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1 Abstract—In this paper, an adaptive gain tuning rule is 

designed for the nonlinear sliding mode speed control (NSMSC) 
in order to enhance the dynamic performance and the robustness 
of the permanent magnet assisted synchronous reluctance motor 
(PMa-SynRM) with considering the parameter uncertainties. A 
nonlinear sliding surface whose parameters are altering with 
time is designed at first. The proposed NSMSC can minimize the 
settling time without any overshoot via utilizing a low damping 
ratio at starting along with a high damping ratio as the output 
approaches the target set-point. In addition, it eliminates the 
problem of the singularity with the upper bound of an uncertain 
term that is hard to be measured practically as well as ensures a 
rapid convergence in finite time, through employing a simple 
adaptation law. Moreover, for enhancing the system efficiency 
throughout the constant torque region, the control system utilizes 
the maximum torque per ampere technique. The nonlinear 
sliding surface stability is assured via employing Lyapunov 
stability theory. Furthermore, a simple sliding mode estimator is 
employed for estimating the system uncertainties. The stability 
analysis and the experimental results indicate the effectiveness 
along with feasibility of the proposed speed estimation and the 
NSMSC approach for a 1.1-kW PMa-SynRM under different 
speed references, electrical and mechanical parameters 
disparities, and load disturbance conditions.  
 

Index Terms—Permanent magnet assisted synchronous 
reluctance motor, Nonlinear sliding mode speed control, Speed 
estimation, Parameter uncertainties, Sliding mode estimator.  

NOMENCLATURE 

Vq, Vd, Iq, Id The q-d stator voltages and currents 
Lq, Ld The q-d stator inductances per phase 

Vd
*,Vq

* The reference d-q axis voltages 
Id

*,Iq
* The reference d-q axis currents 

λf The flux linkage of permanent magnet 
R Stator resistance per phase 
P Number of pair-poles  
ωr The rotor mechanical speed  
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ωr

* 
 
The speed command 

θr The rotor mechanical position angle 
J The rotor inertia 
TL The external load torque 
F The damping coefficient 

 
I. INTRODUCTION  

HANKS to the inherent characteristics of high torque–
inertia ratio, rapid control response, high power factor, 

high efficiency along with  high-power density, permanent 
magnet assisted synchronous reluctance motors (PMa-
SynRMs) have been extensively applied in industrial 
applications, ranging from servo control to traction drives [1]-
[3]. Nevertheless, these motors are considered multivariable 
coupled system and highly nonlinear system as well as their 
performance can be degraded due to the parameter disparities 
throughout the motor operation [4]. As the PMa-SynRM rotor 
flux linkage along with stator resistance change because of 
magnetic saturation, temperature alteration, along with aging, 
thus, precise and robust multiparameter estimation and robust 
control approaches are definitely needed for enhancing the 
PMa-SynRM operation [5].  

In [6], for PMSM, the inductances, flux linkages, along 
with PM flux linkage have been estimated with core loss 
compensation. As through the multiple differential 
measurements, the flux linkage error as a result of core loss 
can be compensated for enhancing the flux linkage estimation 
precision. Afterwards, the polynomial-based flux linkage 
model was employed for deriving cross-saturation inductances 
along with PM flux linkage. Self-inductances have been 
estimated from the flux linkage model through utilizing the 
least-squares approach. In [7], an amplitude-auto-adjusting 
signal injection approach has been introduced for the PMSM 
parameter self-learning throughout standstill considering the 
digital time-delay effect along with inverter nonlinearities. 
Although this approach fulfilled the inductance identification 
process with unpredicted rotor rotation throughout the self-
commissioning process, there is an expected execution time 
delay in digital control system of the drive system. In [8], a 
current injection-based parameter estimation approach with 
enhanced recursive least square approach have been 
introduced for dual 3-phase PMSM with considering the 
magnetic saturation and inverter nonlinearity. Although, this 
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approach tracked the stator resistance and rotor flux linkage 
accurately, nevertheless it has a limitation in the estimation of 
the inductances. 

In [9], two Kalman-filter-based online identification 
approaches have been proposed for PMSM. One has been 
formulated from an extended Kalman filter (EKF); meanwhile 
the second one employed a dual EKF. Although, this approach 
can estimate the stator resistance properly, it has complex 
algorithmic structure and was insensitive to noise. In [10], an 
online parameter identification approach has been introduced 
for PMSM deadbeat control. In this approach, an identification 
model has been formulated for estimating the PMSM 
parameter errors from the offsets of the deadbeat control. 
Afterwards, a parameter perturbation approach has been 
introduced for collecting the basic data to solve the rank 
lacking problem in the parameter identification process. 
Although, the identification approach has better performance 
in online operation, it is hard to be applied in the practical 
system because of the high computational burden. 

