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1Abstract—The magnetic field generated in the air gap of 
the cage asynchronous machine and the harmonics of the 
magnetomotive forces creating that magnetic field, as well 
as the related differential leakage, attenuation, 
asynchronous parasitic torques have been discussed in 
great detail in the literature, but always separately, for a 
long time. However, systematization of the phenomenon 
still awaits. Therefore, it is worth summarizing the 
completeness of the phenomena in a single study – with a 
new approach at the same time - in order to reveal the 
relationships between them. The role of rotor slot number 
is emphasized much more than before. An existing, 
commonly used, but still impractical basic figure has been 
modified to more clearly demonstrate the response of the 
rotor for the harmonics of the stator. The need to treat 
differential leakage, asynchronous parasitic torques and 
attenuation together will be demonstrated: new formula for 
asynchronous parasitic torque is derived; the long-used 
characteristic curves for differential leakage and 
attenuation used separately so far was merged into one, 
correct curve in order to provide a correct design guide for 
the engineers. 
 

Index Terms— Asynchronous parasitic torque, Attenuation, 
Differential leakage, Squirrel cage induction motor, Winding 
harmonics.  

I. INTRODUCTION 

HE aim of the article is to summarize and mainly 
systematize the phenomena given in the title in one single 

study. Since all subject phenomena can be traced back to a 
single starting point, namely the interaction of stator harmonics 
and rotor harmonics, it is reasonable to discuss the problem in a 
unified manner. 

However, during the study of the previous works in the 
literature, it became clear that basic formulas are missing, basic 
relationships are not explored, and important effects are not 
taken into account. The goal was therefore to fill the gap, to 
supplement the missing parts and to include the entire 
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investigation in a unified framework. 
The article is a continuation of the Author's previous works 

[1], [2]. Those articles were developed mainly based on [3] as a 
very basic work. There are, of course, many valuable works that 
should also be used when dealing with such a broad topic 
[4]-[7], the other countless valuable works cannot be listed here 
for reasons of length. 

In the following study, only the winding harmonics will be 
dealt with, and only the impact on the subject phenomena will 
be analyzed, with the usual assumptions. Constant voltage and 
frequency supply will be assumed. A machine that is 
symmetrical in all aspects will be taken into consideration, with 
non-skewed rotor slots; very small slot width, without 
saturation; phenomena resulting from possible parallel and/or 
delta connection of the stator (so-called secondary armature 
reaction) will not be included. To be more precise, a machine in 
which only winding space harmonics according to (1) and (2) 
occur will be taken as subject; with no time harmonics. The 
goal is to put the fundamental findings, which are now 
published first to the point. And also those, which have been 
known before, but will now be put in a different light. It is 
intended not to distract attention by what might be important in 
itself but can only be called a question of detail now. All these 
can then be taken into account later, in a way already found in 
the literature. 

II. SYMBOLS 

R1 Stator ohmic resistance 
Xs1 - X1ϭ Stator leakage without differential leakage 
Xm Magnetizing reactance 
Xs2’ Rotor leakage 
Xϭ2’ Rotor differential leakage 
R2’ Rotor resistance reduced to stator 
Xmν=Xm∙1/ν2∙ξν

2/ξ1
2 Magnetizing reactance of harmonic ν 

Xσ2ν 
Rotor differential leakage of harmonic circuit ν not 
reduced to stator 

R2ν=R2∙ξν
2/ξ1

2 
Rotor resistance of harmonic circuit ν not reduced to 
stator 

ξ1, ξν Winding factor of fundamental wave, harmonic wave 
η2ν

2 Jordan’s coupling factor 
Δ Attenuation factor 

s, sν 
Slip of rotor to fundamental harmonic of stator, to 
harmonic ν of stator 

ν, μ Designation of stator harmonics, rotor harmonics 
ε Small positive number ε<<1 
a, b Designation of harmonics in interaction 
g1, g2 Different integers; e1 integer 
δ’ Equivalent air-gap 
p Number of pole pairs 
Z1, Z2 Stator / rotor slot number 
m Number of phases 
q1, q2’ Stator / rotor slot number per pole per phase 

Harmonics in the Squirrel Cage Induction Motor 
Analytic Calculation - Part I: Differential Leakage, 

Attenuation, Asynchronous Parasitic Torques 
G. Kovács 

T



KOVÁCS et al HARMONICS IN THE SQUIRREL CAGE INDUCTION MOTOR; ANALYTIC CALCULATION; PART I: DIFFERENTIAL  321 
 LEAKAGE, ATTENUATION, ASYNCHRONOUS PARASITIC TORQUES  

III. EQUIVALENT CIRCUIT 

If harmonics are to be taken into account, the equivalent 
circuit derived for the fundamental harmonic shall be extended 
by such circuits representing the higher harmonics and 
connected them into series. Consider Fig. 1. 

The leakage reactance of the νth harmonic circuit includes 
only the differential leakage reactance; the slot leakage and the 
end-winding leakage may be neglected [3]-[5]. 

