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Abstract: In this paper, ferrites are applied in a partitioned stator wound field switched flux (PS-WFSF) machine to increase the 

air-gap flux density, and hence, the average electromagnetic torque and overload capability. Introducing short-circuited ferrites in the 

inner stator in the PS-WFSF machine can increase the open-circuit phase fundamental back-EMF and average electromagnetic torque 

at a 60 W copper loss by 2.33% and 3.77%, respectively. Moreover, the proposed PS-WFSF machine with ferrites can exhibit a better 

overload capability than conventional PS-WFSF machines without ferrites, e.g., a 7.36% torque increment can be achieved when the 

copper loss is 120 W. The torque increment mechanism is analyzed and verified using finite element (FE) analysis. Moreover, the 

demagnetization of the ferrites in the proposed machine under rated on-load and overload conditions is investigated. Both prototypes 

of the proposed PS-WFSF machine with ferrites and a conventional one without ferrite are built and tested to validate the analytical 

and FE analyses. 

Keywords: Average electromagnetic torque, ferrite, flux switching, partitioned stator, switched flux, torque improvement, 
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1  Introduction  

Permanent magnet (PM) machines with rare-earth 
materials, e.g., NdFeB, have been widely adopted in 
various applications, including electric and hybrid 
electric vehicles, owing to their high torque density 
and efficiency [1-3]. However, rare-earth PMs are 
expensive and their supply is unstable [4]. Hence, 
wound field (WF) synchronous machines without 
rare-earth PMs have recently attracted interest owing 
to their lower cost [4]. Wound-rotor synchronous 
machines contain brushes and slip rings, which are 
essential for DC field excitation [5]. However, they 
can be eliminated in wound-stator synchronous 
machines in which both DC and AC windings are 
placed in the stator while the rotor is similar to that 
of the switched reluctance machine [6], e.g., the WF 
switched flux (WFSF) machine [7-14]. 
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A single-phase WFSF machine was proposed and 
analyzed in Ref. [7], and the prototype was tested as 
a series motor with a current source inverter. 
Three-phase counterparts with various topologies 
were analyzed in Refs. [8-10]. In Ref. [12], an 
analytical method based on air-gap permeance was 
developed for WFSF machines for a faster design. 
In Ref. [13] and Ref. [14], WFSF motors were 
developed for electric vehicles, and prototypes were 
built and tested. WFSF machines also have the 
potential to be used in generators [15-16], including 
high-temperature superconducting generators [17-19] and 
aerospace generators [20-22]. 

Although WFSF machines have a low cost, their 
limitationis also apparent in that the torque density is 
relatively lower than that of rare-earth PM machines. 
Therefore, it is important to enhance the torque density 
of WFSF machines. Based on the magnetic gearing effect 
in stator-excitation machines [23-27], a partitioned stator 
WFSF (PS-WFSF) machine with separated DC and AC 
windings in two stators was proposed and analyzed in 
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Ref. [28], e.g., the 12/10-stator/rotor-pole PS-WFSF 
machine shown in Fig. 1a. Compared with the 
single-stator WFSF machine analyzed in Ref. [8], the 
PS-WFSF machine can exhibit >19% higher torque 
density owing to a higher total slot area for armature 
windings and field winding. 

In this paper, to further increase the torque density 
and overload capability of the 12/10-stator/rotor-pole 
PS-WFSF machine shown in Fig. 1a but not introduce 
any rare-earth PM, based on the contents reported in Ref. 
[29], short-circuited ferrites are applied to increase the 
air-gap field density (Fig. 1b). 

 

Fig. 1  Cross-sections of 12/10-stator/rotor-pole PS-WFSF 

machines without and with ferrites 

This paper is organized as follows. Section 2 
introduces the machine topologies of the proposed 
PS-WFSF machine with ferrites and the conventional 
PS-WFSF without ferrites. The torque increment 
mechanism is analyzed in Section 3. In Section 4, the 
contribution of ferrites and WF winding, as well as the 
armature winding, to the phase flux-linkage is 
analyzed using frozen permeability for open-circuit, 
rated on-load, and overload conditions. The 
demagnetization of the ferrites in the proposed 

machine under rated on-load and overload conditions is 
investigated in Section 5. Prototypes of both PS-WFSF 
machines with and without ferrites were built and tested 
for experimental validation, and they are described in 
Section 6. The conclusions are provided in Section 7. 

