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 
Abstract—The complex working conditions and nonlinear 

characteristics of the motor drive control system of industrial 
robots make it difficult to detect faults. In this paper, a deep 
learning-based observer, which combines the convolutional 
neural network (CNN) and the long short-term memory network 
(LSTM), is employed to approximate the nonlinear driving 
control system. CNN layers are introduced to extract dynamic 
features of the data, whereas LSTM layers perform 
time-sequential prediction of the target system. In terms of 
application, normal samples are fed into the observer to build an 
offline prediction model for the target system. The trained 
CNN-LSTM-based observer is then deployed along with the 
target system to estimate the system outputs. Online fault 
detection can be realized by analyzing the residuals. Finally, an 
application of the proposed fault detection method to a brushless 
DC motor drive system is given to verify the effectiveness of the 
proposed scheme. Simulation results indicate the impressive fault 
detection capability of the presented method for driving control 
systems of industrial robots.  
 

Index Terms—Fault detection, Motor drive control system, 
Deep learning, CNN-LSTM, Industrial robot.  
 

I. INTRODUCTION 

NDUSTRIAL robots at present days play an important role 
in the manufacturing industry. According to a report from the 

ASci Corporation, in the first half of 2021, China's industrial 
robot production continued to increase, reaching 173,600 sets. 
As one of the core subsystems of industrial robots, the driving 
control system has always attracted great attention. However, 
anomalies triggered by abnormal driving control systems take 
up a large proportion compared to other fault cases. To ensure a 
reliable working status and save valuable time, fault detection 
and diagnosis (FDD) for industrial robot driving control 
systems is essential[1]-[4]. 
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In general, fault detection methods for robot driving control 

systems can be divided into three main groups, including 
model-based, signal-based and data-driven methods[5]. 
Model-based fault detection methods are accomplished based 
on the comparison between the estimated and measured signals, 
which are highly dependent on accurate design of the system 
model. However, modeling for nonlinear driving control 
systems is a challenging task due to the complex mapping 
between model parameters and physical operation[6]. 
Signal-based methods perform fault detection tasks by 
analyzing the time-domain signals without modeling. The main 
disadvantages are time-consuming computation and noise 
susceptibility[7]. Recently, data-driven methods, which are 
also known as knowledge-based methods, have been 
extensively studied due to their powerful modeling ability 
without any prior known models or parameters[8]. Deep 
learning technology has now been extensively researched in 
data-driven fault detection. Based on the historical data set, a 
deep CNN model was designed to realize thruster failure 
detection of dynamically positioned vessels[9]. In Ref.[10], a 
CNN-based fault detection and classification method was 
developed in the semiconductor manufacturing process. Zhang 
et al. took full use of raw time series data to train a 
one-dimensional CNN model, which showed good 
performance in fault diagnosis[11]. In Ref.[12], wavelet 
analysis was used to transform the raw data into time-frequency 
images that were regarded as inputs of a CNN model, which 
turned FDD problems into image pattern recognition issues. 
While Wen et al. developed a signal-to-image data 
preprocessing method and proposed a CNN-based fault 
diagnosis scheme[13]. However, for all these FDD methods, it 
is expected to be reliable in fault classification when the 
training data include multiple fault patterns. That is to say, fault 
patterns that are not included in the raw data would hardly be 
classified by the trained model. Although CNN-based models 
are able to extract patterns of local trends of time-series data, 
they fail to capture the sequence pattern information for long 
temporal dependencies[14]. The LSTM is a deep learning 
method based on the recurrent neural network (RNN) that 
overcomes the limitations of the RNN structure by introducing 
memories and gates. An initial fault detection algorithm for 
rolling bearings based on the LSTM was designed and verified 
by experiment results[15]. In Ref.[16], the high impedance 
fault detection of solar photovoltaics based on the LSTM 
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approach was presented. The discrete wavelet transform 
method was taken to extract data features, while the LSTM was 
employed as an intelligent classifier to perform prediction tasks. 
Cheng et al. proposed an LSTM-based method to detect 
anomalies for satellite power systems, where the LSTM was 
conducted to establish a prediction model[17]. To detect 
vibration signal faults for the rotating machinery, the LSTM 
method was adopted as a classifier in Ref.[18]. Generally, the 
LSTM networks are suitable for working with temporal 
correlations, especially long temporal dependencies. One 
challenge to LSTM networks is how to improve their ability to 
explore potential correlations for noncontinuous data. 
Therefore, some literary research tried a hybrid method based 
on CNN and LSTM to exploit the complementary advantages 
of both techniques. Li et al. proposed a hybrid CNN-LSTM 
network for predicting the PM2.5 concentration[19]. Similarly, 
a hybrid CNN-LSTM framework was developed to forecast the 
short-term individual household electric load[14]. In Ref.[20] a 
deep learning model based on CNN and LSTM networks was 
established for fault classification of vibration data of a 
helicopter gearbox mock-up system. The final results indicated 
the promising performance of the CNN-LSTM networks. 
However, to our best knowledge, the hybrid deep learning 
framework employed for fault detection of industrial robot 
driving control systems has rarely been found in the literature. 