The equivalent circuit was drawn here in a different way 
from the usual one, both from a didactic point of view and to 
bring it closer to physical background. The harmonic circuits 
were placed first and then the fundamental equivalent circuit, to 
emphasize that they are leakage from the stator's point of view. 
At the same time, those were placed above the fundamental 
harmonic magnetization reactance, vertically in line with it, to 
express that the phenomenon takes place in the air gap, contrary 
to the classical leakage definition; these fields do reach the 
rotor, but still do not contribute to the useful fundamental 
harmonic operation. 

Orders of the MMF harmonics of stator in usual cases 

 ν= 6g + 1  (1) 

where g= 0, ±1, ±2 etc., ν are the same for all machines. 
Orders of the MMF harmonics of rotor in usual cases 

 μ= e∙Z2/p + ν = e∙2mq2’+ν (2) 

where e= 0, ±1, ±2 etc. μ are different from rotor to rotor 
depending from rotor slot number. 

From now on the calculations will be based on q2’ (rotor slot 
per phase per pole), since it is more general and much better 
suited to the approach of a machine designer. 

The fundamental harmonic of the stator with g=0 and that 
belonging to the rotor with e=0 are included in the 
fundamental circuit. The harmonics of the stator with g=±1, 
±2, etc. and that belonging to the rotor also with e=0 are 
included in the harmonic circuits. The rest, with e= ±1, ±2, etc. 
rotor harmonics are not part of the equivalent circuit. 

All the harmonics of the stator can be part of the diagram 
because they induce a mains frequency voltage in the stator in 
the same way as all other elements of the diagram. 

The cage rotor responds to the stator harmonic by generating 
torque, while according to Lenz's law it also reduces the 
amplitude of the harmonics. The elements of the rotor reduced 
to the stator can be the elements of the equivalent circuit 
because they can always be converted from the frequency 
occurring in the rotor to the mains frequency, 50/60 Hz. The 
others, e= ±1, ±2, etc. rotor harmonics are of basic importance 
for the calculation of synchronous parasitic torques and radial 
magnetic forces, but since the stator does not react to them (no 
secondary armature reaction now), they induce a frequency 
other than mains frequency and therefore they cannot be 
reduced to mains frequency. They are only mentioned as a 
reference next to the relevant harmonic circuit; this mentioning 
will support the evaluations and explanations later. 

Any asynchronous motor can be, therefore, represented by a 
series of mechanically connected induction motors having 
different pole numbers, whose stator windings are connected in 
series [5], [6].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R1 jXs1 -X1 

νb=ν 

Δ=1 

νb=ν 
ν=2mq1-1 

Δ=1-ε 

ν=2mq1+1 

ξν=ξ1 

ν as νa will not appear 
μa will not develop 

js  X2  

js  X2ν 

R2  

jsXm  2
2=0 

ν as νa will not appear 
μa will not develop 

js  X2  R2  

jsXm  2
2= 

2mq1-1>≥5 

0<Δ<1 

5>>1 Δ=ε 

=1 

<1 

Δ=0 

R2  

ν as νa will appear 
μa will develop jsXm 

0<2
2<1 

ν as νa will appear 
μa will develop 

jsXm  
2

2=1- 

2= 

R2’/s 

R2  

jX’2 

js  X2  

jX’s2-jX’2 

jXm 

jsνXmν 
 ν as νa will appear 
 μa will develop 
 

ν>2mq1+1 

2ν
2=1 

js  X2ν R2  

 
Fig. 1.  Equivalent circuit including the circuits for the higher harmonics.  

IV. DIFFERENTIAL LEAKAGE, ASYNCHRONOUS PARASITIC 

TORQUE, ATTENUATION 

A. Differential Leakage 

The stator differential leakage may be calculated by the 
winding factors as follows:  

 mXX  11    (3) 

where as definition 

2
1

2

21

1





    but ν 1  

However, the rotor differential leakage, especially for 
harmonics, cannot be expressed in this way. Therefore, the 
other method, the Görges diagram, is used and the differential 
leakage of the rotor is expressed as the quotient of the energy of 
the harmonics and the fundamental harmonic: 

 2 2ν ν mνX X     (4) 

where 

2 2
2

1
1ν

ν




    (see  (268) [3], pp. 154) 

Of course, ϭ2v calculated with ν=1 (being a very small value) 
is included in the fundamental harmonic circuit. 

The η2ν
2 factor will be needed in all considerations and 
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formulas from now on, so it will be drawn and analyzed 
separately. The factor is called the Jordan coupling factor. 
Based on [3]. 

 2 2

2 2

sin sin
2 '

2 '

2ν

p
ν ν

Z mq
p

ν ν
Z mq

 


 

    (5) 

As ν increases, the value of η2ν
2 gradually becomes 

negligible as ν approaches Z2/p=2mq2’. 
As it can be seen, if Z2=2mq1+1 or Z2=2mq1-1, and ν reaches 

ν=2mq1+1 or ν=2mq1-1 then η2ν
2=0, the νth harmonic cannot 

drive current in the cage. 
According to the physical background, if νp/Z2=1 (or any 

further integer), then the electric angle between two adjacent 
cage bars is exactly 2π, so this harmonic does not drive current 
in the rotor cage. 

