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 
Abstract—In the field of high-power electric drives, multiphase 

motors have the advantages of high power-density, excellent fault 
tolerance and control flexibility. But their decoupling control and 
modulation process are much more complicated compared with 
three-phase motors due to the increased degree of freedom. Finite 
control set model predictive control can reduce the difficulties of 
controlling six-phase motors because it does not require 
modulation process. In this paper, a cascaded model predictive 
control strategy is proposed for the optimal control of high-power 
six-phase permanent magnet synchronous motors. Firstly, the 
current prediction model of torque and harmonic subspaces are 
established by decoupling the six-phase spatial variables. 
Secondly, a cascaded cost function with fault-tolerant capability is 
proposed to eliminate the weighting factor in the cost function. 
And finally, the proposed strategy is demonstrated through 
theoretical analysis and experiments. It is validated that the 
proposed method is able to maintain excellent steady-state control 
accuracy and fast dynamic response while significantly reduce the 
control complexity of the system. Besides, it can easily achieve 
fault-tolerant operation under open-phase fault. 
 

Index Terms—Fault-tolerant control, Model predictive control, 
Permanent magnet synchronous motor, Six-phase motor, 
Weighting factor. 

I. INTRODUCTION 

OMPARED with traditional three-phase motors, 
multi-phase permanent magnet synchronous motors 

(PMSM) attract more and more attention in high-power AC 
drive fields such as aerospace, naval propulsion and rail 
transportation because of their high efficiency, power density 
and control flexibility [1]-[3]. Due to the increased number of 
phases, the vector space of multiphase motor is quite complex. 
For example, the two-level six-phase inverter system has 64 
voltage vectors, which requires a very complicated modulation 
process. 

In order to simplify the control of multiphase inverter system, 
many researchers have adopted Model Predictive Control 
(MPC)   as an upgrade   of traditional   control methods [4]-[9].  

 
Manuscript received October 07, 2021; revised January 05, 2022, and April 

02, 2022; accepted June 16, 2022. Date of publication September 25, 2023; date 
of current version June 08, 2023. 

Ling Feng and Jianghua Feng are with CRRC ZhuZhou Institude Co., Ltd. 
ZhuZhou 412001, China (e-mail: feng_ling@foxmail.com). 

Zhaohui Wang and Wensheng Song are with the School of Electrical 
Engineering, Southwest Jiaotong University, Chengdu 611756, China.  

(Corresponding Author: Ling Feng) 
Digital Object Identifier 10.30941/CESTEMS.2023.00033 

 
The Finite Control Set Model Predictive Control (FCS-MPC) 
makes full use of the discontinuous nature of the power 
electronic devices and can eliminate the complex modulation 
process. Compared with the traditional linear controller with 
space vector pulse width modulation (SVPWM) structure, 
MPC has many advantages. Firstly, its concept is simple and 
the optimal solution process is more in line with the decision 
mechanism of human brains. Secondly, it is easy to include 
nonlinear constraints, such as low switching frequency, low 
loss and output current distortion constraints. [7] provides the 
current prediction model for six-phase motor and implements 
single-step model prediction current control of a multiphase 
motor. [8] uses a model predictive controller to control a 
multiphase motor with fixed switching frequency. [9] 
introduces dead-beat model predictive algorithm and virtual 
voltage vector into a two-level six-phase inverter system. The 
virtual vectors proposed in [8] and [9] can achieve error-free 
tracking of flux and torque in the torque subspace while 
ensuring their projection on the harmonic subspace cancel each 
other. In summary, MPC provides a more novel and simple idea 
for optimal control of multiphase motors with guaranteed 
system performance. 

The construction of cost function and selection of weighting 
factors are the key points of MPC research, and there are few 
mature theories to refer to. Most of the applications have 
adopted empirical and statistical methods to select the optimal 
weighting factors [8], [10]-[12]. The virtual-vector-based 
model predictive six-phase asynchronous motor control 
proposed in [8] uses a cost function containing four weighting 
factors. [10] proposes a model predictive torque control of a 
cascaded dual three-phase PMSM with also four weighting 
factors and both of them do not provide the selection method of 
weighting factors. Based on the dead-beat control strategy, the 
number of weighting factors in the cost function can be reduced. 
[11] constructs a cost function containing only the current 
components on harmonic subspace. [12] eliminates the 
weighting factors from the cost function which simply contains 
only the deviation component of the voltage. [13] uses the idea 
of dead-beat direct flux control to eliminate the weighting 
factor. Although these methods simplify the cost function, they 
all involve the solution of transcendental equations and other 
time-consuming algorithms, which increases the complexity of 
the control system. In [14], the cascaded cost function of 
three-phase motor is proposed for the first time, in which two 
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vectors that satisfy the minimum torque error are selected first, 
and then the one that minimizes the flux tracking error is 
selected as the optimal vector. [15] proposed a generalized 
cascaded MPC of three-phase motor based on [14] by 
increasing the candidate vectors in the first step and 
demonstrating through simulation and experiment that the 
cascaded approach can successfully eliminate the weighting 
factors. 