In this article, a hybrid deep learning-based observer is 
presented to estimate the outputs of a nonlinear industrial robot 
driving control system by combining CNN and LSTM 
networks. Herein the fault detection is treated as a time-series 
prediction problem. At first, an offline prediction model is built 
by training the CNN-LSTM hybrid network with preprocessing 
data without faults. CNN layers utilize convolution, pooling, 
and padding operations to extract the internal representation of 
time series data and capture important attributes, which are 
subsequently learned by LSTM layers to identify short-term 
and long-term dependencies. The trained model then works as 
an online observer to estimate the outputs of the driving control 
system. As the observer is trained with normal data, the 
residuals between the estimated outputs and the measured 
outputs contain related information when the driving control 
system occurs faults. Thus, a fault detection scheme for 
industrial robot driving control systems is designed based on 
the evaluation of the residuals.                  

To clearly explain the fault detection strategy, a brief review 
of CNN and LSTM networks is conducted to develop a 
nonlinear observer with a hybrid deep learning framework in 
Section II, which lays the foundation for the fault detection 
scheme presented in Section III. Section IV presents the case 
validation to evaluate the proposed method for the industrial 
robot driving control system. The conclusion and future jobs 
are described in Section V.  

II. NONLINEAR OBSERVER WITH HYBRID FRAMEWORK 

Thanks to the powerful approximation capability to complex 
nonlinear functions, deep learning algorithms have been 
extensively applied to the FDD research field[21]-[24]. Owing 
to their promising performance, CNN and LSTM networks 

probably take an overwhelming position in deep learning study 
and application. In this section, a nonlinear observer is 
established based on hybrid CNN and LSTM networks to 
estimate the outputs of the industrial robot driving control 
system. Fig. 1 depicts the framework of the nonlinear observer. 
It can be seen from Fig.1 that the control signals and 
measurement signals are fed into the hybrid deep learning 
network. With the help of normal data, the observer can be 
trained to extract features of the driving control system and 
establish the nonlinear mapping between reference signals and 
system output. To improve the efficiency and precision of the 
proposed observer, the implementation is described in the 
following steps.       

Nonlinear Observer

CNN Layers LSTM Layers

× +

σ

×

σ tanh σ

tanh

×

Data Preprocess

Optimizer：Adam Loss Function：MSE

Driving Control System of 
Industrial Robots

 

Fig. 1.  Framework of the nonlinear observer based on the hybrid neural 
networks.   

A. Data Preprocessing  

As mentioned above, one of the main tasks of the observer is 
to exploit the hidden mapping between inputs and outputs. 
However, the complex working condition of the driving control 
system indicates the nonlinear properties of the mapping 
denoted as (1), where u stands for the input vector, y is the 

output vector, while )(f represents the nonlinear mapping 

function. 
 )(uy f   (1) 

In this work, the raw data acquired from the driving control 

system contains motor speed v , electromagnetic torque eT , 

load torque LT , phase current aI , bI , cI  and control signal 

Ctl . The motor speed would vary considerably across different 
loads as well as control laws. Therefore, the speed observer 
based on deep learning networks should be designed to 
excavate the expression between the speed and the related 
parameters, which is shown as (2), 

  11-1-1-1-  kkLkekakk vCtlTTIfv ,,,,ˆ   (2) 

where subscript k means the time step, ̂ stands for the 
estimated output. Given the ability of the LSTM to extract 
sequence pattern information as well as long-term 
dependencies, the sample of motor speed at the previous time 
step is strongly associated with the current prediction. This is 

the reason that 1kv is adopted as an input parameter in (2). 