The value of η2ν
2 can be taken as zero for harmonics with a 

higher order number than this, i.e. these harmonics - more 
precisely, the rotor currents generated by these harmonics - do 
not need to be dealt with. 

This appears in (4) in the way that the rotor differential 
leakage factor σ2ν, if ν≥2mq1±1, becomes very large, even 
infinite. Compare with [5], see Fig. 17, as well, this means also 
that these harmonics are not attenuated by the rotor. 

However, Fig. 2 is difficult for practice to follow. Therefore, 
η2ν

2 is transformed as a function of q2’, which is much more 
expressive for the designer, see Fig. 3. In turn, ν is then taken as 
a parameter. Thus, it is possible to show directly, in a 
completely universal and illustrative way, which harmonics the 
rotor responses to and, in particular, to what extent. 

 
Fig. 2.   Plotting the value of η2ν

2 as a function of νp/Z2 ([3] p.154. Fig. 107). 

 
Fig. 3.  Representation of the value of η2ν

2 as a function of q2' with ν as a 
parameter. Higher odd harmonics are replaced mathematically by adjacent 
(actually with 3-phase not existing) even harmonics only for better 
transparency. 

B. Calculation of Asynchronous Parasitic Torque 

Consider the ν-th circle. Now all its elements and I1 also, are 
reduced to the rotor. 

Sum of the reactance in a harmonic circuit: 

 2 2 2
2

mν
mν ν

ν

X
X X ... 

     (6) 

Acc. to voltage equation: 

 2
2 1

2 2 2

ν m
ν

ν ν mν ν

s X
I j I

R js ( X X )




 
 

  (7) 

 
Fig. 4.  Vector diagram of stator current and rotor current for the circuit v ([3], 
Fig. 128). 

γνa and ρνa resp. is the angle between stator current and rotor 
harmonic current. 

The end point of I2ν describes a circle as a function of sν, see 
Fig. 5. 

 

Fig. 5.  Vector diagram of the currents of the harmonic circuit ν=7 (see [3] 
Richter Vol. IV p. 150, Fig. 106) and the attenuation factor Δ belonging to this 
circuit (=to this harmonic). 

It is clear that I2ν will not be in phase with I1 (except, of 
course, the points sν=0 and sν=∞). It is easy to see that a torque 
is thereby generated, namely through the component of I2ν 
perpendicular to I1. This will obviously be an asynchronous 
torque, i.e. it occurs at all rotor speeds. 

Let us choose I1 as real. Then the imaginary part of I2ν will be 
proportional to the torque. Divide each term of the expression 
(7) by the sum of the reactance 

 2 2 2
2 1

2 2 2 2 2 2 2

ν mν mν ν
ν

ν mν ν ν mν ν mν ν

s X / ( X X )
I j I

R / ( X X ) js ( X X ) / ( X X )


  


 

   
(8) 

The first member of the denominator is obviously the 
breakdown slip, since the resistance and overall reactance in the 
circle will be the same, giving out the maximum torque. 

This harmonic breakdown slip shall be expressed later in 
terms of the circuit resistance and reactance of the fundamental 
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harmonic circuit. Using (6) 

 2 22 2
2

2 2

ν
bν ν

mν ν m

R R
s ν

( X X ) X

 


  (9) 

Returning to (8), introducing sbv and arranging  

 
2 2 2 2
2 2 2

2 1 12 2 2 2
ν ν ν ν ν bν ν

ν
bν ν bν ν bν ν

s s s s
I j I ... ( j )I

s js s s s s

    
     

  
 (10) 

Arranged further 

 
1

2
2

2
2

2 )
/

( I

s

s

s

s
j

s

s

s

s
ss

I

b

b

b

b

b






























    (11) 

2 2
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2 1

2 2
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2
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2 2
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b

b

b
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 
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  

 

 




   




    

  
     

(12) 

Physically, this is when the largest attenuation occurs, since 
I2ν is then the largest and at the same time is in opposite phase to 
the current I1. However, this category - since it was introduced 
in the literature on another way - will be clarified later. 

It can be seen that the radius of the circle is: η2ν
2/2∙I1. 

Substituting I2ν at sbν, the maximum effective power 

 
2
2

1 2 1 2 13 3
2

ν
max ν ν mνP U I I jX ( j )I


       (13) 

It can be seen from the formula that the imaginary part of I2ν 
will indeed be parallel to the vector I1∙jXmν (since I1 was 
assumed to be real). The maximum torque 
 max 0/ ( / ( ))bM P pν    (14) 

In the formula for Pmax, the reduction factors for I1 and Xmν 
just cancel each other out, since the reduction, by definition, 
takes place in such a way that the power (either real or 
imaginary) remains unchanged. Therefore, the calculation can 
be performed with reduced values either for the stator or for the 
rotor. 