In [11], two offline approaches have been proposed for 
estimating the PMSM initial rotor position along with phase 
inductance through the line-to-line voltage injection as well as 
the stator dq-voltage injection. Although the estimated 
inductance via the proposed approaches did not contain the 
cross-coupling and saturation effects, the proposed approaches 
can be utilized for designing the current controllers. 

Undesirable mechanical and electrical parameters variations 
of the permanent magnet synchronous motors can pose risks to 
the connected power conversion systems and deteriorate the 
control response. Thus, for enhancing the robustness of 
permanent magnet synchronous motors control, different 
control approaches have been introduced.  

In [12], a robust discrete-time predictive current control 
approach for the PMa-SynRM has been introduced. This 
controller has a discrete-time integral term, which has been 
added to the traditional deadbeat current predictive control for 
enhancing the stability and robustness of the PMa-SynRM 
currents. Although the proposed controller approach was 
robust to acute the PMa-SynRM parameters disparities, it 
relies on the model accuracy. In [13], a robust control 
approach with parametric adaptation has been proposed for 
PMSM, which includes a disturbance-observer-based speed 
controller along with adaptive robust current controller. 
Although this controller fulfilled robust regulations of rotor 
speed and stator currents and estimated properly the stator 
resistance, flux linkage of the permanent magnet, along with 
stator inductance, it has complex structure and hard to be 
applied in the industrial applications. In [14], a new sliding 
mode speed controller has been introduced for the parallel 
operation of dual PMSMs with a single inverter. This 
controller had robust control performance along with stable 
operation in the steady state as well as the transient state. 
However, it needs a load torque estimator for determining 
which motor is the master one. In [15], a discrete compound 
integral terminal sliding mode control has been introduced for 
PMSM. The integral terminal sliding mode control (SMC) is 
utilized for realizing the state convergence in finite time. And 

an extended state estimator-based compensator is utilized for 
solving the problem that SMC requires large switching gain 
for handling the disturbances. This controller has excellent 
disturbance rejection ability and model adaptability. However, 
for the high-frequency disturbance, the efficacy of this 
controller will not be assured.   

This paper aims to enhance the low speed response of the 
PMa-SynRM through utilizing an adaptive gain tuning rule 
with the NSMSC for enhancing the dynamic performance and 
the robustness of a three-phase PMa-SynRM with considering 
the parameter uncertainties. Fig. 1 illustrates the block 
diagram of the encoderless PMa-SynRM drive system with the 
super-twisting sliding mode current controllers (ST-SMCCs) 
for the dq-axis currents, uncertainties estimator, along with the 
nonlinear sliding mode speed controller (NSMSC) using the 
space vector pulse width modulation. The detailed design 
structure of the whole drive system is introduced in this paper. 





3D



r



r

 
Fig. 1.  The encoderless PMa-SynRM drive system with the SMCCs, sliding 
mode disturbance estimator, and the NSMSC. 

The paper structure is prepared as follows: the mathematical 
representation of the PMa-SynRM is derived in Section II. 
Section III presents the detailed sliding surface design. The 
design of the PMa-SynRM nonlinear sliding mode speed 
controller is presented in Section IV. Section V introduces the 
design of the uncertainties’ estimator. Section VI presents the 
design of the super-twisting sliding mode dq-axis current 
controllers. The experimental verification of the proposed 
encoderless PMa-SynRM with the NSMSC is introduced in 
Section VII and Section VIII finally concludes the paper. 