Moreover, the Min-Max normalization technique conducted as 
(3), is used to deal with the problem of dimensional 
inconsistency.  
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minx , maxx are the minimum and maximum elements of the 

vector x  respectively, while inormx is the normalized result 

within the range of 0 to 1. To form the training data that can be 
handled by the CNN and LSTM models, each raw data 
sequence is reshaped to a suitable size matrix mN  . Then 

another mN  continuous sample is formed as a new matrix in 
an overlapping manner as shown in Fig. 2. Furthermore, 10% of 
the raw data are taken as the testing data by repeating the above 
processing method. 

 
Fig. 2.  Data Segmentation.   

B. Model Training 

As one of the core modules of the nonlinear observer, the 
hybrid deep learning framework based on CNN and LSTM 
networks takes the responsibility of modeling the driving 
control system. Fig. 3 shows the framework of the proposed 
CNN-LSTM.  

Fig. 3.  Architecture of the CNN-LSTM Network.   

1) Feature Extraction by CNN 

CNN is always used to extract spatial features of the raw data 
considering its multiple filter structure. It can be seen from Fig. 
3 that the CNN designed in this paper contains one dense (or 
fully connected) layer, two convolution layers, and two pooling 
layers. 

The dense layer is designed with 128 units to reshape the 
inputs for convolution operations. By implementing function 
(4), the dense layer preliminarily establishes the feature maps. 
  y ωx b   (4) 

where ω and b represent the weights and offset, respectively. 
The convolution layer extracts essential features by sliding 

kernel filters over the input data. Furthermore, for a filter, it 
shares the same parameters during convolution operation. 
Meanwhile, the zero-padding method is introduced to prevent 
dimension loss problems. To enhance the capacity of the model 
to learn complex structures and nonlinear characteristics, the 
rectified linear unit (ReLU) is taken as the activation function.  
 max(0, )  h x ω b   (5) 

where  stands for convolution operation, ω means the 

weights of the kernel filter, b is the offset and max(0 )，  

indicates the ReLU activation function. The derivative of the 
ReLU function keeps constant 1 for a positive input, which 
effectively deals with the problem of vanishing and exploding 
gradients. 

The pooling layer carries out the down-sampling operation 
on the feature map results of the convolution layer. The 
max-pooling operation enhances the local vision field of the 
model by aggregating similar features with the maximum value. 
Moreover, by sliding a sized 2*2 filter over the input, a 
reduced-dimensional feature map is obtained in this layer. The 
number of neuron parameters to be trained is significantly 
reduced, which in turn prevents the model training from 
overfitting.          

2) Time Sequential Prediction by LSTM 

Although CNN has excellent performance in spatial feature 
extraction, the time series features of the raw data are so 
temporal correlated and implicit that CNN can hardly capture 
them[25]. Consequently, the output of CNN is sequentially fed 
into the LSTM network to establish temporal-spatial 
correlations. The LSTM structure shown in Fig. 4 indicates that 
memory units learn time dependencies information by 
introducing three gates, i.e., forget gate, input gate, and output 
gate. As a core component of a memory unit, the memory cell 
takes the responsibility for state updates and transitions.      

 
Fig. 4. Structure of LSTM.  

The forget gate as the first gate performs the function of 
discarding redundant information by using the Sigmoid. 
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 1( [ , ] )t th x  t f ff ω b   (6) 

where  stands for the Sigmoid function and generates a 
constant between 0 and 1 for each element in the state 

parameter t-1S . 0 means all information discarded and 1 means 

all information reserved. fω , fb are the weights and the offset 

respectively. 
The input gate works to select the latest information to be 

updated with the help of the Sigmoid and Tanh functions. The 

Tanh is taken to create a candidate vector t_estS  that acts 

together with the Sigmoid output ti to add the latest 

information into cell states. 
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i ω b

S ω b


  (7) 

The memory cell takes the Hadamard product and matrix 
addition to perform the discarding and update operations (8). 