For the same reason, the introduction of sbν also proved to be 
expedient, since it is also a relative number. At most, it had to 
be taken into account that in the νth circuit, R2 is only 
recalculated in proportion to the square of the number of turns 
and winding factors, while Xm is recalculated further in 
proportion to ν2. 

The slip scale is completely different from the fundamental 
harmonic, and the two semicircles, sν>0 and sν<0, are 
completely symmetrical; that means both breakdown torques, 
no matter motoric or generatoric, are the same (reason is that R1 

has no role here). 
The question arises, regarding R2ν how to proceed with a 

deep bar or double-cage machine. In the case of small value of 
harmonic slip sν~0 the low-frequency distribution must be 
calculated, while of high value of harmonic slip sν=∞ the 
high-frequency distribution. 

No noticeable error will be committed if the current I1 is 
taken as the starting current. 
 sXUI /1    (15) 

where Xs is the entire leakage reactance.  

Further 

 
2

2 2
1

1 ν
mν mX X

ν




   (16) 

Substituted 

 
2 22

2
max 2 2 2

01

1
3

2
ν ν

m
s

U pν
M X

X ν

 


    (17) 

This torque will be (completely different to the literature) 
compared to the fundamental breakdown torque 

 
2

0

3 1

2 /b
s

U
M

X p
   (18) 

It yields finally the harmonic breakdown torque 

 
2 2

2
2

1

bν m ν ν

b s

M X

M X ν

 


   (19a) 

Substituting the imaginary part of (11) into (13) the 
torque-slip characteristic due to that stator harmonic is obtained. 
The final formula 

 
2 2

ν ν 2ν
2

ν ν1

ν ν

2
( )

ν
b m

bb s

b

M X
s sM X
s s

 





  (19b) 

Using the expression sν=1-ν(1-s) it yields that (after 
substituting and arrangement) the slip of this harmonic 
breakdown torque will be 

 
1

1 ( 0)bν bν
ν

s s
s s s

ν ν ν
          (20) 

In an equal distance ±sbν/ν next to the slip sν=0. 
Let us also examine the value of sbν, i.e. the course of the slip 

scale based on (9). This obviously depends (by η2ν
2) on q2', as 

well as on the νth harmonic cycle currently under investigation. 
Taking R2 as 0.02 – 0.06 and Xm as 3-4 in relative units, it can be 
seen that sbν varies within wide limits, sbν>1 is also possible for 
a small machine (R2~0.06), and generally sbν<1 for a large 
machine (R2~0.02). If sbν~1 means that the parasitic torque of 
that harmonic has perceptible effect at the starting torque test in 
the test room. 

The torques generated by the 7th, 13th, 19th, etc. harmonics 
fall into the motor range. Among these, the torque of the 7th 

harmonic can be eliminated by chording, if necessary, the rest 
decrease with the increase of the harmonic order. 

Let us calculate two values with the data of Fig. 4. 
R2 = 0.066, Xm=3, Xs=0.2 in relative units. 
1) For 7th harmonic with no chording 
for q2’~ 3: 
ξ7/ ξ1=0.184; η2,7

2=0.6 (see Fig. 3.): 
Mbr.d.7/Mbr.d.1 = 3/0.2∙0.1842∙0.6/7=0.044 
roughly 10% of rated torque. 
sν=0 falls to s=6/7=0.857, close to standstill. 
sbν=0.066/3∙72∙0.6=0.65; sbν/7=0.093;  
positive peak value is at s=0.95, that of negative one at 

s=0.764. 
2) For the torque of the slot harmonic (note that it is zero for 

Z2<Z1). 
also for q2’~ 3: 
ξ19/ ξ1=1; η2,19

2≈0.05 (see Fig. 3.): if Z2>Z1 
Mbr.d.19/Mbr.d.1=3/0.2∙12∙0.05/19=0.039, (roughly 0.09Mrated), 
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slightly less than the previous one. 
sbν=0 falls to s=18/19=0.947 , very close to standstill.  
sbν=0.066/3∙192∙0.05=0.397, s=0.397/19=0.021.  
Positive peak value is at s=0.968, that of negative one at 

s=0.926.  
These two torques add up together (if Z2>Z1) only above 

s=0.947. In this range, the torque of the machine can increase 
by up to 10-15% of the rated torque. In the test room, at s=1, it 
can be measured up to 10% more than the fundamental 
harmonic starting torque; approx. half of it comes from the slot 
harmonic. For large machines, (with R2~0.02), both sbν are 
approx. a third of the above, then the two torque curves do not 
“slip together”, both torques appear as separate torque peaks. 

Consider Fig. 6 as an illustration of the entire phenomenon 
discussed in this chapter. In Fig. 6(a), the small vector diagram 
of Fig. 5 was copied (not inserted) onto the usual circle diagram, 
with the circle described by I2ν, at some characteristic slips. In 
Fig. 6b, the vector diagrams appearing at sν, +sbν, and -sbν are 
shown enlarged. 