Fault-tolerant control is another key point of multiphase 
motor control, and at present most of the researches on this 
topic are based on the method of harmonic injection method 
[16]-[18]. The reference current is revised under different 
optimization constrains after fault, such as minimum copper 
loss, minimum peak current or minimum torque pulsation. And 
the PI with SPWM modulation is used to track the revised 
reference current. However, this method suffers with high 
output current ripple and low DC voltage utilization. In 
addition, it requires sensing the specific opened phase and 
constructing the reduced-dimension mathematical model. As 
different open phase corresponds to different decoupling 
transformation matrices separately. This makes the traditional 
fault tolerant control lack of practical application in inverter 
systems with high real-time requirements. 

Compared with the traditional method, MPC has greater 
advantages in fault-tolerant control of multiphase motors. [19] 
proposes fault-tolerant control of a five-phase induction motor 
under phase open fault based on direct torque MPC with virtual 
vectors. The proposed method requires the construction of 
virtual vector space after phase loss and sensing the specific 
opened phase. [20] proposes a FCS-MPC method for open 
phase tolerant control of three-phase four-winding motor. But 
the proposed method also requires phase open detection and is 
not applicable to six-phase inverter system. [21] establishes 
fault-tolerant predictive control for a five-phase asynchronous 
motor based on a post-fault system predictive model, but the 
cost function is too complicated with four weighting factors. 
[22] proposes fault-tolerant predictive control of a six-phase 
PMSM based on pulse-width modulation. A dead-beat 
algorithm is adopted to calculate the reference vector which is 
then synthesized by the fundamental vectors. However, it is not 
suitable for application to high-power systems with low 
switching frequency, as the virtual vectors increase the 
switching frequency. [23] proposes a fault-tolerant model 
predictive control for PMSM with dual inverters supply, in 
order to construct a new voltage vector space, the decoupling 
matrix needs to be switched before and after fault, which 
increases the control complexity. 

Inspired by the cascaded MPC proposed in [14], this paper 
proposes a cascaded model predictive current control strategy 
(CMPC) for the six-phase PMSM to eliminate the weighting 
factor in the cost function. Firstly, by decoupling the stator 
voltage and current into the torque, harmonic and circulating 
current subspaces, the current prediction models of the three 
subspaces are derived, and the cascaded cost functions of the 
torque and harmonic subspaces are constructed. Then, the 
CMPC and a traditional MPC method are compared both in 
static state and dynamic state. It is validated by the experiments 
that the CMPC can eliminate the influence of weighting factor 

on system performance and maintain satisfactory steady-state 
performance under different working conditions. Besides, the 
dynamic response of CMPC is comparable to that of the 
conventional current-tracking MPC. Last but not least, CMPC 
can achieve fault-tolerant operation in any open-phase 
condition without detection of specific faulty phase and 
switching control method. 

II. MODEL OF THE SYSTEM 

A. State Variable Decoupling and Current Predictive Model 

Fig. 1 shows the diagram of six-phase inverter system, the 
six-phase PMSM is designed with two sets of Y-connected 
windings phase shifted by 30 electrical degrees without 
connection between neutral points. The switching function of 

the six-phase is defined as 0ks   or 1( 1, 2...6)k  , where 0 

represents lower switch on and 1 represents upper switch on. 
The relationship between switching function and the 
corresponding phase voltage can be derived as (1). 
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Fig. 1.  Six-phase PMSM inverter system. 
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 (1) 

where 𝑢 is the phase voltage, Udc is the DC voltage and S is the 
switching state of the inverter. 