The tS is the latest cell state that contains previous time-related 

information. ‘  ’ denotes the Hadamard product.  

  t t t-1 t t_estS f S i S    (8) 

Using Sigmoid and Tanh, the output gate gives the final 
filtered output that is sequentially linked to the next memory 
unit. 

 1( [ , ] ) tanh( )t th x  t o o th ω b S  (9) 

Thanks to the remarkable structure of LSTM, the memory 
units can find the complex time series features in both the short 
and long term. It is depicted in Fig. 3 that the extracted features 
of the CNN module are trained by two LSTM layers to establish 
temporal-spatial correlations. Moreover, two dense layers are 
finally employed to figure out the probability of the expected 
item. 
3) Combination Principle of CNN and LSTM 

According to the hybrid CNN-LSTM framework shown in 
Fig. 3, there are 9 hidden layers to be trained. After the second 
max pooling operation in the CNN part, a sized 1*48 vector as 
the linkage is fed into the LSTM network. For effective model 
fitting of the combination network, those input data are split 
into the training set, validation set and testing set. While the 
mean square error (MSE) loss function, denoted as (10), is used 
to monitor the model validation loss.  

  2

MSE
1

1
ˆ=

N

i i
i

J y y
N 

   (10) 

where N  is the total number of samples. iy stands for the 

system output. ˆ = ( , )iy f b  is the predicted result, a function of 

weights and offsets. Thus, weights and offsets updates are 
conducted as (11). 
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where 
J
 

is the gradient express,  is the learning rate to set 

the step size for parameter update. A well-known optimizer, 
Adam is taken to optimize the learning rate. By repeating 
epochs, parameters such as weights of each layer will be well 
adjusted. Prediction and evaluation will be achieved on the test 
data by loading the last trained model. 

III. ONLINE FAULT DETECTION SCHEME 

In this section, an online fault detection scheme for industrial 
robot driving control systems is developed based on the 
nonlinear observer proposed in Section II.  

A. Problem Statement and Principle  

On the basis of the aforementioned structure, the control and 
measured signals are fed into the CNN-LSTM network for 
offline training, see as Fig. 5. With the help of the Adam 
optimizer, the nonlinear observer is trained to be consistent 
with the target system by minimizing the MSE loss function. 
Then, the trained CNN-LSTM observer is deployed along with 
the target system to carry out the prediction task. When 
anomalies or dynamic changes occur, actual outputs of the 
target system act in an abnormal manner. Given that the 
CNN-LSTM observer is trained by the normal data without 
anomalies, the prediction indicates outputs of the target system 
under normal operation. Thus, to implement fault detection, 
two problems have to be solved,     

Controller Driving Motors

Sensors

CNN-LSTM 
Nonlinear Observer

-

Optimizer：Adam

Loss Function：MSE

-
Residual

Prediction

Output

Fault 
Detection 
Scheme

 
Fig. 5. Fault Detection Diagram Based on the Proposed Nonlinear Observer. 

 As a crucial step of the fault detection method, residual 
generation has a profound impact on the final detection 
results. Therefore, building a residual model for the target 
system by using the CNN-LSTM network will be of great 
importance.  

 For the collected residual signals, establishing a residual 
evaluation method is an effective way of indicating 
anomalies. Hence the evaluation criteria should be figured 
out for the decision of fault detection.  

For the purpose of detecting anomalies, here an online fault 
detection scheme is proposed as Fig. 6 in consideration of the 
above two problems. In the phase of offline model training, 
data of regular operation are pretreated for CNN-LSTM 
network training to build an offline model. While in the phase 
of online fault detection, the trained model is loaded as an 
observer to identify and predict outputs of the target system. 
Finally, residual evaluation is conducted to accomplish fault 
detection tasks. 
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Fig. 6. Online Fault Detection Scheme.   

B. Residual Modeling for the Target System   

It can be concluded from the above description that the 
residual signals between the actual measured output and the 
predicted value are valuable as a diagnostic as they suggest 
failure information that could be incorporated into the target 
system.  