 
(a) 

 
(b) 

Fig. 6.  Copying the νth harmonic circuit (ν>0) onto the circuit diagram, merely 
for illustration. 

C. Attenuation 
1) Interpretation of Attenuation 

In contrast to the fundamental harmonic circuit, which is of a 
voltage source type and therefore attenuation cannot be 
interpreted, harmonic circuits are current source type 
arrangements, and therefore attenuation is one of their 
properties. 

As can be seen from Fig. 5, in the case of sν=0, no rotor 
current flows, therefore there is no attenuation, the rotor speed 
is in synchronism with respect to the νth field. The largest 
attenuation is at the point sν=∞, at which point I2ν has a 
completely demagnetizing effect. 

When calculating the differential leakage, the attenuation is 

usually important around s≈sb, for the accurate calculation of 
the breakdown torque. Based on the relationship sν=1-ν(1-s), 
since at s=0 sν=1-ν no noticeable mistake will be made if this 
point is made as equivalent to the point sν=∞ . At this point 

 1
2
22 II    , 21 2

2
1

1ν
ν

I I

I



    (21) 

That is, the νth field is attenuated by -η2ν
2, expressed on 

another way it decreases acc. to a factor of  
 Δν=(1-η2ν

2)  (22) 
It must be clarified here that it is not I1 which would decrease 

in the above Δν ratio, in fact it does not decrease at all, because 
one element of the differential leakage is negligibly small 
compared to the entire circle. The (vector) voltage equation 
should have been correctly written as 

 21 2
2

1

1mν mν
ν

mν

I jX I jX

I jX
 


    (23) 

This equation shows that the voltage across the harmonic 
reactance is the one that decreases by a factor of Δν. This 
phenomenon is treated as if the reactance jXmν had decreased by 
a factor of Δν. 

According to this, the differential leakage is attenuated by a 
value of 

 
1 22 1

2
2 2 2

1 1

1mq
ν

mX
ν











   (24) 

that means it will be less by this value. Components of 
differential leakage shall be calculated acc. to 

 
1 2 22 1

2
2 2

1 1

1mq
ν ν

m
ν

X
ν

 






   (25)  

The fields ν>2mq1+1 are practically not attenuated. 
After rearrangement, the definition of the attenuation factor 

according to Richter is obtained 

 
1 22 1

2
2 2 2

11 1

1 1
1

mq
ν

ν ν




 





      (26) 

where by definition 

 
2

1 2 2
1 1

1 ν

ν










    (27) 

According to Richter [3], this value can also be given with a 
closed formula. 

Without chording 
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with chording by k2 ≤q1 slot 
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Otherwise, this formula, like (4) and (5), was derived using 
the Görges diagram, as the ratio of the energy of the harmonics 
to that of the fundamental harmonic. 

It follows from the derivation that the above calculation can 
be considered accurate at no-load and in operation, but not at 
low speeds. The synchronous speed of the harmonic fields is 
very close to the s=1 point and at start-up the motor passes 
through the non-attenuated sν=0 points one after the other, see 
Fig. 5. These are e.g. in the case of q1=3, the sν=0 points of the 
harmonics ν=13 and ν=7 occurring on the slips s=1-1/13 and 
s=1-1/7. This means that then the attenuation factor for that 
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harmonic is much closer to 1; on those slips is exactly 1 i.e. the 
total leakage reactance and the starting current fluctuate 
slightly at the beginning of the start-up. During short-circuit (i.e. 
in the test room), this is detected only to the extent as much the 
attenuated value of the differential leakage at s=1 differs from 
the operating value at s~0, see also Fig. 5, where the shape of 
the curve corresponds to the ratios that exist in practice 
(although for a low-power motor was drawn). This can also be 
verified by calculation if sν=s=1 is substituted in (10). 

2) Diagram of Attenuation Factor Effect of Chording 

[3] Richter IV. p. 155. Fig. 108 (calculated acc. to (26)) is 
generally used to consider attenuation; it is usually adopted, 
always without changes, in the literature, e.g. [5] p. 48. Fig. 21, 
[6] p. 154 Fig. 6.5., [7] p. 233. Fig. 4.7. The attenuation factor is 
given in function of rotor slot number, with q1 as parameter.  

This time, however, there is a need to make a number of 
changes, both in form and content as follows: 

On the horizontal axis, the attenuation factor should not be 
plotted as a function of Z2/p, but as a function of q2', in line with 
the approach of a machine designer. 

Instead of q1 curves given for a very wide range of rotor slot 
numbers, the attenuation factor will now be plotted only around 
the points q2'=q1, namely for q2'=q1±2/3 and q1±4/3, since Z2 is 
never too far from Z1, i.e. q2' is not far from q1. 