2  Machine topology and specifications 

The 12/10-stator/rotor-pole PS-WFSF machine 
without ferrites is shown in Fig. 1a, and it consists of 
an outer stator wound by armature windings, an inner 
stator wound by DC windings, and a sandwiched rotor 
composed of several iron pieces. The main 
dimensional parameters are listed in Tab. 1, which can 
be referred to the linear illustration shown in Fig. 2. 
The parameters from Roso to litb in Tab. 1 are fixed, 
while those from Rosy to θit are globally optimized to 
achieve the largest average electromagnetic torque 
with a fixed total stack copper loss of pcu=60 W under 
brushless AC (BLAC) control and zero d-axis current 
control, i.e., id=0. 

Tab. 1  Main dimensional parameters of 12/10-pole  

PS-WFSF machines 

Item Value 

Outer stator outer radius, Roso/mm 45 

Stack length, ls/mm 25 

Inner stator inner radius, Risi/mm 10.4 

Outer air-gap width, go/mm 0.5 

Inner air-gap width, gi/mm 0.5 

Outer stator tip top length, lott/mm 0.5 

Outer stator tip bottom length, lotb/mm 1.5 

Inner stator tip top length, litt/mm 0.5 

Inner stator tip bottom length, litb/mm 1.5 

Outer stator yoke radius, Rosy/mm 43 

Outer stator inner radius, Rosi/mm 36.5 

Rotor iron piece inner radius, Rri/mm 33 

Inner stator yoke radius, Risy/mm 12.5 

Outer stator tooth arc, θost/(°) 6 

Outer stator tip arc, θot/(°) 4 

Rotor iron piece outer arc, θro/(°) 27 

Rotor iron piece inner arc, θri/(°) 24 

Inner stator tooth arc, θist/(°) 7 

Inner stator tip arc, θit/(°) 5 

PM thickness, TPM/mm 2.5 
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Fig. 2  Linear illustration of dimensional parameters for 

PS-WFSF machines without and with ferrites 

The key specifications of the 12/10-pole 
PS-WFSF machine without ferrites are listed in Tab. 2. 
In Tab. 2, the efficiency η is calculated using 

 100% 100%EM feout

in EM cu

P pP
P P p

η
−

= × = ×
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 (1) 

where Pout and Pin are the output and input power, 
respectively, PEM is the electromagnetic power, and pfe 
is the iron loss, which is calculated using 
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where phy, ped, and pex are the hysteresis loss, eddy 
current loss, and excess loss (neglected), respectively; 
khy=215.7 W/m3, ked=0.35 W/m3, and kex=0 are the 
corresponding coefficients for M270-35A lamination 
steel, respectively; fe is the electric frequency; B is the 
maximum flux density. 

Tab. 2  Key specifications of 12/10-pole PS-WFSF 

machines without and with ferrite magnets 

Item Without ferrite With ferrites

Rated rotor speed, Ωr/(r/min) 400 400 

Rated electromagnetic torque, TEM/(N·m) 1.47 1.53 

Rated electromagnetic power, PEM/W 61.6 64.1 

Rated copper loss, pcu/W 60 60 

Rated iron loss, pfe/W 1.28 1.44 

Rated efficiency, η(%) 49.61 50.49 

Rated power factor, PF 0.462 0.460 

The influence of the ferrite magnet thickness on 
the average torque and the half-field coil slot area is 
investigated based on the dimensions of the PS-WFSF 
machine shown in Tab. 1 (Fig. 3). As shown in Fig. 3, 
the influence on the half-field coil slot area is 

significantly stronger than that on the average torque. 
Because ① a smaller coil area will affect the field 
winding copper loss and the thermal performance, and 
② a small ferrite magnet thickness will affect the 
manufacturing and assembly of the ferrites, the ferrite 
magnet thickness is selected as TPM=2.5 mm. 
Compared with the PS-WFSF machine without ferrites 
shown in Fig. 1a, parallel magnetized slot ferrites with 
a TPM=2.5 mm are applied to the inner stator of the 
proposed PS-WFSF machine with assisted ferrites (Fig. 
1b), while other machine components are the same. 