Based on the scheme shown in Fig. 6, to establish the 
residual sequence, an offline trained CNN-LSTM network has 
to be deployed with the target system. The observer is taken to 

make online predictions. kY denotes the predicted value. While 

Yk is the actual output of the target system. The residual 

sequence is denoted as 
k kY Y ε . As mentioned before, the 

CNN-LSTM observer is offline trained to be consistent with the 
target system that is under normal operation. When the target 
system works in some abnormal way, the residual sequence 
will act abnormally. Therefore, anomalies detection can be 
implemented by evaluating the residual sequence, which is 
illustrated in detail on the following section. 

C. Residual Evaluation 

For the purpose of anti-interference performance, the PSNR 
(peak signal noise ratio) index is applied to explore the 
anomalies in the residual sequence. 

1) Z-Score Normalization 

Since the offline model is trained under fault-free conditions, 
the residual sequence converges to a range of stable minimum 
values when the target system runs well. The residual sequence 

can be written as a vector  1 2

T

ke ,e ,e ε . Detecting 

anomalies under the normal residual distribution is sometimes 
difficult, especially when the external disturbances are not 
neglected. Consequently, Z-score normalization is utilized to 
score and rank outliers for the residual vector depending on 
how far the value of the sample is from the mean. Z-score 
normalization for ε is expressed as 

   1 1mean( ) . / std( )Z score N N     ε ε ε Ι ε Ι         (12) 

where mean(ε) and stand(ε) is the mean and standard deviation 
of the vector ε respectively, and IN×1 is a N×1 vector with 
elements of 1. ‘A ./ B’ is an operation that divides each element 
of A by the corresponding element of B. Here, the absolute 
value of each element of the Z scoreε  is calculated to indicate the 

outliers in the residual vector when the target driving system is 
working abnormally.  

2) PSNR Index 

Noises are not eliminated in practical applications. That is to 
say, Z-Score normalization sometimes presents unreliable 
ranking results in case of noise disturbance. Therefore, the 

PSNR index, shown as (13), is taken based Z scoreε  to indicate 

the anomalies. 

 
 

1

2
1 1

mean( )

mean( ) . / std ( )

Z score Z score N

T

Z score Z score N Z score N

PSNR   

    

   

    

ε ε Ι

ε ε Ι ε Ι (13) 

When the target driving system with noise runs normally, the 
PSNR index stays within a range of amplitude. However, faults 
and anomalies lead to abnormal performance for the PSNR 
index. Consequently, the fault detection is finally described as 
(14) 

PSNR T fault free

PSNR T faulty

 
                        (14)

 

T is the designed threshold for the decision rule. It is highly 
recommended that T is set as the mean value of PSNR elements 
from the fault-free training system.  

IV. CASES STUDY 

In this paper, a kind of brushless DC motor is taken as the 
driving system of industrial robots. In this section, a 
three-phase motor rated 1kW, 500Vdc, 3000rpm is fed by a 
six-step voltage inverter. The PI speed regulator is used to 
control the DC voltage, which is inverted to the three-phase 
voltage source of the stator windings. The stator phase 

resistance Rs is 2.875Ω , the stator phase inductance Ls is 

0.0085H, the flux linkage is set to 0.175Wb, while the load 
torque is first set to 0 and steps to 1.5N.m at 1 second. 

A. Nonlinear Observer Model Training 
TABLE I 

CONFIGURATION AND PARAMETER SETTINGS OF THE MODEL 

Parameter Setting 

Optimizer Adam 

Loss Function Mean Square Error (MSE) 

Default Learning Rate 0.001 

Batch Size 128 

Epoch 90 

Adjustment 
Minimum learning rate: 1e-5 
Monitor: validation loss 

Total Hidden Layers 9 (seen in Fig. 3) 

Split Ratio 80% training, 20% validation 
Network Trainable Parameters 28,625 

To verify the validity of the proposed CNN-LSTM observer, 
more than 133 thousand groups of the selected signals (seen 
formula (2)) are collected as a raw dataset in this section. 
Moreover, 119,995 reshaped matrices with 5x5 dimension are 
normalized to feed into the CNN-LSTM network for model 
training. The configuration and parameter settings of the 
proposed model are provided in Table I.  