By defining the 6×6 decoupling matrix MD in (2), the phase 
voltage and current can be decoupled to three mutually 
perpendicular subspaces denoted as   , 1 2z z  and 1 2o o , 

where the   torque subspace coincides with the rotation of 

air gap flux, the corresponding current component will form a 
rotating magnetic potential in the air gap and participate in the 
electromechanical energy conversion of the system. The 
current component of the harmonic subspace 1 2z z  is not 

related to the electromechanical energy conversion but 
determines the harmonic component of the system. Due to the 
unconnected neutral points, the 1 2o o  subspace component is 

0. According to the system topology and switching function, 
the vector distribution in   and 1 2z z  can be obtained as 

shown in Fig. 2. From the vector distribution, it can be seen that 
the 12 vectors with the largest projection amplitude in the 
   subspace have exactly the smallest projection in the

1 2z z  subspace, which means these vectors can output the 

maximum torque component while ensuring the minimum 
current harmonic. The number of candidate vectors in six-phase 
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motor MPC can be reduced by selecting only 12 long vectors as 
candidate vectors which based on the same consideration in  the 
conventional six-phase SVPWM. 
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(c)                                                       (d) 

Fig. 2. Projection of voltage vector on (a) α-β torque subspace. (b) z1-z2 

harmonic subspace. (c) projection of long vectors in α-β subspace. (d) 
projection of long vectors in z1-z2 subspace. 

Taking the stator currents in the torque subspace and the 
harmonic subspace as the state space variables, the state 
equations of the system can be obtained by rotating and 
transforming the torque subspace variables to the dq coordinate 
system as (3)~(5). 
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Using the forward Euler method to discretize the above 
continuous state equations, the prediction model of stator 

current can be obtained as (6) and (7). 

s s s
d d d r d q

d d

s s s
q q q r d d r r

q q

( 1) ( )(1 ) ( ( 1) ( ))

( 1) ( )(1 ) ( ( 1) ( ) )

R T T
i k i k u k L i k

L L

R T T
i k i k u k L i k ψ

L L



 

      


       


(6) 

 

s s s
z1 z1 z1

m m

s s s
z2 z2 z2

m m

( 1) (1 ) ( ) ( 1)

( 1) (1 ) ( ) ( 1)

R T T
i k i k u k

L L

R T T
i k i k u k

L L

     

     


 (7) 

where 1 2( , , , )xu x d q z z  is the stator voltage and 

1 2( , , , )xi x d q z z  is the stator current; motor parameters 

, , , ,r d q m sL L L R  are permanent magnet chain, stator 

inductance in dq coordinate system, mutual inductance and 
stator resistance, respectively; system parameters sT  and r are  

sampling period and rotor speed. 

B. Design of the Cost Function 

A traditional current tracking six-phase motor MPC block 
diagram is shown in Fig. 3. The six-phase currents are 
decoupled to obtain the current components in    subspace 

and 1 2z z  subspace at moment k, which are then substituted 

into the predictive model to obtain the predicted currents at 
moment k+1. The output of external loop is coordinately 

transformed to obtain the reference value of di
  and qi

 . Under 

normal operating conditions, the reference value of 1 2z z  is 

set as zero to reach zero harmonic current. According to the 
reference value, the candidate vectors are substituted into the 
cost function in turn, and the one that minimizes the error 
between predicted and reference value is selected as the 
optimum driving sequence named k_opt. In order to reduce the 
system switching frequency, four zero vectors are selected in 
addition to the 12 long vectors, so that in each prediction cycle, 
there are a total of 16 candidate vectors for current prediction. 
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Fig. 3.  Control diagram of conventional six-phase MPC. 

The conventional cost function of current-tracking six-phase 
MPC is generally designed as (8). 

* *
1 2[| ( 1) - | | ( 1) - |] [| ( 1) | | ( 1) |]d d q d z zg i k i i k i i k i k        (8) 

The cost function contains two parts, and the importance of 
these two parts are regulated by the weighting factor  . The 
first component is a penalty term for the tracking error in the 
torque subspace and the second component penalizes the 
tracking error in the harmonic subspace. The tracking error in 
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the torque and harmonic subspace can be balanced by adjusting 
the weighting factor  . Under different working conditions, 
how to find the optimal weighting factor  to balance the 
tracking error of the two parts is an important problem faced by 
the traditional six-phase MPC. 