 

Fig. 3  Influence of ferrite magnet thickness on the average 

torque of the PS-WFSF machine with ferrites (BLAC, id=0) 

3  Torque increment mechanism 

As shown in Fig. 4a, the flux density B1 can be 
produced in both the inner stator tooth and inner air 
gap owing to the WF magnetomotive force (MMF). 
However, an opposite flux density (B2) can be 
generated in the short-circuited magnetic circuit for 
the ferrite MMF (Fig. 4b), while the corresponding 
inner air-gap flux density is B3. Consequently, the 
inner air-gap flux density can be increased from B1 in 
the machine without ferrites (Fig. 4a) to B1’+B3’ in the 
machine with ferrites (Fig. 4c), where B3’<B3. 
Therefore, both the open-circuit phase flux-linkage 
and average electromagnetic torque can be increased 
in the proposed PS-WFSF machine with assisted 
ferrites. This can be evidenced by the two-dimensional 
(2-D) finite element (FE) predicted results shown in 
Fig. 5 and Fig. 6. As shown in Fig. 5, the fundamental 
phase flux-linkage can be increased by 2.33%, from 
0.272 mWb to 0.278 mWb when the number of turns 
of the AC coil is Nac=1. 
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Fig. 4  Magnetic circuit illustration for WF MMF, ferrite MMF 

and WF+ferrite MMF 

 

 

Fig. 5  Open-circuit phase flux-linkages (Nac=1, pcuf=30 W) 

As shown in Fig. 4c, the magnetic paths of B1’ 
and B2’ in the inner stator are in opposite directions. This 
implies that the magnetic saturation of the inner stator 
under open-circuit conditions is lower in the machine 
with ferrites than that without ferrites (Fig. 7). 

 

Fig. 6  On-load average torque waveforms (BLAC, id=0, 

pcua=pcuf=30 W) 

 

Fig. 7  Open-circuit magnetic field distribution of 12/10-pole 

PS-WFSF machines with and without ferrites (pcuf=30 W) 

Furthermore, since the on-load inner stator tooth 
saturation in the PS-WFSF machine without ferrites is 
stronger than the open-circuit one owing to armature 
reaction, the average electromagnetic torque can be 
more effectively increased by 3.77% from 1.47 N·m 
to 1.53 N·m, when both the DC winding copper loss 
(pcuf) and the AC windings copper loss (pcua) are 30 W 
and the machines operate in the BLAC mode under 
id=0, because of negligible reluctance torque [28]. 
Moreover, as shown in Fig. 8, a higher total copper 
loss and hence a stronger saturation will achieve a 
more effective torque improvement, i.e. a 7.36% 
torque increment can be achieved at a 120 W copper 
loss and a 9.63% torque increment can be achieved at 
a 240 W copper loss. This also means that the 
proposed PS-WFSF machine with ferrites has a better 
overload capability compared with the conventional 
PS-WFSF machine without ferrites. 

The 7.36% larger average electromagnetic torque 
in the PS-WFSF machine with ferrites at pcu=120 W is 
due to the higher inner air-gap flux density (Fig. 9), as 
well as the 9.63% larger average electromagnetic 
torque at pcu=240 W (Fig. 4). However, the outer 
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air-gap flux density waveforms for the two analyzed 
machines are similar because the ferrites primarily affect 
the inner air-gap field (Fig. 9). 

 

Fig. 8  Influence of total copper loss on average 

electromagnetic torque (BLAC, id=0, pcua=pcuf) 

 

Fig. 9  Overload flux density in the inner air-gap 

(BLAC, id=0, pcua=pcuf=60 W) 

4  Separation of AC winding flux-linkage 
using frozen permeability 

Using frozen permeability, we can express the 
phase-A flux-linkage ψA as 

 ( ) ( ) ( ), , ,A A A AFP WF FP PM FP ARψ ψ ψ ψ= + +  (3) 

where ψA (FP, WF), ψA (FP, PM), and ψA (FP, AR) are 
the phase-A flux-linkages due to the WF, PM, and 
armature reaction (AR), respectively. 

Eq. (3) can be verified using the FE predicted 
phase-A flux-linkage shown in Figs. 10-12 for the 
open-circuit, rated on-load, and overload with pcua= 
pcuf =100 W, respectively. As shown in Figs. 10-12 
and Tab. 3, the ratio of the peak-to-peak value of ψA 
(FP, PM) to that of ψA is higher with a higher total 
copper loss; hence, the saturation degree is higher. 

This means that the ferrites in the PS-WFSF machine 
with ferrites are more effective with a high magnetic 
saturation, i.e., a higher torque increment than that 
without ferrites. 