II. THE PMA-SYNRM MATHEMATICAL REPRESENTATION 

A. PMa-SynRM Dynamic Representation 
 

The dynamic representation of the 3-phase PMa-SynRM in 
the dq-frame is represented by: 

 q
q q r d d r f q

dI
V RI Pω L I Pω λ L

dt
     

 d
d d r q q d

dI
V RI Pω L I L

dt
     

The PMa-SynRM electromagnetic torque in the dq-frame 
can be expressed as: 

 1 5e f q d q d qT . P λ I ( L L )I I        (3) 

The mechanical representation of the PMa-SynRM can be 
expressed by: 
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 r
e L r

dω
T T J Fω

dt
    (4) 

Via substituting (3) into (4), the rotor angular speed of the 
PMa-SynRM can be expressed by (5): 

 
1 5 1 5f q d q d qr L

r

. Pλ I . P( L L )I Idω TF
ω

dt J J J J


      (5) 

From (1)-(5), the PMa-SynRM dynamic model can be 
expressed by (6): 

 

1 2 3 4

5 6 7

8 9 10 11

q
q r q r d

d
d d r q

r
q r L d q

dI
k I k ω k V k ω I

dt
dI

k I k V k ω I
dt

dω
k I k ω k T k I I

dt


    


    

    

  (6) 

where the gains k1-k11 are defined as follows: k1=R/Lq, 
k2=Pλf/Lq, k3=1/Lq, k4=PLd/Lq, k5=R/Ld, k6=1/Ld, k7=PLq/Ld, 
k8=1.5 Pλf/J, k9=F/J, k10=1/J, and k11=1.5P(Ld-Lq)/J. 

By considering the system uncertainties e.g. external 
disorders and the PMa-SynRM parameter disparities, thus, (6) 
can be expressed by (7): 

 

1 2 3 4 12 1

5 6 7 13 2

8 9 10 11 14 3

q
q r q r d

d
d d r q

r
q r L d q

dI
k I k ω k V k ω I k D

dt
dI

k I k V k ω I k D
dt

dω
k I k ω k T k I I k D

dt


     


     

     

 (7) 

where D1, D2, and D3 denote the uncertain components, which 
signify the PMa-SynRM parameter disparities along with the 
external disorders. These uncertain components are 
unidentified. Nevertheless, they are supposed to be bounded, 
e.g., there exist the constants µ1, µ2, and µ3 that fulfill |D1| ≤ µ1, 
|D2| ≤ µ2 and |D3| ≤ µ3. These suppositions are realistic as the 
motor parameters disparities cannot be infinite. 

B. State Representation of PMa-SynRM  

The state space variables of the PMa-SynRM can be 
represented by (8): 

 1
1 2 3r D d D

dX
X ω ω , X , X I I

dt
      (8) 

where ωD and ID denote the desired values of rotor speed and 
d-axis current, respectively. 

For the PMa-SynRM, the reluctance torque exists as Lq is 
greater than Ld. If ID is retained at zero, thus, it is not 
conceivable to use the potential reluctance torque. 
Consequently, for maximizing the PMa-SynRM torque 
generation throughout the constant torque region as well as 
increasing the motor efficiency, thus, the armature current 
should be controlled via utilizing the maximum torque per 
ampere trajectory operation. Therefore, ID can be represented 
by (9) 

 2q d
D q

f

( L L )
I I

λ


   (9) 

Via taking the derivative of (8) as well as using (7), one gets: 

1
2

dX
X

dt
  

 

2
8 2 1 9 2 8 3 8 4

8 4 9 11

2
1

8 1 8 3 2 10 2

3
5 3 6 7 6 3 5

q d r

qdD
D q d

D
q

D
d r q D

dX
k k X k X k k V k k I ω

dt
dIdIdω

k k ω k k I I
dt dt dt

dD d ω
k k I k k D k

dt dt
dX dI

k X k V k ω I k D k I
dt dt

    
 

    
 

   

      

 (10) 

So, both (11) and (12) can be formulated as follows: 

 

1 8 2 8 4 9

11 8 1

2
1

8 3 2 10 2

D
D D r

qd
q d q

D

dω
N k k ω k k I ω k

dt
dIdI

k I I k k I
dt dt

dD d ω
k k D k

dt dt

   
 

   
 

  

   (11) 

 2 6 3 7 5
D

r q D

dI
N k D k ω I k I

dt
       (12) 

From (11) and (12), (10) can be rewritten as: 

 

1
2

2
8 2 1 9 2 8 3 1

3
5 3 6 2

q

d

dX
X

dt
dX

k k X k X k k V N
dt

dX
k X k V N

dt

 
    

    

  (13) 

Based on (13), the PMa-SynRM dynamic model can be 
represented in the state space form by (14): 

  dX
MX WU N

dt
    (14) 

where X=[X1 X2 X3]T, 

11 12 13

21 22 23 8 2 9

31 32 33 5

0 1 0
0

0 0

M M M
M M M M k k k

M M M k

   
     
      


0 0
1 0
0 1

W
 

  
  