According to Table I, 20% of the inputs are separated from 
the raw data to validate the model training performance. By 90 
epochs, the loss curve and mean absolute error (MAE) curve for 
training data and validation data are respectively shown in Fig. 
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7 and Fig. 8. For the proposed CNN-LSTM network training, it 
can be seen that the top-left loss curve in Fig. 7 and the top-left 
MAE curve in Fig. 8 of training data are both convergent, while 
the corresponding loss curves of validation data, see 
CNN-LSTM_Val_Loss in Fig. 7 and CNN-LSTM_Val_MAE 
in Fig. 8, stay in a small range. It means that the CNN-LSTM 
model is trained to be consistent with the target system. For the 
sake of comparison, the loss curves and MAE curves for 
training data and validation data based on CNN and LSTM 
network are also presented in Fig. 7 and Fig. 8. Obviously, loss 
curves (see CNN_Loss and CNN_Val_Loss in Fig. 7) and 
MAE curves (see CNN MAE and CNN_Val_MAE in Fig. 8) 
based on CNN network compares unfavourably with other ones. 
Moreover, the loss (see LSTM_Loss and LSTM_Val_Loss in 
Fig. 7) and MAE (see LSTM_MAE and LSTM_Val_MAE in 
Fig. 8) results based on LSTM network are close to those based  

 
Fig. 7. Loss Curves of the Training and Validation Sample. 

 
Fig. 8. MAE Curves of the Training and Validation Sample. 

 

Fig. 9. Model Prediction on the Training and Testing Sample.   

on CNN-LSTM network except the convergence results. The 
proposed CNN-LSTM model holds more stable and convergent 
loss and MAE curves compared to the LSTM network. 

As mentioned in Section II, the rotating speed   is the 
output of the model. To illustrate the prediction performance of 
the proposed network, the prediction results based on CNN, 
LSTM and CNN-LSTM models are respectively presented in 
Fig. 9 for comparison.  

For the target system with a step reference, not only the 
119,995 raw training datasets, but also another 13,333 groups 
of reshaped testing data are utilized for the model prediction. 
Here, the graphs at the top of Fig. 9 are the prediction results of 
the training datasets. Obviously, CNN-based prediction is 
unfavourable in consideration of the undesirable prediction 
error compared with that of other two models. Though the 
LSTM model puts up a good performance, CNN-LSTM model 
holds more robustness and accurate prediction, which is 
indicated by the local subgraphs in Fig. 9. In addition, the 
prediction results on testing datasets, see graphs at the bottom 
of Fig. 9, demonstrate the excellent performance of the 
CNN-LSTM model as well.       

The prediction results are abnormal when the load torque is 
working on the target system, which is seen as the points 
marked by an ellipse at the top of Fig. 9. That is because the 
model has not learned the dynamic changes in system 
parameters caused by the additional torque at that moment. 
Nevertheless, the network quickly optimizes its parameters to 
follow the changed target system.      

B. Fault Detection via the Trained Observer  

Industrial robots always work under complex conditions for 
a long time. As the core component, the driving control system 
of an industrial robot sometimes encounters anomalies. Here in 
this section, two common types of fault are taken to validate the 
proposed fault detection scheme. One is the constant sensor 
bias fault because of the sensitivity and resistance anomalies 
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caused by a change in working temperature. Another is the 
controller output stuck fault caused by an electrical anomaly of 
the DC source.  

1)  Constant Sensor Bias Fault 

Suppose that the driving control system occurs a constant 
sensor bias fault since 0.4 seconds. The measured rotation 
speed feedback is always 200 rpm greater than the actual speed 
output. For the sake of comparison, the rotating speed 
predictions based on the proposed CNN-LSTM observer and 
other deep learning methods, i.e. CNN and LSTM, are 
presented in the first graph in Fig. 10. The other three graphs 
are the corresponding PSNR curves that indicate the fault 
detection results based on different methods. Meanwhile, Table 
II presents the model prediction performance and PSNR 
statistics, false alarm ratio (FR), and missing alarm ratio (MR) 
of different models.    

 
Fig. 10. Constant Bias Fault Detection Based on Different Methods.   