 

Fig. 10  Separation of open-circuit phase-A flux-linkage in the 

PS-WFSF machine with ferrites (Nac=1, pcuf=30 W) 

 

Fig. 11  Separation of rated on-load phase-A flux-linkage in 

the PS-WFSF machine with ferrites (BLAC, id=0, 

pcua=pcuf=30 W) 

 

Fig. 12  Separation of rated on-load phase-A flux-linkage in 

the PS-WFSF machine with ferrites (BLAC, id=0, 

pcua=pcuf=100 W) 
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Tab. 3  Peak-to-peak value of phase flux-linkage in a 

12/10-pole machine with ferrites using frozen permeability 

(Nac=1) 

Item Open circuit Rated on-load Overload 

pcuf/W 30 30 100 

pcua/W 0 30 100 

ψA (FP, WF)/mWb 0.550 0.531 0.831 

ψA (FP, PM)/mWb 0.004 0.011 0.041 

ψA (FP, AR)/mWb — 1.057 1.614 

ψA/mWb 0.554 1.087 1.341 

ψA(FP, PM)/ψA(FP, WF) (%) 0.73 1.02 3.08 

5  Demagnetization of a PS-WFSF machine 
with ferrites 

For electrical machines using ferrites, it is important 
to check the demagnetization withstand capabilities under 
rated on-load and overload conditions [30]. Because the 
temperature coefficient of coercivity is positive, ferrites 
are more vulnerable to irreversible demagnetization at 
lower temperatures [30]. Consequently, an operating 
temperature of -20 ℃ is set as the worst condition to 
investigate demagnetization.  

A negative id threatens the ferrites directly, while 
that of the q-axis iq may demagnetize the PMs 
owing to the cross-coupling effect between the d- 
and q-axes [31]. Although the maximum average torque 
of the rated on-load condition at pcu=60 W is obtained 
when the current angle γ=90 electric degrees with id=0, 
that for the overload conditions pcu=120 W and 
pcu=240 W is γ=100 electric degrees with id<0 (Fig. 13). 
Here, these three operating conditions, including   
both ratedon-load and overload were evaluated in  
terms of demagnetization, i.e., (pcu, γ) are (60 W, 90°), 

 

Fig. 13  Influence of current angle on average electromagnetic 

torque in the PS-WFSF machine with ferrites (BLAC, id=0, 

pcua=pcuf) 

(120 W, 100°), and (240 W, 100°). 
In Fig. 14, the white and black areas have flux 

densities higher or lower than 0 T, respectively. As 
shown in Fig. 14, although the flux density along the 
magnetization direction among the major portions is 
higher than the demagnetization limit, i.e., 0 T, 
partially irreversible demagnetization will occur in the 
corner portions around points A and B. Therefore, six 
typical points are selected to investigate the influence 
of rotor position θ on demagnetization, i.e., points A 
and B and four other points C, D, E, and F close to the 
boundary (Fig. 14). 

 

Fig. 14  Flux density distribution of ferrite PM along the 

magnetization direction (BLAC, pcua=pcuf) 
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As shown in Fig. 15, only the corner portions 
around points A and B, close to the inner air gap and 
inner stator tooth tip, suffer from partially irreversible 
demagnetization for all three analyzed operation 
conditions. The largest area with a flux density along 
the magnetization direction smaller than 0 T is shown 
in Fig. 14 for both points A and B in all three analyzed 
operation conditions. Fig. 14 shows that the 
demagnetization area is larger with a larger load. 
Moreover, the area around point D, close to the inner 
stator tooth, poses a risk of demagnetization if the load 
is higher (Fig. 15). 

 

Fig. 15  Flux density of typical points along the magnetization 

direction versus rotor position (BLAC, pcua=pcuf) 

6  Prototypes and experimental validation 

To validate the previous FE predicted results, we 
fabricated and tested prototypes of PS-WFSF both 
with and without ferrites. The two prototypes had the 
same outer stator and cup rotor (Fig. 16a and Fig. 16b, 
respectively). The inner stators of the proposed inner 
stator with assisted ferrites and without ferrites are 
shown in Fig. 16c and Fig. 16d, respectively. The main 
dimensional parameters of the prototypes are listed in 
Tab. 4, which differed slightly from those in Tab. 1 to 
ease manufacturing. Note that for ease of 
manufacturing, the rotor iron pieces were connected 
by Tfb=0.5 mm thick flux bridges, which were adjacent 
to the inner air gap. The open-circuit phase back-EMF 
and static torque under DC winding current If=10 A 
and If=20 A were tested, as described below. 