To solve this problem, the proposed CMPC in this paper is 
derived by splitting the traditional cost function (8) into (9) and 
(10). 
 1 | ( 1) | | ( 1) |d d q qg i k i i k i        (9) 

 2 1 2| ( 1) | | ( 1) |z zg i k i k      (10) 

The control diagram of CMPC constructed according to (9) 
and (10) is shown in Fig. 4. The difference between CMPC and 
the traditional MPC is that after the current reference in q-axis 
is derived from the external loop, the seven vectors with the 
smallest torque subspace tracking error are first selected as a 
new candidate vector set named as {k_opt1} through cost 
function (9). And then the vector that minimizes the harmonic 
subspace tracking error is selected from the seven candidates in 
{k_opt1} through cost function (10) as the optimal vector 
named k_opt. The use of two cascaded cost functions 
eliminates the weighting factor in (8), which can ensure smooth 
operation of the system under different operating conditions 
and avoid the imbalance between torque and harmonic 
subspaces current control caused by unreasonable design of the 
weighting factor. 
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Fig. 4.  Control diagram of the CMPC proposed in this paper. 

III. FAULT-TOLERANT CONTROL OF SIX-PHASE MOTORS 

Another advantage of the proposed CMPC is that it enables 
fault-tolerant control of a six-phase PMSM after any open 
phase fault without the need to detect the specific phase loss. 
The same decoupling matrix and cost function is used before 
and after fault, which can solve problems such as speed-torque 
pulsations and thus ensuring coherent operation before and 
after fault. 

A. Fault-tolerant Operation under the Principle of Minimum 
Copper Loss 

In motor drive systems, various open and short-circuit faults 
can be converted into open phase faults by measures such as 
hardware isolation and so on. So the faults discussed in this 
paper are open circuit of one inverter arm with no damage of 
the motor windings. It is assumed that the motor parameters do 
not change with the operating conditions. Without loss of 
generality, assume an open circuit fault occurs in c2, the voltage, 
magnetic flux and torque equations of the system will not be 

affected, and the current equations will be reduced by one 
degree of freedom. From the decoupling matrix MD in (2), we 
can see that i , 1zi  are independent of the c2 phase currents and 

therefore will not be influenced, while i  and 2zi  will be 

constrained by (11). 

2 2 0c zi i i     (11) 

According to (13), after a phase loss occurs, the fundamental 
and harmonic subspaces are no longer decoupled from each 
other. And the 1 2z z  harmonic subspace current will not be 

zero at this time. The traditional fault-tolerant control method is 
to apply constraints to the 1 2z z  current, and to perform 

closed-loop control of the 1 2z z  current according to different 

constraints such as minimum stator copper loss and maximum 
torque output, etc. The reference value of 1 2z z  will be 

different for different fault phase, so the specific opened phase 
needs to be detected first, which greatly increases the 
complexity of traditional fault-tolerant control. Taking the 
minimum stator copper loss constrain as an example, the 
regulated current references after different phase faults are 
shown in Table I. 

TABLE I 

REFERENCE FOR 1 2z z SUBSPACE OF 

 TRADITIONAL FAULT-TOLERANT CONTROL 

Opend 
phase 

Reference 
for z1 axis 

Reference 
for z2 axis  

a1 i  0 

a2 i  0 

b1 0 i  

b2 i
 0 

c1 0 i  

c2 0 i  

This problem can be solved simply and effectively by using 
the CMPC cost function construction proposed in this paper. 
The cascaded cost function consists of two parts. The first part 
controls the fundamental subspace current which can ensure the 
output torque remains unchanged before and after fault, and the 
second part controls the harmonic subspace current, which 
ensures the minimum stator copper loss before and after fault. 

Under normal operation, the harmonic subspace reference 
value is zero, at which point the total stator copper loss of the 
six-phase motor can be expressed as： 

2 2 2 2 2 2
1 2 1 23 (T

Cu s s s s z z o oP i R i R i i i i i i        ） (12) 

Since the output torque needs to remain constant during 
phase loss, i.e. the stator copper loss corresponding to the 
torque subspace is fixed, and the optimal conditions for the 
minimum stator copper loss constrain can be simplified as (13). 

2 2 2 2
1 2 1 2min( )z z o oi i i i    (13) 

As the current component in 𝑜ଵ − 𝑜ଶ subspace is 0, (13) can 
be further simplified as (14). 

