless, the measurement 
of voltage signals typically requires voltage sensors. For HF 
voltage injection, it can be divided into two main types. One is 
to use the sideband harmonics of PWM as the natural HF 
voltage source and realize ITSCF diagnosis through the change 
of 3-phase HF ripple currents before and after the fault [23], 
[24]. Generally, the sideband harmonics at twice the PWM 
switching frequency are used, which exceeds the sampling 
frequency of common machine drive system and additional 
hardware circuits are still needed to process the HF current 
signals. The other approach is to inject a specially defined HF 
voltage signal, and 3-phase HF current is then utilized as the 
fault indictor [25], [26]. However, HF current is not a reliable 
fault indicator, particularly when the magnitude of the injected 
signal is not high enough.  
 By combining the advantages of model-based method and 
HF injection method, this paper proposes an ITSCF detection 
method based on HF voltage residual without the addition of 
hardware equipment. The machine drive system is injected with 
3-phase symmetrical HF voltage, which causes HF signals to 
appear in the reference voltage and estimated voltage. Under 
normal operating conditions, the HF reference voltage is 
similar to the HF estimated voltage. However, in the event of 
ITSCF, there is a significant deviation. The standard deviation 
of the 3-phase HF voltage residuals is used as the fault indicator 
to reflect the degree of dispersion. The effectiveness and 
robustness of the proposed method are demonstrated through 
extensive experimental tests on a triple 3-phase PMSM. The 
main contributions are listed as follows: 

1)    It is revealed that the fault diagnosis methods based on 
voltage residuals can be enhanced under HF.  

2)    The detection of ITSCF is achieved by using HF voltage 
signal without adding voltage sensor and hardware circuit. 

3)    The diagnosis method has strong robustness, which is 
not affected by load and parameter changes. 

II. FAULT MODEL 

ITSCF altered the structure of the stator winding, making the 
original analytical model unavailable. In order to extract fault 
symptoms, the governing equations of PMSM models under 
inter-turn fault conditions are analyzed. Due to the 
enhancement of fault signatures under HF, the fault model 
under HF has also been derived. 

When inter-turn fault occurs, the winding can be divided into 
healthy turns and fault turns as shown in Fig. 1. The contact 
resistance of the fault turn is denoted as fR . The definitions of 

resistance, inductance and back electromotive force (EMF) for 
healthy and faulty turns have also been indicated. Based on the 
stator winding after ITSCF, the model can be expressed as (1), 

where ahu  and afu denote the voltages of healthy and faulty 

turns of phase A, bnu and cnu denote the voltages of phase B and 

phase C, fi denotes the fault current, and ai , bi  and ci denote the 

phase current. 
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 The percentage of the number of short-circuit turns to total 
turns of one phase is typically defined as μ. According to [27], 
[28], the following relationship between machine parameters 
and fault turns can be obtained.  
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Combing (1), (2) and an ah afu u u  , the 3-phase voltage 

equation after the ITSCF can be derived as: 
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Fig. 1.  Stator winding after ITSCF. 
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Fig. 2.  The control diagram of PM machine with HF voltage injection. 

It can be observed that the asymmetric voltage components 
appear in the 3-phase voltages after the ITSCF. By comparing 
the 3-phase voltage equations before and after the fault, the 
3-phase voltage residuals can be expressed as (4). When it is 
converted to the dq-axis frame, the second harmonic of dq-axis 
current and voltage can be detected, which is often used to 
identify ITSCF under LF [19], [20]. 
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where anu , bnu , cnu are phase voltage residuals.  

The voltage residuals are primarily dependent on the 
machine parameters, the ratio of the faulty turns, and the 
operating state of the machine. Due to the fact that the fault 
current is positively correlated with speed and load of the 
machine, it can be seen that the voltage residual is relatively 
small when the machine operates under low speed and light 
load conditions, which is also the difficulty of ITSCF detection.  