The original points acc. to (26) were calculated without 
chording; this becomes clear by substituting. This is 
objectionable in theory. Therefore, for each q1, the points of the 
ideal, appr. 5/6 chording were also calculated here acc. to (26) 
then drawn exactly above the ones calculated with no chording. 
In the two cases, the rotor cage system is facing to two different 
harmonic contents of stator field and will attenuate them 
differently. Without chording, the dominant 5th and 7th 
harmonics would cause a larger differential leakage of stator, 
but this is strongly attenuated by the rotor, see Fig. 3. With 
chording, however, these almost disappear, leaving fewer 
harmonics, but the remaining ones, on the other hand, are less 
attenuated by the rotor. With other words: the attenuation does 
not depend only on stator slot number but also on chording as 
well. In the end, the effect of chording, despite the difference 
that seemed significant at first, becomes minor. 

From a theoretical point of view, the widespread public 
conception is strongly objectionable that the resulting 
differential leakage is formed from an accurately calculated 
stator differential leakage multiplied by a vaguely estimated 
attenuation factor being independent of the stator's chording. 

Therefore, just as the harmonic content of the stator is 
accurately calculated, the rotor attenuation effect must be 
calculated, in line with the previous one, also accurately. Thus, 
different values and relationships will be obtained.  

In the characteristics, the “bottom” curves refer to windings 
without chording. The curves coincide with Richter's wider 
rotor slot range quoted above [3]. 

The “top” curves refer to windings with “ideal” chording. As 
expected, the attenuation factors are very high, around Δ~0.9, 
which shows that the fields created by such stator windings 
(already with a low harmonic content) are only slightly 
attenuated. 

 
(a) 

 
(b) 

 
(c) 

Fig. 7.  (a) Characteristic of attenuation factors acc. to Richter ([3], p. 155. Fig. 
108) modified by the Author, for q1=2, with no chording and with a chording of 
S/τ~5/6. (b) Characteristic of attenuation factors acc. to Richter ([3], p. 155. Fig. 
108) modified by the Author, for q1=3, with no chording and with a chording of 
S/τ~5/6. (c) Characteristic of attenuation factors acc. to Richter ([3], p. 155. Fig. 
108) modified by the Author, for q1=4-8, with no chording and with a chording 
of S/τ~5/6. 

3) Combined Characteristics of Stator Differential Leakage 
Factor and Its Attenuation (by the Rotor) 

Characteristic of stator differential leakage is given in each 
basic book in the literature, Fig. 101(a) of [3], pp. 43 Fig. 16 of 
[5], pp. 153 Fig. 6.3 of [5], pp. 233 Fig. 4.7 of [7]: in function of 
chording, with q1 as parameter. Attenuation is given also see 
the beginning of chapter 2 above, but always separately. 
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Now, in possession of the precise attenuation factors, it is 
high time to modify (supplement) the characteristics of the 
stator differential leakage ϭ1.  Now, these characteristics will be 
combined with the attenuation curves (calculated correctly, not 
only in function of rotor slot number but also in function of 
chording). In this way, such curves are obtained that 
simultaneously show the value of the stator differential leakage 
factor in function of chording k2, with stator slot number q1 and 
rotor slot number q2’ as parameters, see Fig. 8. The values of 
Δϭ1 were calculated in dependence from the following rotor slot 
numbers: q2'=q1-4/3, q2'=q1-2/3, q2'=q1, q2'=q1+2/3, q2'=q1+4/3; 
then inserted just under the existing ϭ1 characteristics. 

With a dashed line, the differential leakage factors of stator 
windings, calculated without attenuation, are also drawn, as 
found in the literature [3], [5], [6], [7]. A continuous line was 
inserted below the dashed line to provide the precise 
attenuation curves to be used instead; for q1=2 and q1=3 also in 
function of the rotor slot number. 

From the curves it is possible to draw clear conclusions: 
(1) The inclusion of accurate attenuation in the 

calculation was necessary not only theoretically, but 
also practically. 

(2) For q1=2, 3, i.e. for small slot numbers, the 
attenuation effect of the rotor is less, in accordance 
with Fig. 3,  the attenuation  factor is close to 1  and  

 
(a) 

 
(b) 

 
Fig. 8.  (a) Differential leakage factors with no attenuation and with attenuation, 
in the function of the  rotor  slot number  and the chording of k2 slots, for q1=2.  
(b) Differential leakage factors with no attenuation and with attenuation, in the 
function  of  the   rotor  slot  number  and  the   chording  of k2  slots, for q1=3.  
(c) Differential leakage factors with no attenuation and with attenuation, in the 
function of the chording of k2 slots, for q2’=q1.. 

strongly dependent on the rotor slot number (less 
attenuation with Z2<Z1, higher with Z2>Z1). Some 
impact of the ideal chording remains but it will be 
significantly smaller. 

(3) For q1≥4, the attenuation is, as expected, much 
stronger; the differential leakage without chording 
diminishes down to close to the level of the chorded 
one. The rotor slot number (meaning whether Z2<Z1 
or Z2>Z1) has only a barely noticeable effect, so only 
the characteristic calculated with the rotor slot 
number q2'=q1 was inserted. In this case, no fatal 
mistake will be made if the resulting differential 
leakage is taken always equal to that with the ideal 
chording with no attenuation, regardless of actual 
chording and rotor slot number. In other words, at 
higher slot numbers, the rotor alone will produce 
what expected from chording. 

