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Abstract: In this study, the influence of the position of the rotor iron bridge on the DC-winding-induced voltage pulsation in a 

partitioned stator wound field switched flux machine is investigated. Analytical and finite element (FE) analyses show that both the 

open-circuit and on-load DC-winding-induced voltages can be minimized by positioning the rotor iron bridge adjacent to the inner air 

gap closer to the DC winding. This is due to a smoother inner air-gap magnetic reluctance while maintaining the average 

electromagnetic torque at 92.59% of the maximum value. The analyzed machine with the rotor iron bridge adjacent to the inner air 

gap is prototyped, and the experimental results validate the analytical and FE results. 
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1  Introduction  

Nowadays the unstable supply chain and price 
of rare earth element materials may limit the 
large-scale application of permanent magnet (PM) 
machines in electric vehicles and many other 
applications [1-4]. Alternatively, wound field 
synchronous machines in which the field excitation 
is provided by a DC winding can be applied to 
address this challenge [5], which can be divided into 
two categories according to the location of the DC 
winding. 

One is a wound rotor synchronous machine with 
rotor accommodation for DC winding [6], and the 
other is a wound-stator synchronous machine in 
which both the DC and AC windings are placed in 
the stator. The rotor of the wound-stator synchronous 
machines is simple and robust and has neither 
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magnets nor coils, similar to switched reluctance 
machines [7]. Single-and three-phase wound-stator 
synchronous machines with a single stator were 
analyzed in Refs. [8-13], respectively. In Ref. [14], a 
new type of wound-stator synchronous machine with 
two stators wound by DC winding and AC windings 
separately is proposed and analyzed; for example, 
the 12/10-stator-pole partitioned stator (PS) wound 
field switched flux (WFSF) (PS-WFSF) machine, as 
shown in Fig. 1. Owing to higher space utilization, 
PS-WFSF machines can exhibit a higher torque 
density than conventional WFSF machines with a 
single stator [14]. 

In Refs. [13, 15], the DC windings in WFSF and 
PS-WFSF machines suffer from induced voltage 
pulsation, which causes DC current pulsation in DC 
winding, challenges the DC power supply, and 
deteriorates the control performance. In Ref. [13], the 
experimental results show that the DC-winding- 
induced voltage causes a 19% DC winding current 
ripple when the prototype is rotating at 500 r/min. In 



  

 

21 

Zhongze Wu et al.: Influence of Rotor Iron Bridge Position on DC-winding-induced Voltage in Wound 

Field Switched Flux Machine Having Partitioned Stators 

Ref. [15], skewing is introduced to reduce the 
open-circuit DC-winding-induced voltage, based on 
the deduced harmonic orders. 

In this study, the influence of the position of the 
rotor iron bridge on the DC-winding-induced voltage 
in the PS-WFSF machine is investigated, based on the 
contents reported in Ref. [16]. In Section 2, the 
machine topology and operation principle of the 
PS-WFSF machine are introduced. In Section 3, 
DC-winding-induced voltage harmonics are 
analytically modeled, and it shows that the 
DC-winding-induced voltage harmonic contents can 
be effectively suppressed by designing an appropriate 
position of the rotor iron bridge, which is verified by 
finite element (FE) analysis in Section 4. The 
prototype is built and tested in Section 5 to validate the 
analytical and FE results, followed by the 
conclusions in Section 6. 

2  PS-WFSF machine 

As shown in Fig. 1, the stator in the analyzed 
12/10-stator/rotor-pole PS-WFSF machine consists of 
an outer stator wound by AC windings and an inner 
stator wound by DC winding. Different from the 
double stator machines in which two stators are 
electromagnetically duplicated [17-23], in PS-WFSF 
machines they produce armature and excitation 
magnetic fields in the air-gaps, respectively. 

 

 

Fig. 1  Cross-section of the 12/10-pole PS-WFSF machine 

having rotor iron bridge 

Fig. 2a shows a single lamination block of a 
PS-WFSF machine, which has a sandwiched    
cup rotor consisting of several rotor iron pieces 

connected by the rotor iron bridge as shown in  
Fig. 2b, similar to the magnetic gear analyzed in 
Ref. [24]. The rotor iron bridge can help to ease the 
assembling difficulty by connecting the rotor iron 
pieces. 

 

 

Fig. 2  Linear illustration of 12/10-pole PS-WFSF machine 

The dimensional parameters of the analyzed 
12/10-pole PS-WFSF machine are listed in Tab. 1, 
which can be referred to in Fig. 2. Based on the 
restrictions of the dimensions from Laxial to Litb 
shown in Tab. 1, other dimensions in the same table 
are obtained by global optimization with a genetic 
algorithm for the maximum average electromagnetic 
torque when the machine operates in brushless AC 
(BLAC) mode with zero d-axis current control, id=0. 
It should be noted that the position and thickness of 
the rotor iron bridge, that is, dib and Tib, are not 
considered in the global optimization. In this study, 
the thickness is fixed at Tib=0.5 mm to reduce    
the torque density, while the influence of its  
position dib on the DC-winding-induced voltage is 
investigated. 