To achieve significant diagnostic results, the differential 
item of (4) is used to amplify the voltage residuals. If a 3-phase 
symmetrical HF voltage is injected into the machine drive 
system, as shown in Fig. 2, HF component will appear in the 
fault current and the voltage residuals will be amplified due to 
the increased dif/dt. To ensure the balance of the system in 
healthy state, a 3-phase symmetrical HF voltage is injected into 
the system, as shown in (5). 
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where ahu , bhu , chu are the 3-phase HF voltage, respectively; 

hu and h  are HF voltage amplitude and phase angle, 

respectively. 
HF phase current and phase voltage are generated due to the 

injection of HF voltage [26], thus, there will be HF component 
in the short-circuit current at the injection frequency when 
ITSCF occurs. The fault current after the fault can be written as 
(6). It can be seen that there are fundamental frequency 
component and HF component at the injection frequency in 
fault current, which leads to voltage residuals at both LF and 
HF. Focusing on HF component only, the resistance and 
variations in inductance are relatively small compared to the 
variations in fault current, the voltage residual under HF can be 
simplified as (7). 

    1 1f f h fh h hi I sin I sin        (6) 

where 1fI  and fI are the fundamental frequency and the HF 

amplitude at the injection frequency, respectively; 1 and h  

are the phase angle of the short-circuit current. 
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It can be seen that the HF component at the injection 
frequency is present in the 3-phase voltage residuals, and the 
HF voltage residual of the fault phase is the most prominent. 
The HF voltage residuals of the healthy phases are relatively 
minor, indicating that the differences of 3-phase HF voltage 
residuals can be utilized to detect ITSCF. Moreover, the HF 
voltage residuals of healthy phases may differ due to the fact 
that the relationship between machine parameters and fault 
turns, as mentioned in (2), is not strictly applicable for 
machines with intricate windings [28]. Therefore, the 
differences in 3-phase HF voltage residuals may have more 
significance than what has been theoretically derived. 
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Fig. 3.  3-phase inverter circuit. 
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III. FAULT DIAGNOSIS 

A. HF Voltage Residual Estimation 

Although the HF voltage injected into the machine control 
system is 3-phase symmetrical, the voltage applied to the stator 
windings may be asymmetrical due to the loss of symmetry in 
the 3-phase windings under ITSCF conditions. Therefore, 
the reference voltage still needs to be required in real-time 
instead of simply using the HF voltage injected to the system. 
To save hardware costs and avoid adding voltage sensors, this 
paper estimates the reference voltage using the 
neutral-to-ground voltage of the bridge arm. According to the 
3-phase inverter circuit, as shown in Fig. 3, the 
neutral-to-ground voltage of the bridge arm can be written as: 
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where uag, ubg, ucg, are the midpoint-to-ground voltages of the 
bridge arm, respectively; s1, s3, s5 are the driving signal of the 
upper arm power devices, respectively; udc is the dc-link 
voltage. 

However, in actual machine drive systems, the switching 
frequency of the driving signal is the same as the sampling 
frequency, making it difficult to directly obtain it from the 
control system. To solve this problem, this article uses the duty 
cycle to obtain midpoint-to-ground voltages of the bridge arm, 
which can be written as: 
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where Da, Db, Dc are the duty cycle of the upper arm power 
devices, respectively. 

In addition, the following relationship exists in the 3-phase 
inverter circuit: 
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where ngu  is the zero-sequence voltage. 

 Combined with (9), (10), the reference voltage of the 3-phase 
windings can be calculated for both healthy and faulty 
conditions. When the machine works in healthy conditions, the 
sum of 3-phase voltages is basically zero, and the 3-phase 

reference voltages H
an _ ru , H

bn _ ru , H
cn _ ru  can be expressed as (11). 