 

Fig. 16  12/10-pole PS-WFSF prototype machines  

with and without ferrites 

Tab. 4  Main dimensional parameters of the prototypes 

Item Value Item Value Item Value Item Value

Roso/mm 45 Litt/mm 0.5 Roso/mm 45 Litt/mm 0.5

Rosi/mm 31.75 Litb/mm 1 Rosi/mm 31.75 Litb/mm 1 

Risy/mm 15 θist/(°) 6 Risy/mm 15 θist/(°) 6 

Tfb/mm 0.5 θit/(°) 5.5 Tfb/mm 0.5 θit/(°) 5.5

gi/mm 0.5 θri/(°) 24 gi/mm 0.5 θri/(°) 24

As shown in Fig. 17, the improvement in the 
tested phase back-EMFs in the proposed PS-WFSF 
machine with ferrites was not apparent; however, they 
were considerably similar for the two prototypes. This 
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was due to the differences in dimensional parameters 
between the 2-D FE models and the prototypes (Tab. 1 
and Tab. 4), and the introduced rotor flux bridge. 
However, the FE predicted open-circuit back-EMFs 
were validated by the experimental results for both 
prototypes (Fig. 17). They agreed closely with each 
other, although the tested results were slightly lower 
than those predicted using 2-D FE owing to the end 
effect [32]. However, as shown in Tab. 5, the measured 
waveforms exhibited a lower total harmonic distortion 
(THD) than the 2-D FE predicted waveforms in both 
prototypes. Here, the THD of the phase back-EMF 
THDE was defined as 

 
2 2 2
2 3 4

1
E

E E E
THD

E

+ +
=  (4) 

where Ek (k=1, 2, 3,…) is the root mean square value 
of the kth phase back-EMF harmonic. 

 

Fig. 17  Comparison of the measured and 2-D FE predicted 

phase back-EMF waveforms of the 12/10-pole PS-WFSF 

machines without and with ferrites at 400 r/min 

Tab. 5  Characteristics comparison of the measured and 

2-D FE predicted phase back-EMF at 400 r/min 

(MEA=Measured) 

Item 
If=10 A If=20 A 

MEA 2-D FE MEA 2-D FE

Without ferrite, E1/V 0.09 0.08 0.47 0.50 

Without ferrite, THDE(%) 18.4 32.2 6.5 8.1 

With ferrite, E1/V 0.09 0.09 0.50 0.52 

With ferrite, THDE(%) 17.7 29.4 6.0 7.8 

As shown in Fig. 18, the improvement in the 
tested static torques in the proposed PS-WFSF 
machine with ferrites was not apparent but similar for 
the two prototypes when If =10 A or If =20 A and Ia=10 
A or Ia=20 A. This was also due to the dimensional 

differences between the 2-D FE models and prototypes. 
However, the FE predicted static torques was validated by 
the experimental results for both prototypes (Fig. 18 and 
Fig. 19). Moreover, the stronger overload capability 
of the PS-WFSF machine with ferrites than that 
without ferrites was validated by the curves shown 
in Fig. 19, in which the field winding current was If 

=20 A. 

 

Fig. 18  Comparison ofthe measured and 2-D FE predicted 

static torque waveforms of the 12/10-pole PS-WFSF machines 

without and with ferrites 

 

Fig. 19  Comparison of the measured and 2-D FE predicted 

peak static torques of the 12/10-pole PS-WFSF machines 

without and with ferrites (If=20 A) 

7  Conclusions 

In this study, short-circuited ferrites were applied 
in a PS-WFSF machine to increase the air-gap flux 
density and hence the average electromagnetic torque 
and overload capability. By introducing assisted 
ferrites, the open-circuit phase fundamental 
flux-linkage and back-EMF can be improved by 
2.33%, while the rated on-load average 
electromagnetic torque at 60 W copper loss is 
increased by 3.76% owing to a more effective 
saturation reduction. Furthermore, a better overload 
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capability can be achieved in the PS-WFSF machine 
with ferrites, e.g., a 7.36% larger average 
electromagnetic torque than that without ferrites can 
be achieved at a 120 W copper loss. Prototypes were 
built, and the tested results validated the FE analysis. 
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