 

8 31

2 6

q

d

k k VUU U k V
         

 1

2

0
N N

N

 
  
  

 

III. THE SLIDING SURFACE DESIGN 

A. The Sliding Surface Structure 

Through this paper, the sliding surface, which is nonlinear, is 
structured via utilizing the variable damping principle 
perception. When the damping ratio of the system is altered 
from its original value to the ultimate high value, the transient-
state of the drive performance can be rapid without overshoot 
whereas the probabilities of a singularity can be pointedly 
minimized [16]-[18]. Thus, the PMa-SynRM dynamic model 
can be rewritten by (15): 



1
2

2
21 1 22 2 1 1

3
33 3 2 2

dX
X

dt
dX

M X M X U N
dt

dX
M X U N

dt

 
    

   

 (15) 

And the sliding surface can be represented by (16): 
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 

11 121 1

21 132 2

11 11 1 2

21 21 1 3

1 0

0 1

1 0

0 1

X
X

X

B δ( y )M bσ S
σ S

B δ( y )M bσ S

B δ( y )b B δ( y )b X X
X X

B B X X

    
              

     
        

(16) 

where B = [B11 B21]T represents a constant matrix that can be 
designed based on the damping ratio ζ1 along with the settling 
time tset. Meanwhile, b denotes a positive constant, which is 
selected based on the target ultimate damping ratio ζ2 and it 
fulfills this condition: 

 11 1 11 1( ) ( )    T TM B M b b M M B H  (17) 

 1 1( ) T TB M b b M B H  (18) 

where H denotes a positive weighting constant and M1 = [M12 
M13] = [1 0]. 

According to (18), it can be noted that this equation is an 
algebraic Lyapunov equation, which is mandatory for ensuring 
the stability of the proposed approach. The system control 
output can be represented by: 

  1 0 0 y CX X   (19) 

The function δ(y) choice should fulfill the condition when 
the output alters from the starting point to the origin, the 
function δ(y) value will decrease from zero or a very small 
value to –α (α represents a positive scalar). Thus, this condition 
will make the sliding surface of (16) nonsingular. Moreover, 
δ(y) should have the 1st degree differential equation in y. 
Through this paper, δ(y) is chosen according to [19] with this 
form: 

 2( )    lyy e  (20) 

where l denotes a positive scalar, which should be large enough 
for guaranteeing a small initial value of δ(y). 

The stability analysis of (16) can be proved via this theory. 
Theory#1: Suppose a matrix B, which is defined by (M11 – M1B) 
is stable and a positive definite matrix b, which is selected 
according to the target ultimate damping ratio ζ2. Moreover, it 
accomplishes the condition in (16) with δ(y) identified via (20). 
Consequently, the nonlinear sliding surface expressed via (16) 
will be stable.  
Theory#1Proof: Based on the standard SMC approach 
introduced by [18] and the sliding mode, σ =dσ/dt = 0, thus, 
according to (13), one gets: 

 2 11 1

3 21 1

[ ( ) ]X B y b X
X B X

  
  

  (21) 

According to (21), the PMa-SynRM dynamics of (13) can be 
expressed by (22): 

 1
11 1[ ( ) ]

dX
B y b X

dt
     (22) 

Based on (22), Lyapunov function is expressed by (23): 

  2
1( )V X bX   (23) 

The derivative of V(X) and (22) can be expressed by (24): 


1

1 1 11 1

2 2
1 11

( )
2 2 [ ( ) ]

2 [ ( ) ]

dXdV X
bX bX B y b X

dt dt
X bB y b





   

  
 (24) 

The condition denoted via (18) indicates that: 

 2
1 2

( )
[ 2 ( ) ]

dV X
X H y b

dt
    (25) 

Based on (25), the function δ(y) properties ensure that it is a 
negative function. Furthermore, the dynamics of the sliding 
mode in (22) or the sliding surface in (16) is asymptotically 
stable. 

B. The Design of the Sliding Surface Parameters  

According to (15), the sliding surface has nonlinear and 
linear components. δ(y) through the nonlinear part alters its 
value from 0 to –α in case the output alters from the initial 
state to the origin. This reduction allows the system damping 
ratio increase from the ζ1 to the ultimate value ζ2. For the 
system in (26) and throughout the initial-state and via 
selecting the factor l with a high value, δ(y) has a small value 
and can be neglected. 