However, when the machine ITSCF occurs, the 3-phase 
windings are no longer symmetrical, and the sum of 3-phase 
voltages can be represented by (12). Based on (11) and (12), the 

3-phase reference voltages after the ITSCF TF
an _ ru , TF

bn _ ru , TF
cn _ ru  

can be deduced as (13). 
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where lsL  is the leakage inductance. 
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 Compared with the 3-phase voltages in healthy mode, there 
is an additional zero-sequence voltage component in the 
3-phase reference voltages after the ITSCF. Note that the 
voltage offset caused by the zero-sequence voltage is the same 
in 3-phase windings. Therefore, the voltage offset can be 
ignored and the 3-phase voltages before and after the ITSCF 
can be calculated using (10). Although this will cause a certain 
error after ITSCF, the same error exists in the three phases and 
will not cause extra imbalance between the 3-phase windings. 

When estimating the phase voltage of PMSM, commonly 
used methods include table lookup and direct calculation. The 
table lookup method requires obtaining the voltage of machine 
through finite element simulation or experiment testing and 
performing interpolation estimation. However, this approach 
necessitates a substantial amount of simulation or experimental 
data, which is not suitable for the diagnosis of unknown faults. 
Therefore, this paper employs the direct calculation method to 
estimate the phase voltage. Although the calculation of 
differential items can be susceptible to noise, the filtering 
measures required for extracting the HF component can offset 
this impact. The dq-axis estimated voltage d _ eu , q _ eu can be 

expressed as follows: 
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where ud and ud are the dq-axis voltages, respectively. 
According to reverse Park transformation, the 3-phase 

estimated voltages an _ eu , bn _ eu , cn _ eu  can be written as: 
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Traditional band pass filters face difficulty in extracting a 
single frequency, and hence the frequency tracking algorithm 
proposed in  [15] is utilized to extract the HF amplitude of both 
the reference voltage and estimated voltage at the injection 
frequency, as shown in Fig. 4. The amplitude of the reference 

voltage denote as HF
an _ rU , HF

bn _ rU , and the amplitude of the 

estimated voltage denote as HF
an _ eU , HF

bn _ eU , HF
cn _ eU . Based on the 
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3-phase HF reference voltages and 3-phase HF estimated 

voltages, the 3-phase HF voltage residuals HF
anU , HF

bnU , 
HF
cnU  can be expressed as: 
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The definition of the fault indicator should ensure that 
misdiagnosis does not occur in the healthy state and that a 
prompt warning can be given in the fault state. Since the 
3-phase voltage residuals caused by errors in the healthy 
condition are basically the same, which will be analyzed in the 
next section. To represent the dispersion degree of 3-phase HF 
voltage residuals after the fault, the fault indicator is defined as 
the standard deviation of the HF voltage, which can be written 
as: 
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Fig. 4.  HF component extraction strategy. 
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Fig. 5.  Inter-turn fault detection strategy. 

When the machine operates normally, the HF components of 
the reference phase voltages are essentially the same as the HF 
components of the estimated phase voltages. Hence, the HF 
voltage residuals and the fault indicator are basically zero. 
After the fault, the HF components of the reference phase 

voltages will deviate from the HF components of the estimated 
phase voltages due to the presence of voltage residuals. As a 
result, the HF voltage residuals and the fault indicator increase 
rapidly, clearly indicating the occurrence of ITSCF. 

Based on the analysis above, the flowchart of the ITSCF 
diagnosis based on HF voltage residual is presented in Fig. 5. 
Initially, the reference voltage signals are computed using the 
duty cycle of the power device, and the actual voltage signals 
are estimated using the voltage equation. Then, the HF 
components of the both reference and the actual voltage signals 
are extracted. Finally, the HF voltage residuals are calculated to 
achieve ITSCF diagnosis. 