D. Detailed Analysis of Fig. 1. 

After that, in possession of the clear and complete picture 
regarding attenuation, it can be turned to the detailed analysis of 
the individual domains of Fig. 1. The evolution of η2ν

2 will be 
examined, from which Δ will be calculated. The characteristics 
of the respective domain will be derived from those 
observations. 

1) ν<1 
These are called sub harmonics, so this part of the circuit is 

only created with windings with a fractional number of slots per 
pole and phase. η2ν

2=1 and Δν=0 can be assumed here. This 
means two things: 

(1) when calculating the stator differential leakage, this 
component does not need to be included in σ1, 
because it disappears 

(2) σ2ν disappears and as a result Xσ2ν disappears, too, the 
largest possible rotor current occurs, possibly causing 
synchronous torque and certainly additional radial 
magnetic forces 

In the case of positive ν, the asynchronous torque is in 
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generator mode, in the case of negative ν, it is in braking mode, 
so both cases are uninteresting from the point of view of a 
motor. 

2) ν=1 
This is a normal equivalent circuit of the machine; it does not 

require a separate analysis 
3) 1<ν<5 
This domain is created by winding with a fractional number 

of slots (per pole and phase) and some pole changing winding. 
η2ν

2 slightly differs from 1, Δν slightly differs from zero that 
is why ε was introduced. 

Therefore, a significant asynchronous torque develops which 
falls in the motor range in the case of positive ν, but does not 
fall in the case of negative ν. According to the author's 
calculations, ν=4 can still be handled, but ν<4 hardly any more. 
Therefore, a winding with a fractional number of slots (per pole 
and phase), which creates positive harmonics in the range 
1<ν<4, should not or only be used after a very careful 
calculation. With a rough estimate, it can be said that a value of 
ξν<0.2 shall be targeted, further Z2<Z1 shall be used. 

The high rotor currents create additional synchronous 
torques and additional radial magnetic forces. 

When calculating the stator differential leakage, these 
components do not have to be included in ϭ1 either, because 
they also disappear as a result of Δν=ε. 

4) 2mq1-1>ν≥5 
This is the domain to which all calculations apply. In this 

domain, all the phenomena discussed in this article occur, i.e. 
rotor harmonic current, causing attenuation and asynchronous 
parasitic torque. They are also involved in the creation of the 
additional synchronous parasitic torque and the radial magnetic 
forces. 

The harmonics discussed so far in points 1), 2) and 3) will go 
into the formulas in the form νa=ν. It cannot be ruled out that 
they are also included in the form νb=ν, rather - but not 
exclusively - in the case of Z2<Z1. 

5) ν=2mq1-1 and ν=2mq1+1 
It is worth dedicating a special point to these two harmonics. 

These are called first slot harmonics. 
Their most special feature is that ξν= ξ1. 
They are located on the border of the previous and 

subsequent domains. Some attenuation and some asynchronous 
parasitic torque may develop if Z2>Z1, but none if Z2<Z1. It 
depends on the rotor slot number therefore whether they go into 
the formulas at all in the form νa=ν. For the sake of generality, 
they were now included in the attenuation formula. 

However, in the form νb=ν, these two harmonics definitely 
go into the formulas. It is noted that when choosing the number 
of slots for the rotor, due to ξν=ξ1, the designer makes still every 
effort to prevent this situation from occurring (see the extensive 
literature on a number of slots rules). 

6) ν>2mq1+1 
The harmonics created in this range practically cannot create 

rotor currents, therefore no asynchronous parasitic torque is 
created, and these harmonics, and their differential leakage) are 
not attenuated. 

It follows from all of this that they are never included in the 
formulas in the form νa=ν, but are always included in the form 
νb=ν, that is, non-attenuated. 

Synchronous parasitic torque is primarily created by the 
interaction of rotor fields created by the fundamental harmonic 
and its low-order attenuated harmonics of the stator with the 
high-order non-attenuated νb≥2mq1 fields of the stator. 

Radial magnetic force is primarily created by the interaction 
of the non-attenuated harmonic residual fields of the rotor with 
the non-attenuated νb≥2mq1 fields of the stator. 

V. ANNEX 

Table I provides the 6-digit values of differential leakage and 
attenuation. These values are plotted in the form of 
characteristic curves in Fig. 7 and Fig. 8. 