2 21

11 1 12 13 1

11 1

[ ( )( ) ]

[ ( ) ]

dX
M M B y M M b X

dt
B y b X




   

  
  (26) 

The damping ratio can be identified via B. Accordingly, the 
matrix B can be designed with a low damping ratio ζ1. 
Through this paper, the matrix B is identified via the pole 
placement technique with known damping ratio along with 
initial settling time. Throughout the steady-state operation, the 
output approaches the origin point and the function δ(y) 
reaches its ultimate value δ(y) = –α. Consequently, the 
nominal reduced-order dynamics of (22) can be expressed by: 



2 21
11 1 12 13 1

11 1 1 1

11 1 1 1 1

[ ( ) ]

[ ( )]
( )

T

dX
M M B M M b X

dt
M M B M b X

M M m X M mX





   

   
   

 (27) 

where          

 1
Tm B M b   (28) 

or             

 1 0T m B
M b




    (29) 

The parameters m can be calculated like the calculation of B 
for the ultimate damping ratio ζ2. In addition, for the closed-
loop system stability, the matrix b should fulfill the condition 
(17). Moreover, for realizing the target damping ratio, the 
matrix b needs to fulfill (29). Nevertheless, it is hard to obtain a 
matrix b that fulfills both (17) and (29). Consequently, the 
condition of (29) can be updated by (30): 

 1
T m B

M b 



    (30) 

where γ is greater than zero and is scalar. Via employing the 
Schur complement formula, the condition identified via (30) 
can be expressed in this form: 


1

1

0

T

T
T

m B
I M b

m B
M b I







  
       

 (31) 

where I denotes the identity matrix. Based on (31), the design 
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target is to find the matrix b that reduces γ such that: 

 
1 1

0
0T T

b
B M b bM B


  (32) 

 
1

1

0

T

T
T
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  
       

  (33) 

IV. THE DESIGN OF THE PMA-SYNRM NONLINEAR SLIDING 

MODE SPEED CONTROLLER  

In this paper, the nonlinear sliding mode speed control law 
is formulated for (14) via utilizing the nonlinear sliding 
surface in (16). The speed controller should ensure the 
attainment condition for guaranteeing that the system 
trajectory approaches the sliding surface from any initial value 
and afterwards slides laterally the sliding surface to the origin. 
This controller is designed based on theory#2.  

Theory#2: Supposing that the uncertain parameter N is 
bounded via a constant as well as there exists some positive 
constant ε such that ε ≥ ||S||||N||. The nonlinear feedback 
control law can be expressed by (34): 

 ( )
dS

U SMX O sign X
dt

        
 

 (34) 

where O denotes a positive scalar, σ denotes the nonlinear 
sliding surface expressed via (16). Afterwards, the uncertain 
system state in (15) will approach to zero.  

Theory#2 Proof: Based on the standard SMC in [18], the 
sliding surface will reach zero in a finite amount of time in 
case the sliding condition σTdσ/dt is less than zero and 
guaranteed for Ɐσ(t) ≠ 0. Based on (14), (16), and (34), the 
approaching condition is expressed by (35): 

 ( )

T
T

T

T

d dX dS
S X

dt dt dt
dS

S MX WU N X
dt
dS

SMX SWU SN X
dt

  





    
      
      

 (35) 

where SW=I. Eq. (35) can be rewritten by: 
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(36) 

Based on (36), the stable sliding motion is induced through 
a finite amount of time. Afterwards it attains the theory#2 
proof. 

Based on (34), the control law U has the entire derivative of 
the output. Through this paper, the derivative can be obtained 
via employing the robust differentiator of Utkin in [19]. 
Moreover, the ε value in (34) is an indefinite constant. This 
value is attained via this adaptation law: 

 ( )Td sign

dt

  




  (37) 

where β denotes a positive scalar. Via employing (37), the 
controller in (34) can be expressed by: 

 ( )
dS

U SMX O sign X
dt

  
      

 
 (38) 

The validation of the control law of (38) along with the 
adaptation law of (37) is proved via Lyapunov theory. The 
adaptation error can be expressed by (39): 

 d  
 

    (39) 

where εd is an indefinite real value of ε, and εd ≥ ||S||||N||. 
Lyapunov function can be expressed by (40): 


2

1 0.5 0.5TV    


    (40) 

The derivative of V1 and (39) can be expressed by (41): 


1

TdV d d

dt dt dt

   




   (41) 

Based on (36), (39), and (40), one gets: 
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Thus, (37) ensures that: 

 21 0
dV

O
dt

    (43) 

V. THE UNCERTAINTIES ESTIMATOR DESIGN 

Based on (7) and (13), the nonlinear SMC has system 
uncertainties D3 along with load torque disorders TL. These 
indefinite disorders can make the PMa-SynRM speed unstable 
throughout the transient-state operation. Furthermore, they can 
make unpredicted errors throughout the steady-state. So, in the 
PMa-SynRM speed tracking control, knowing these disorders 
is obligatory. Hence, a simple sliding mode estimator is 
employed for estimating the system uncertainties D3 along 
with the load torque disorders TL. 