B. Parameter Variation Analysis 

It can be observed that HF voltage residuals are significantly 
related to the machine parameters that may vary under different 
operating conditions. For instance, the resistance of stator 
winding may rise as the temperature increases, while the 
inductance may decrease as a result of magnetic circuit 
saturation. Therefore, it is crucial to examine how changes in 
machine parameters impact the diagnostic method. Under HF 
conditions, the ratio of resistance voltage and back EMF is 
relatively insignificant and can be neglected. As a result, only 
the influence of dq-axis inductances is taken into consideration. 
When the dq-axis inductances vary to d dL L  , q qL L  , the 

dq-axis voltage equations can be expressed as: 
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where dL  and qL are the variations of dq-axis inductances, 

respectively. 
The residual of dq-axis voltages caused by parameter 

changes can be expressed as: 
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 (21) 

To analyze the influence of dq-axis inductances on 3-phase 
voltages, (20) is transformed into 3-phase frame, which can be 
written as: 

     T T

an bn cn d du u u u u, , ,     T  (22) 

 While changes in parameter can result in residual changes in 
3-phase voltages, the 3-phase voltage residuals remain 
symmetrical. Therefore, the amplitudes of 3-phase HF voltage 
residuals are still equal. As per (18), it will not trigger the fault 
indicator signal. 

C. Error Analysis 

As the duty cycle is the proportion of the power device 
on-time to the switching cycle, (9) yields the average value of 
the midpoint-to-ground voltage in a switching cycle. Unlike the 
driving signal, the duty cycle and phase current only maintain 
the corresponding relationship within one switching period, 
which implies that the reference voltage and the actual voltage 
do not always correspond. 

Furthermore, inaccuracies in reference voltage and estimated 
voltage can arise due to non-ideal factors such as the switching 



FENG et al: RESEARCH ON INTER-TURN SHORT-CIRCUIT FAULT DIAGNOSIS METHOD BASED ON HIGH FREQUENCY VOLTAGE  261 
RESIDUAL FOR PMSM 

characteristic of power devices and the sampling delay of 
current sensors. However, the errors caused by these effects on 
3-phase system are essentially identical under normal operating 
conditions. Thus, there might be 3-phase HF voltage residuals 
with the same amplitude under normal conditions. Based on the 
definition of the fault indicator, the HF voltage residual caused 
by errors will not result in misdiagnosis. 

D. Transient Analysis  

According to the above analysis, the HF current will 
generated due to the injection of HF voltage. However, owing 
to the low control bandwidth of the current controller, the HF 
current is not involved in the control process of the system, 
which means that the HF reference voltage is generated solely 
by the injection signal and is not affected by the control system. 
Furthermore, the fault diagnosis method proposed in this paper 
uses phase current to calculate estimated voltages, but only the 
3-phase HF estimated voltages are required, which are 
generated by 3-phase HF current and independent of the 
fundamental frequency current. Therefore, despite abruptly 
changes in the fundamental frequency signal during the 
transient process of the machine, the HF voltage residuals 
remain basically constant. 

E. Detection Region Analysis 

The proposed method is not significantly restricted by the 
operating frequency of the machine since the injected signal 
frequency is much higher. However, it should be considered 
that when the machine operates at high speeds in the 
flux-weakening region, the amplitude of the injected HF 
voltage may be affected by various factors such as the DC-link 
voltage and machine EMF. This means that the proposed 
method may be impacted when the machine operates at limited 
speeds. Nevertheless, this impact is typically negligible since 
the amplitude of the injected HF voltage is usually kept low to 
minimize the HF noise caused by the injection. Additionally, it 
is worth noting that the HF injection method is generally 
applied at low speeds of the machine, as the fundamental 
frequency fault characteristics are already prominent at high 
speeds [18], [19]. Therefore, the issues encountered by the HF 
injection-based fault diagnosis method in the flux-weakening 
region can be largely ignored, and the proposed method can 
adequately meet the health monitoring needs of the machine 
during operation. 