TABLE I (A) 
DIFFERENTIAL LEAKAGE 100∙Ϭ1 

 q1= 2 3 4 5 6 7 8 9 

ch
or

di
ng

 

0 2.843709 1.406144 0.889584 0.648117 0.516317 0.436631 0.384825 0.349267 

1 2.354159 1.149451 0.737533 0.548538 0.446312 0.384820 0.344969 0.317675 

2 2.843709 1.109003 0.623886 0.436587 0.349012 0.302525 0.275511 0.258710 

3  1.406144 0.688463 0.411377 0.292935 0.238168 0.211656 0.198667 

4   0.889584 0.499542 0.310651 0.219993 0.176318 0.155892 

5    0.648117 0.399841 0.257745 0.181424 0.141705 

6     0.516317 0.341447 0.227963 0.160696 

7      0.436631 0.304655 0.210393 

8       0.384825 0.280187 

9        0.349267 

TABLE I (B) 
DIFFERENTIAL LEAKAGE WITH ATTENUATION 100∙ΔϬ1 IN FUNCTION OF ROTOR SLOT NUMBER 

q2 = q1 - 4/3        

 q1 2 3 4 5 6 7 8 

ch
or

di
ng

 

0 2.822877 1.30206 0.711245 0.449145 0.310294 0.230657 0.175763 

1 2.344338 1.102513 0.626891 0.406493 0.285826 0.215363 0.165574 

2 2.822877 1.089922 0.594431 0.383986 0.270759 0.205049 0.158267 
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3  1.30206 0.621855 0.382818 0.265337 0.199744 0.153825 

4   0.711245 0.403944 0.269629 0.199386 0.152187 

5    0.449145 0.284306 0.204132 0.153382 

6     0.310294 0.214387 0.15754 

7      0.230657 0.164904 

8       0.175763 

q2 = q1 - 2/3        

 q1 2 3 4 5 6 7 8 

ch
or

di
ng

 

0 2.718407 1.21918 0.688739 0.440986 0.306288 0.225888 0.172667 

1 2.290927 1.06534 0.619793 0.404552 0.284762 0.212161 0.163385 

2 2.718407 1.060648 0.595694 0.386188 0.271848 0.203063 0.156811 

3  1.21918 0.616863 0.385321 0.267224 0.198391 0.152819 

4   0.688739 0.402741 0.270937 0.198086 0.151352 

5    0.440986 0.283574 0.202286 0.152435 

6     0.306288 0.211353 0.156184 

7      0.225888 0.162816 

8       0.172667 

q2= q1        

 q1 2 3 4 5 6 7 8 

ch
or

di
ng

 

0 2.633647 1.193389 0.675881 0.433973 0.301934 0.222103 0.170203 

1 2.329039 1.072405 0.618195 0.402293 0.282774 0.209673 0.161682 

2 2.633647 1.069243 0.59833 0.386496 0.271376 0.201485 0.155661 

3  1.193389 0.61591 0.385763 0.267299 0.197281 0.151998 

4   0.675881 0.400789 0.270587 0.197009 0.150653 

5    0.433973 0.281757 0.200795 0.151654 

6     0.301934 0.208962 0.155098 

7      0.222103 0.161173 

8       0.170203 

q2 = q1 + 2/3        

 q1 2 3 4 5 6 7 8 

ch
or

di
ng

 

0 2.395184 1.127279 0.651591 0.422063 0.295207 0.219019 0.168209 

1 2.166663 1.028321 0.602101 0.394094 0.277968 0.207671 0.160329 

2 2.395184 1.025714 0.584995 0.380113 0.267714 0.200199 0.154737 

3  1.127279 0.600121 0.379461 0.264042 0.19636 0.15132 

4   0.651591 0.392758 0.267001 0.19611 0.150064 

5    0.422063 0.277051 0.199566 0.151003 

6     0.295207 0.207022 0.154217 

7      0.219019 0.159858 

8       0.168209 

q2 = q1 + 4/3        

 q1 2 3 4 5 6 7 8 

ch
or

di
ng

 

0 2.120566 1.041368 0.617986 0.405795 0.286287 0.216461 0.166573 

1 1.937767 0.957494 0.574646 0.38078 0.270619 0.206024 0.159236 

2 2.120566 0.955288 0.559652 0.368219 0.261267 0.199133 0.153985 

3  1.041368 0.572897 0.367631 0.257912 0.195588 0.150753 

4   0.617986 0.379567 0.260606 0.195355 0.149563 

5    0.405795 0.269767 0.198542 0.150455 

6     0.286287 0.205416 0.153493 

7      0.216461 0.158787 

8       0.166573 
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VI. SUMMARY 

Starting from the basic physical background, a hitherto 
non-existent, final formula was derived for calculating the 
asynchronous parasitic torque. It is suitable not only for 
calculating its "breakdown torque", but also for its torque-slip 
characteristic curve. 

It was shown that the asynchronous parasitic torque should 
be related not to the starting torque, but to the breakdown 
torque. 

Richter's attenuation characteristic has been redesigned in a 
way that is more conducive to practical use, and the theoretical 
objection (ignoring the effect of chording) has been eliminated. 

It was shown that chording does not have as much effect on 
the stator differential leakage as it is usually attributed to. 

The previous, widely used characteristics of the stator 
differential leakage factor (ϭ1) have been supplemented by the 
attenuation in function of chording and rotor slot number i.e. it 
was provided such a correct, final characteristic curve (Δ*ϭ1) 
instead of the previous one what the design engineer actually 
needs. 
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