According to the PMa-SynRM rotor speed representation of 
(7) and for designing a sliding mode uncertainties estimator, 
the sliding surface can be expressed by (44): 

 r r  


   (44) 

where r


 denotes the estimated rotor speed of the PMa-

SynRM and can be obtained from (45): 

 8 9 11 sgn( )r
q r d q r r

d
k I k k I I

dt


   




          (45) 

where ρ is greater than zero. The error dynamics of the sliding 
mode estimator can be obtained from (46): 

 14 3 sgn( )r rd d d
k D

dt dt dt



  

 


        (46) 
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Based on the standard sliding mode approach in [19], the 
steady-state, σω=d σω/dt =0. Via utilizing (40), one gets: 
 14 3 sgn( )k D      (47) 

The estimated uncertainties can be obtained by (48): 

r

qIds ,
 

 
Fig. 2.  The general structure of the ST-SMCC for the dq-axis currents. 

 3
14

sgn( )

(1 )f

D
k S




 



  (48) 

where S denotes the Laplace variable, and τf represents an 
adequately small filter time constant. 

VI. THE DESIGN OF THE SUPER-TWISTING SLIDING MODE 

DQ-AXIS CURRENT CONTROLLERS  

In this paper, both the d-axis and q-axis currents are 
controlled via the ST-SMCC. The d-axis ST-SMCC controller 
is utilized for producing the Vd

*. Meanwhile, the q-axis ST-
SMCC controller is utilized for producing the Vq

*. 
Fig. 2 depicts the general structure of the dq-axis ST-

SMCCs. For the d-q axis currents, the switching function sId,q, 
which represents the difference between the Id,q

* and Id,q can 
be expressed by (49): 

 *
, , ,Id q d q d qs I I   (49) 

where sId,q denotes the switching function. This controller is 
utilized for producing the Vd

* and Vq
*, respectively. The d-q 

axis ST-SMCCs can be represented by (50) and (51): 

  * *
, , , , , 1sgn

r

d q PId q Id q Id q d qV K s s V   (50) 

   
*

, 1
, ,sgnd q

I Id q Id q

dV
K s

dt
      (51) 

where r represents the exponent, which can be distinct for ST-
SMCC. Meanwhile, KIId,q and KPId,q designate the d-q axis ST-
SMCCs integral and proportional gains, respectively. The 
dynamics and response of the ST-SMCCs can be adjusted via 
varying the exponent r along with ST-SMCCs proportional 
and integral gains. 

VII. EXPERIMENTAL RESULTS 

In order to check the effectiveness of the proposed speed 
estimation and the NSMSC approach, a conventional linear 
sliding mode speed controller (LSMSC) is employed instead 
for controlling the three-phase PMa-SynRM (Table I). LSMSC 
utilizes linear sliding surfaces that may not be the proper 
solution for the global dynamic property of nonlinear systems. 
Consequently, sliding cannot occur because of the actuator 
saturation and the instability may be induced if the error is 
large. Moreover, linear sliding surfaces can cause large 
chattering in digital implementation. These problems can be 
solved via exchanging linear sliding surfaces with nonlinear 
sliding surfaces as indicated in this paper. Therefore, the 
performance of the proposed NSMSC is compared with the 

LSMSC and the detailed comparison is presented in this 
section.  

TABLE I 
THE PMA-SYNRM SPECS 

Nominal power (kW) 1.1 Number of pair-poles 3 

Nominal voltage (V) 400 
Inertia of the motor and 
load (kg•m2) 

0.0036 

Nominal speed (rpm) 3000 
Friction coefficient 
(N•m/rad/sec) 

0.0011 

Nominal current (A) 2.3 Nominal torque (N•m) 4.1 
Stator resistance 
(Ω/phase) 

6.2 PM flux (Wb)ˑ 0.305 

d-axis inductance 
(mH/phase) 

25.025 
q-axis inductance 
(mH/phase) 

40.17 

 

 
Fig. 3.  The hardware implementation for the experimental validation setup of 
PMa-SynRM drive system. 