IV. EXPERIMENTAL RESULTS 

This paper employs a triple 3-phase PMSM to validate the 
proposed method, as shown in Fig. 6. The phase winding of the 
machine consists of two coils that are connected in series with 
30° phase shift between them. The specifications of the 
machine are listed in Table I. In comparison with the traditional 
PMSM, the triple 3-phase PMSM has three independent 
3-phase winding modules and possesses stronger fault-tolerant 
capability. The experiment setup of the triple 3-phase PMSM is 
illustrated in Fig. 7, which mainly comprises the triple 3-phase 
PMSM, dyno and control circuit. Both the switching frequency 
and sampling frequency are set to 10 kHz. The PMSM is linked 
to the dyno via a torque transducer and operates in current loop 

mode. Additionally, the ITSCF is accomplished by introducing 
two taps on one turn of the phase B winding, as depicted in Fig. 
8. During the experiment, the relay switch is controlled to 
achieve the transition between the healthy and inter-turn fault 
states.  

TABLE I 
MACHINE SPECIFICATIONS  

Specification Symbol Value 

Rated speed Nn  2000 rpm 

Rated power P 5 kW 

Rated current NI  67 A 

PM flux linkage m  0.015 Wb 

d-axis inductance dL  0.29 mH 

q-axis inductance qL  0.92 mH 

Stator resistance sR  0.022 Ω 

Pair of poles rp  3 

Turn number of each coil N 8 

Number of faulted turns  fN  1 
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Fig. 6.  Triple 3-phase PMSM. 
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Fig. 7.  Experimental setup of triple 3-phase PMSM. 
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Fig. 8.  Schematic diagram of ITSCF. 
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A. Fault Diagnosis 

A high fault current is produced in the short-circuit winding 
when ITSCF occurs in the machine. Fig. 9 presents the fault 
current when the machine operates at 500 rpm with 10 A load. 
It is apparent that the fault current has attained the rated value. 
It will be expected to be several times of the rated value if 
operation at higher speed with larger current. To ensure the 
safety of the machine and its drive system, this paper only 
conducted tests at or below under half of the rated state. 
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Fig. 9.  Fault current waveform of machine at 500 rpm with 10 A load. 

To achieve an optimal diagnostic effect, a 1200 Hz HF 
voltage is injected into the control system. Taking the fault 
phase as an example, Fig. 10 and Fig. 11 demonstrate the FFT 
analysis results of the reference voltage and estimated voltage 
before and after the fault, respectively. In healthy conditions, 
there is a certain difference between the HF components of 
reference voltages and the estimated voltages, which may be 
caused by sampling delays and parameter mismatches. 
However, the residuals of the three phases are essentially the 
same. After the fault occurs, there is a significant difference 
between the reference voltage and estimated voltage of the 
three phases, with the fault phase exhibiting the largest voltage 
residual. It should be noted that the reference voltage also 
changed after the turn fault, which is caused by the shift of the 
neutral point voltage.  
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Fig. 10.  FFT analysis results of reference voltage before and after the fault. (a) 
Before the fault. (b) After the fault. 
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Fig. 11.  FFT analysis results of estimated voltage before and after the fault. (a) 
Before the fault. (b) After the fault. 

Fig. 12 presents the experimental results of the ITSCF that 
occurred while the machine operates at the operating point of 
500 rpm with 10 A load. It is apparent that the 3-phase current 
exhibits only minor changes before and after the fault, making 
it challenging to detect the fault directly. However, there is a 
significant difference in the residual of the 3-phase HF voltage 
before and after the fault, which can be utilized to detect the 
ITSCF. Additionally, the voltage residual amplitude of the fault 
phase is the largest and can be utilized to locate the position of 
the fault. 
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Fig. 12.  Fault diagnosis at 500 rpm with 10 A load. (a) 3-phase currents. (b) 
Phase A HF voltage. (c) Phase B HF voltage. (d) Phase C HF voltage. (e) Fault 
indicator. 