TABLE II  
MSE, MAE AND PSNR RESULTS FOR CONSTANT BIAS FAULT 

Model MSE MAE 
PSNR Statistics 

FR MR 

CNN-LSTM 0.0045 0.0444 0 0.0921 

CNN 0.0337 0.1674 0.2207 0.2105 

LSTM 0.0161 0.0968 0 0.2850 

The superiority of the proposed CNN-LSTM method is 
demonstrated by the graphs in Fig. 10 and the results in Table 
II. 
 Thanks to the PI regulator, the faulty closed-loop driving 

control system can quickly resume a stable state. 

Moreover, for the target system, the proposed 
CNN-LSTM method performs much better than CNN and 
LSTM methods in rotation speed prediction, as its smaller 
MSE and MAE. 

 Although the LSTM model holds lower MSE and MAE 
than those of the CNN model, the unappealing prediction 
graph in Fig. 10, marked as LSTM Prediction, deviates far 
away from the actual output curve. 

 There is no false alarm for this fault based on the proposed 
fault detection scheme. In addition, the 9.21% MR is 
much smaller than that of CNN and LSTM, which proves 
the better performance of the proposed scheme in 
detecting anomalies in view of the dropped FR and MR 
indexes.               

2)  Controller Output Stuck Fault 

Suppose that the controller output used to control the DC bus 
voltage is stuck at 350V since 0.4 seconds. Similar to the 
detection process of the constant sensor bias fault, the rotating 
speed prediction and the PSNR index based on different 
methods are shown in Fig. 11. The corresponding results are 
illustrated in Table III.  

 
Fig. 11. Stuck Fault Detection Based on Different Methods.   

TABLE III  
MSE, MAE AND PSNR RESULTS FOR STUCK FAULT 

Model MSE MAE 
PSNR Statistics 

FR MR 

CNN-LSTM 4.6279*10-5 0.006 0.0009 0.1002 

CNN 0.0121 0.0663 0 0.6427 

LSTM 4.2924*10-4 0.0175 0.0366 0.3403 
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According to the comparison, the proposed CNN-LSTM 
network shows better performance than other approaches in 
model prediction and fault detection. It can be concluded from 
the graphs and the statistics that 
 The faulty system finally holds a new state when the 

controller is stuck. All three models show promising 
prediction indexes, MAE and MSE. In comparison, the 
proposed CNN-LSTM network is slightly better than 
others. 

 As in the first graph in Fig. 11, the proposed CNN-LSTM 
method shows an improved prediction curve compared to 
other predictions. Additionally, the prediction based on 
the CNN model fluctuates in an irregular way when the 
anomaly occurs. 

 Regarding the PSNR statistics in Table III, the FR and MR 
of the CNN-LSTM network show significant advantages 
compared to other methods, especially the great 
improvement in the missing fault alarm ratio. 

In summary, for the driving control system, the proposed 
hybrid CNN-LSTM model shows more promising performance 
in output prediction than CNN and LSTM. Furthermore, the 
above detection results for different fault patterns indicate that 
the hybrid framework makes a significant improvement in 
feature extraction and time-sequential prediction in comparison 
with the basic CNN network and traditional LSTM structure.       

V. CONCLUSION 

A CNN-LSTM hybrid deep learning network is designed as a 
nonlinear observer for driving control systems of industrial 
robots in this paper. With the assistance of the strengths of 
CNN and LSTM, the proposed method enhances the modeling 
performance of the target system by connecting an LSTM 
network to a CNN network. Then anomaly detection of two 
common fault patterns can be realized via analyzing the 
residuals. The superiority of this approach can be concluded as 
three aspects compared with conventional methods. Firstly, the 
hybrid framework focuses on both spatial features and temporal 
correlation of the target system, which is demonstrated by the 
predictions for different cases. Secondly, the CNN-LSTM 
network is equipped with a powerful approximate ability to 
nonlinear systems, which ensures the accurate evaluation of the 
target system based on the trained model. Moreover, the fault 
detection scheme based on residuals utilizes Z-Score and PSNR 
to enhance the detection efficiency. The case study results 
reveal that the designed CNN-LSTM model is an effective and 
promising way of fault detection for the target system. 

This study focuses only on the prediction of the rotation 
speed. In future work, estimation for other parameters, such as 
phase current and electromagnetic torque can be applied to 
make a weight-based decision. Additionally, the validation of 
the proposed scheme for different fault patterns on a 
semi-physical platform will be conducted in the future.          
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