Fig. 3 depicts the lab setup for validating the proposed 
NSMSC for the encoderless PMa-SynRM with specification in 
Table I via utilizing dSPACE 1104. In order to check the 
effectiveness of the proposed encoderless approach, an optical 
encoder is mounted on the PMa-SynRM shaft to measure the 
rotor speed (Speed-meas). The estimated speed is realized via 
reading the current sensors of LA 25-NP for measuring Ia, Ib, Ic 
using, which are converted to Id and Iq and through using these 
readings and using (45), the estimated speed can be obtained. 
The pulse width modulation converter is employed for driving 
the system. Both 10 and 1 kHz sampling frequencies are 
chosen for the current and speed loops, respectively. The 
detailed coefficients of the proposed NSMSC and the LSMSC 
are as follows: ρ=7000, τf = 0.02, ζ1= 1, B= [188.7 0]T, H= 
0.001, b= 4.2×10-6, α=500, l=30, O= 300, β= 2000, k1= 154.34, 
k2=22.78, k3= 24.89, k4= 1.87, k5= 247.75, k6= 39.96, k7= 4.82, 
k8= 381.25, k9= 0.305, k10= 277.78, k11= 18931.25. 

A. The NSMSC Performance under Different Speed 
Command and Full Load 

Fig. 4 depicts the PMa-SynRM performance using the 
proposed speed estimation and the NSMSC versus the 
LSMSC throughout different speed references along with a 
full load condition. As depicted, the transient response of the 
LSMSC is more oscillatory than the proposed NSMSC 
throughout the different speed references condition. The 
steady-state response of the proposed NSMSC has better 
performance with fewer ripples than the LSMSC. In addition, 
the torque ripples via the NSMSC are less than the LSMSC. 
The PMa-SynRM transient response analysis with the (%) 
overshoot and settling time of the motor speed for both the 
NSMSC and LSMSC is summarized in Table II. For high 
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speed range (~50-100%) of rated speed, the proposed NSMSC 
has less overshoot (~28.1-30.8%) compared to LSMSC 
(~15.4-28.7%). Nevertheless, LSMSC has less settling time 
(~0.081-1.277 sec) compared to NSMSC (~0.421-0.758 sec). 
For low speed range (~12.5%) of rated speed, the proposed 
NSMSC has quicker performance with settling time range 
(~0.571-1.008 sec) compared to the LSMSC (~0.176-1.564 
sec). 

 

   

  

    

   
(a)                                                            (b) 

Fig. 4. The PMa-SynRM response using the proposed NSMSC and 
conventional LSMSC at different speed references and full load condition. (a) 
Using the NSMSC. (b) Using the LSMSC. 

TABLE II 
THE NSMSC RESPONSE VERSUS THE LSMSC UNDER DIFFERENT SPEED 

COMMANDS AND FULL LOAD TORQUE CONDITION 

Controller ωr
* Tripple % 

Settling time 
(sec) 

Proposed 
NSMSC 

12.5%ωrated 15.7 0.571 
50%ωrated 14.2 0.421 

100%ωrated 8.5 0.758 
Conventional 12.5%ωrated 20.7 0.176 

LSMSC 50%ωrated 35.4 0.081 
100%ωrated 40.2 1.277 

B. The NSMSC Performance Throughout Electrical 
Parameters Disparities 

Fig. 5 depicts the 3-phase PMa-SynRM response via the 
NSMSC versus the LSMSC throughout +50% increase in the 
stator resistance along with +50% increase in Lq at t=5 sec and 
rated full speed condition. As depicted, the proposed NSMSC 
proved its robustness alongside the electrical parameters’ 
alteration in the PMa-SynRM stator resistance along with the 
Lq. Table III summarizes the response analysis of the PMa-
SynRM based on the mean torque and the torque ripples of 
both controllers.  It  can  be noticed that the proposed NSMSC 

   

 

 

 

 
   (a)                                                          (b) 

Fig. 5. The PMa-SynRM response using the proposed NSMSC and 
conventional LSMSC at electrical parameter disparities condition. (a) Using 
the NSMSC. (b) Using the LSMSC. 
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TABLE III 
THE NSMSC RESPONSE VERSUS THE LSMSC UNDER ELECTRICAL 

PARAMETERS DISPARITIES 

Controller ωr
* Tripple % Tmean (N•m) 

Proposed NSMSC 100%ωrated 0.16 1.021 
Conventional LSMSC 100%ωrated 7.5 1.016 

has less torque ripples (~0.16%) compared to the LSMSC 
(~7.5%). 