Fig. 13 displays the waveform of dq-axis current and 
reference voltage before and after the fault. It is evident that the 
dq-axis current and reference voltage can be considered as a 
direct current before the fault, and there is a small second 
harmonic after the fault. Fig. 14 illustrates the waveform of 
dq-axis voltage residual. Similar to dq-axis current and 
reference voltage, the second harmonic of voltage residual also 
experiences a slight increase after the fault. However, the 
second harmonic content is relatively low and varies with the 
running state of the machine, which makes it unsuitable as a 
stable fault indicator. 

Similarly, the test is also conducted under the condition that 
the machine operates at 1000 rpm with 30 A load, as shown in  
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Fig. 13. The waveform of dq-axis current and reference voltage. (a) dq-axis 
current. (b) dq-axis reference voltage. 
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Fig. 15. It is observed that after ITSCF, the 3-phase HF voltage 
residuals still change rapidly, causing the fault indicator to 
quickly rise, indicating the presence of ITSCF. The above 
results demonstrated that the method proposed in this paper can 
be applied under different operating conditions of the machine. 
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Fig. 14.  The waveform of dq-axis voltage residual. (a) dq-axis voltage residual. 
(b) The second harmonic of dq-axis voltage residual. 
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Fig. 15.  Fault diagnosis at 1000 rpm with 30 A load. (a) 3-phase currents (b) 
HF voltage residual. (c) Fault indicator. 

B. Transient Process 

The variation of the fault indicator in the transient process of 
the machine is a critical index to evaluate the fault diagnosis 
method. Fig. 16 presents the experimental results of machine 
loading at 1000 rpm. The results demonstrate that the 3-phase 
currents undergo transient changes from 10 A to 30 A, but the 
3-phase HF voltage residuals of the machine remain almost 
constant during loading. Hence, the fault diagnosis method 
proposed in this paper is minimally affected by the transient 
process of the machine, which is also a significant advantage 
over the LF signal-based diagnosis method. 

C. Parameter Mismatch 

As a model-based fault diagnosis method, the influence of 
the parameters is also verified when the machine works at 1000 
rpm with 10 A load, as shown in Fig. 17. In the experiment, the 
d-axis inductance utilized in the calculations is reduced by 
20%.  
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Fig. 16.  The loading waveform of the machine at 1000 rpm. (a) 3-phase 
currents. (b) HF voltage residual. (c) Fault indicator. 

Compared with Fig. 11, it can be observed that the amplitude of 
the 3-phase HF voltage residuals changes slightly in the healthy 
condition. Although the amplitudes of the 3-phase HF voltage 
residuals are affected by the machine parameters, it can be seen 
that the 3-phase HF voltage residuals are still essentially equal, 
which will not lead to misdiagnosis. After the fault, the 
amplitude of the 3-phase voltage residuals is no longer the same, 
and the diagnosis of ITSCF can still be achieved. 
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Fig. 17.  Experimental waveform of d-axis inductance reduction. (a) 3-phase 
currents. (b) HF voltage residual. (c) Fault indicator. 

V. CONCLUSION 

In this paper, an ITSCF diagnosis method based on HF 
voltage residual is proposed. The voltage residuals are analyzed 
for both HF and LF conditions. It is demonstrated that the 
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voltage residual can be enhanced under HF voltage injection. 
Extensive experiments verify the effectiveness of the proposed 
method, and the following conclusions are drawn. 

1)    The ITSCF diagnosis method based on HF voltage is 
reliable in detecting faults across all operation ranges, including 
low speed and light load conditions, which are historically the 
most challenging for inter-turn fault detection.  

2)    The HF voltage residual exhibits more pronounced fault 
signatures in contrast to conventional diagnosis methods. 

3)    The fault diagnosis method of HF voltage residual is 
highly robust, as it is not affected by the transient processes or 
parameter variations. 

Furthermore, this method shows a certain ability to 
distinguish high resistance fault, which is unattainable with 
traditional diagnosis method under LF. This will be reflected in 
future research. 
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