2 2
1 2min( )z zi i  (14) 

(14) and (10) have the same physical meaning, from which it 
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can be seen that fault-tolerant control with minimum stator 
copper loss can be realized as long as the current of the 1 2z z  

subspace is minimized. Which is to say, after an open phase 
fault, fault-tolerant control with minimum stator copper loss 
can be achieved in an automatic way by keeping the structure of 
the cost function unchanged and still constraining the harmonic 
subspace current to zero. This is a feature that cannot be 
achieved by the traditional harmonic injection method.  

The conventional fault-tolerant control requires different 
reference current of 1 2z z  subspace for different phase loss. 

The CMPC fault-tolerant control proposed in this paper, on the 
other hand, unifies the reference of harmonic subspace and 
greatly simplifies the fault-tolerant control of six-phase motors.  

IV. EXPERIMENT VERIFICATION 

The CMPC method proposed in this paper is verified 
comparatively in the hardware in the loop (HIL) simulation 
platform shown in Fig. 5. Considering the excessive power of 
the real inverter and motor, the HIL verification based on DSP 
TMS320F28377D controller is adopted. The load consists of 
the FPGA-based simulated inverter, the PMSM motor and the 
tractor motor. System parameters are set as shown in Table II. 
The upper computer monitoring software stores and displays 
the sampling data at 10 kHz sampling frequency via Ethernet 
communication. The sampled stator current data is imported 
into PC for DFT analysis to obtain its total harmonic distortion 
(THD) value, while the output electromagnetic torque of the 
motor and the inverter switching frequency are transmitted to 
the upper computer for observation. The switching frequency is 
calculated from the average switching times of each phase per 
unit time. In addition, in order to reduce the influence of the 
external PI controller on the internal MPC controller, a tractor 
motor is adopted to make the controlled motor run at constant 
speed. 

TABLE II 
SYSTEM PARAMETERS 

Symbol Parameter Quantity 

RS Stator resistance 0.05 Ω 
Ld Stator inductance d-axis 3.3 mH 

Lq Stator inductance q-axis 3.3 mH 
ΨR Rotor flux 0.635 Wb 
P Pole pairs 4 

Prated Rated power 190 kW 
ωrated Rated speed 1500 rpm 

fsw Control frequency 10 kHz 
UDC DC voltage 1500 V 

A. Steady State Performance 

In order to verify the steady-state performance of CMPC and 
conventional current-tracking MPC under different working 
conditions, the steady-state performance comparison of these 
two strategies is carried out at constant speed of 1000 rpm. The 
experiment results are shown in Fig. 6 to Fig. 9 where from top 
to bottom are electromagnetic torque, current of  
subspace, current of z1-z2 subspace and optimal vector number, 
respectively. Fig. 6 shows the experiment results of the 
traditional MPC at reference current of 1800 A. The weighting 
factor is selected as 3 after many tests. At this time, the torque  
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Fig. 5. The hardware in the loop simulation platform.  
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Fig. 6.  Static performance of the traditional MPC of reference current 1800 A. 

pulsation is 17%, the average switching frequency is 2150 Hz, 
and the THD of stator current is 5.2%. 

It should be emphasized at first that the currents shown in the 
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experiment results are the    and 1 2z z  components of 

the stator currents, not the original stator currents. 
Under this operating condition, the experimental results of 

CMPC are shown in Fig. 7. The torque pulsation is 16%, the 
average switching frequency is 2050 Hz, and the THD of stator 
current is 4.29%.  
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Fig. 7.  Static performance of CMPC of reference current 1800 A. 

Keeping the structure of the cost function and the weighting 
factor of the conventional MPC unchanged, the reference 
current reduced to 800 A. The experiment results are shown in 
Fig. 8. At this time, the harmonic subspace current control 
effect becomes worse, the torque pulsation reaches 44%, and 
the stator current THD reaches 24.4%. Although the torque 
subspace current control is basically satisfactory, due to the 
excessive harmonics, the system will suffer the risk of 
instability, which shows that the weighting factor in the 
traditional MPC needs to be increased at this time to strengthen 
the suppression ability of harmonic subspace current.  

Correspondingly, the experiment results are shown in Fig. 9 
when CMPC is adopted with reference current of 800 A. At this 
time, the harmonic subspace control effect is better, the torque 
pulsation is 26%, and the stator phase current THD reduces to 
13.39%.  