C. The NSMSC Performance under Mechanical Parameter 
Variations 

Fig. 6 depicts the PMa-SynRM response via employing the 
proposed NSMSC versus the LSMSC throughout +100% 
increase in motor inertia and +150% increase in the friction 
coefficient at t=5 sec and full rated speed condition. Table IV 
summarizes the response analysis of the PMa-SynRM through 
via employing the proposed NSMSC versus the LSMSC. As 
depicted in Fig. 6, the proposed NSMSC proved its robustness 
alongside the PMa-SynRM mechanical parameter alteration. 
Moreover, the proposed NSMSC has less torque ripples 
(~0.10%) compared to the LSMSC (~5.6%). In addition, the 
NSMSC has higher mean torque (~4.016 N·m) compared to  

TABLE IV 
THE NSMSC RESPONSE VERSUS THE LSMSC UNDER MECHANICAL 

PARAMETERS DISPARITIES 

Controller ωr
* Tripple % Tmean (N•m) 

Proposed NSMSC 100%ωrated 0.1 4.016 
Conventional LSMSC 100%ωrated 5.6 4.011 

  

    

  

  

  
(a)                                                            (b) 

Fig. 6. The PMa-SynRM response using the proposed NSMSC and 
conventional LSMSC at mechanical parameter disparities condition. (a) Using 
the NSMSC. (b) Using the LSMSC. 
the LSMSC (~4.011 N·m). It is worth restating that the 
proposed NSMSC has attained more robust response alongside 
the parameter uncertainties. 

D. The NSMSC Performance under Load Disturbance 
Condition 

Fig. 7 depicts the PMa-SynRM response via employing the 
proposed NSMSC versus the LSMSC at full rated speed with 
load disturbance condition at t=3 sec with full load torque and 
then half of the load torque at t=7 sec. Table V summarizes the 
response analysis of the PMa-SynRM through via employing 
the proposed NSMSC versus the LSMSC. As depicted in Fig. 
7, the proposed NSMSC proved its robustness alongside the 
load disturbance condition. Moreover, the proposed NSMSC 
has less torque ripples (~1.2%) compared to the LSMSC 
(~7.2%). In addition, the NSMSC has higher mean torque 
(~6.1 N·m) compared to the LSMSC (~3.2 N·m). It is worth 
restating that the proposed NSMSC has attained more robust  
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(a)                                                            (b) 

Fig. 7. The PMa-SynRM response using the proposed NSMSC and 
conventional LSMSC at load disturbance condition. (a) Using the NSMSC. (b) 
Using the LSMSC. 

TABLE V 
THE NSMSC RESPONSE VERSUS THE LSMSC UNDER LOAD DISTURBANCE 

CONDITION 

Controller ωr
* Tripple % Tmean (N•m) 

Proposed NSMSC 100%ωrated 1.2 6.1 
Conventional LSMSC 100%ωrated 7.2 3.2 

response alongside the load disturbance condition. 

VIII. CONCLUSIONS 

In this paper, a realization of an adaptive gain tuning rule 
has been designed for the nonlinear sliding mode speed 
control so as to improve the dynamic performance and the 
robustness of the three-phase PMa-SynRM with considering 
the parameter uncertainties has been presented. A detailed 
real-time comparison between the proposed nonlinear sliding 
mode speed control versus the conventional linear sliding 
mode speed control has been introduced. This comparison was 
investigated throughout different speed references, electrical 
and mechanical parameters disparities, and load disturbance 
conditions. The proposed NSMSC gave better response as the 
system reliability increases and the entire cost minimizes. In 
addition, the proposed NSMSC has accomplished rapider 
transient performance at high speed condition. Furthermore, 
less torque ripples and higher mean torque has been attained 
via employing the proposed NSMSC. The intensive 
experimental validation results confirmed that the proposed 
NSMSC approach is more robust than the LSMSC to acute the 
PMa-SynRM mechanical and electrical parameters disparities 
and load disturbance conditions with excellent speed and 
current tracking performance and more robust dynamic 
performance and smaller steady-state errors.  
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