The summary of these comparison experiments is shown in 
Table III. Fig. 10 shows the stator current harmonic spectrum of 
them respectively. It can be seen from the experimental results 
that after the CMPC eliminates the weighting factor in the cost 
function, it can ensure the system obtain consistent steady-state 
performance under different working conditions. 
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Fig. 8.  Static performance of conventional MPC of reference current 800 A. 
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Fig. 9.  Static performance of CMPC of reference current 800 A. 
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TABLE III 
EXPERIMENT RESULTS COMPARISON  

No Method THD/% fsw/Hz 
Torque 

ripple/% 

Fig. 6 Traditional MPC@1800A 5.20 2150 17 
Fig. 7 CMPC@1800A 4.29 2050 16 
Fig. 8 Traditional MPC@800A 24.40 1980 44 
Fig. 9  CMPC@800A 13.39 2070 26 

 

(a)

(b)

(c)

(d)  
Fig. 10.  Stator current harmonic spectrum related to (a) Fig. 6 (b) Fig. 7 (c) Fig. 
8 (d) Fig. 9 

B. Dynamic Response of CMPC and Traditional MPC 

In order to verify the dynamic performance of CMPC and 
conventional MPC, a comparison experiment of these two 
control strategies under current step is conducted. Fig. 11 
shows the experiment results of the dynamic response of the 
conventional MPC. The current reference steps from 800 A to 
1800 A, and the load current tracks up the step within 3.2 ms 
without obvious overshoot, but the harmonic subspace current 
pulses more after the step, which shows that the weighting 
factor in the cost function cannot suppress the harmonic 
subspace current well at this time. 

Fig. 12 shows the experiment results of the dynamic 
response of CMPC. The load current tracks up the step within 
3.4 ms without significant overshoot. The dynamic response 

speed of these two MPC strategies is close, indicating that both 
MPC have fast dynamic response speed. The CMPC tends to 
stabilize the harmonic subspace current after one cycle due to 
the elimination of the weighting factor in the cost function, 
which shows that the CMPC can ensure the stability of the 
system operation during changing of working conditions. 
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Fig. 11.  Dynamic response of traditional MPC.  
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Fig. 12.  Dynamic response of CMPC. 

C. Fault Tolerance Verification 

The fault-tolerant control capability of the CMPC proposed 
in this paper is verified by simulating a six-phase motor 
phase-loss fault by removing the PWM driving signal in one 
phase. Fig. 13 shows the experiment results of a1 phase loss, 
from top to bottom are the stator currents of the first winding, 
the stator currents of the second winding, the torque subspace 
currents and the harmonic subspace currents, respectively. 
Fig.14 shows the experiment results of c1 phase loss, and Fig.15 
shows the stator current and torque waveforms before and after 
fault. 

From the experiment results, it can be seen that by 
constraining the 1 2z z  current to 0, the MPC controller will 

select the voltage vector that generates the least harmonic 
current among the candidate vectors to satisfy the phase loss 
current constraint, and automatically switch to the fault-tolerant 
operation mode that satisfies the minimum stator copper loss 
constrain. Before and after the fault, the torque subspace 
current remains basically unchanged, and the phase current of 
the second winding increases to provide torque output. From 
the torque waveform in Fig. 15, it can be seen that the torque 
output decreases slightly and the pulsation increases after the 
occurrence of the phase-loss fault, but still ensures the normal 
operation of the system. 

Besides, the traditional fault-tolerant control needs to detect 
which phase is open circuit. Therefore, it requires complex fault 
diagnosis methods. But the CMPC proposed in this paper can 
achieve fault-tolerant operation in case of open-circuit fault 
without  detecting the  specific  open phase. Fig. 14  shows the  
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Fig. 13. Experiment results after phase a1 open. 
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Fig. 14. Experiment results after phase c1 open. 

experiment results of CMPC when the fault phase is changed 
from a1 to c1.  The experiment results show that the system can  
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Fig. 15. Stator current and electric torque before and after fault. 

achieve the same fault-tolerant operation after the fault phase 
changes. 

V. CONCLUSION 

For the optimal control of six-phase PMSM, a cascaded 
model predictive current control (CMPC) strategy with fault 
tolerance ability is proposed in this paper. It eliminates the 
influence of weighting factors on the consistency of the 
controller under different operating conditions. Through 
theoretical analysis and experiments, it is demonstrated that the 
CMPC proposed in this paper can achieve satisfactory static 
and dynamic performance under variable operating conditions 
in a much simpler way than the traditional methods. And it can 
achieve fault-tolerant control in the way of minimizing stator 
copper loss when any phase is open-circuit, without changing 
the control strategy and sensing the specific faulty phase.  
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