The key electromagnetic performances of the 
original 12/10-pole PS-WFSF machine without iron 
bridge are listed in Tab. 2. 
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Tab. 1  Key dimensions of the 12/10-pole PS-WFSF machine 

Item PS-WFSF 
Stack length, Laxial/mm 50 
Outer radius of outer stator, Roso/mm 45 
Inner radius of inner stator, Risi/mm 10.4 
Width of outer air-gap, go/mm 0.5 
Width of inner air-gap, gi/mm 0.5 
Length of outer stator tip top, lott/mm 0.5 
Length of outer stator tip bottom, lotb/mm 1.5 
Length of inner stator tip top, litt/mm 0.5 
Length of inner stator tip bottom, litb/mm 1.5 
Yoke radius of outer stator, Rosy/mm 43 
Inner radius of outer stator, Rosi/mm 36.5 
Radius of rotor inner surface, Rri/mm 33 
Yoke radius of inner stator, Risy/mm 12.5 
Arc of outer stator tooth, θost/(°) 6 
Arc of outer stator tip, θot/(°) 4 
Arc of rotor piece outer edge, θro/(°) 27 
Arc of rotor piece inner edge, θri/(°) 24 
Arc of inner stator tooth, θist/(°) 7 
Arc of inner stator tip, θit/(°) 5 

Tab. 2  Key performance of the original 12/10-pole 

PS-WFSF machine without iron bridge 

Item PS-WFSF

Rated rotor mechanical speed, Ωr/(r/min) 400 

DC winding stack copper loss, pcuf/W 60 

Number of turns per DC coil, Nfc 90 

DC winding current, If/A 3.64 

AC windings stack copper loss, pcua/W 60 

Number of turns per AC coil, Nac 18 

AC windings phase current, Irms/Arms 15.24 

Rated AC windings phase back-EMF @400 r/min, Ermsr/Vrms 4.08 

Rated on-load average electromagnetic torque, Ta/(N·m) 2.93 

Rated on-load average electromagnetic power @400 r/min, Par/W 122.53

Similar to other types of stator-excitation 
machines, the operation principle of PS-WFSF 
machines can be explained by the magnetic gearing 
effect [12, 25-27]. Due to the modulation effect of the 
rotor on the DC winding MMF and AC windings 
MMF, pairs of synchronized open-circuit and armature 
reaction air-gap field harmonics will be generated, and 
hence the average electromagnetic torque will be 
produced in the air gap. 

3  DC-winding-induced voltage 

3.1  Inner air-gap permeance 

Based on Refs. [27-28], the inner air-gap 
permeance Λi(δ, t) can be expressed as 

 ( ) ( ) ( )
0

, ,i
i is ir

g
t t≈Λ δ Λ δ Λ δ

μ  (1) 

where gi is the inner air-gap width, μ0 is the vacuum 
permeability, δ is the spatial mechanical position of the 
inner air gap, and Λis(δ) is the inner air-gap permeance 
with the slotted inner stator and slotless rotor inner 
side, as shown in Fig. 3a. Λir(δ, t) is the inner air-gap 
permeance function with a slotless inner stator and 
slotted rotor inner side, as shown in Fig. 3b. They can 
be expressed as Fourier series as 
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where Sis=2Λ1/π, Sir=2Λ2/π, Misi= –sin(iNsθ1)/i, Mirj= 
sin(jNrθ2)/j. Λis0 and Λir0 are the DC components of Λis 
and Λir, respectively. Ns and Nr are the number of 
stator and rotor poles, respectively. θ1 is half the sum 
of the inner stator tooth arc and inner stator tooth tip 
arc. θ2 is half the inner arc of the rotor iron piece. Ωr  
is the mechanical speed of the rotor. θ0 is the initial 
rotor position. 

 

Fig. 3  Illustration of inner air-gap permeance components  

Λis(δ) and Λir(δ, t) 

Based on Eqs. (2a) and (2b), Λis(δ)Λir(δ, t) in Eq. 
(1) can be rewritten as 
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where a, b, c, and d can be given by 
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3.2  DC winding MMF and AC windings MMF 

As shown in Fig. 4, the air-gap DC winding 
MMF Ff is a square wave with the air-gap 
circumferential position δ, which can be expressed as 
Fourier series 
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where Sf=4NfcIf/π, Mfi=cos[(2m–1)Nsθ1/2]/(2m–1). 

 

Fig. 4  Illustration of DC winding MMF Ff 

The AC windings are injected by three-phase 
symmetrical sinusoidal currents, which can be 
expressed as 
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The AC winding MMF FABC is illustrated in Fig. 
5, where FA, FB, and FC are the A-, B-, and C-phase 
MMFs, respectively. The AC winding MMF FABC can 
be given by 
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where SABC= 3 2 NacIRMS/π, MABCn=sin(4nθ3)/n, ωe is 
the electric frequency, and ωe is NrΩr. 

 

Fig. 5  Illustration of AC windings MMF FABC 

3.3  Inner air-gap flux density and DC-winding- 
induced voltage harmonics 

The inner air-gap flux density Bi(δ, t) can be 
given by 

 ( ) ( ) ( ), , ,i iB t F t t=δ δ Λ δ  (8) 

where F(δ, t) is the air-gap MMF. When the saturation 
in the lamination steel is neglected, it can be  
expressed as 

 ( ) ( ) ( ), ,f ABCF t F F t= +δ δ δ  (9) 

Combining Eqs. (1), (3), (5) and (7)-(9), the inner 
air-gap flux density Bi(δ, t) harmonic orders consist of 
p, q, and |α±β| (α=a, b, c or d, β=p or q). Since only 
rotating field harmonics can induce voltage pulsation, 
and the parameters a and p are time-invariant, as 
shown in Eqs. (4) and (5), there is no DC-coil-induced 
voltage due to p or |a±p|. Hence, the rotating inner 
air-gap field harmonics can be calculated and are listed 
in Tab. 3. 

Tab. 3  Rotating inner air-gap field harmonics 

No. MMF
Spatial 

harmonic 
orders

Spatial harmonic orders in 
12/10-pole machine 

Rotating 
electric 

speed, ωe

Amplitude 
∝ 

1 

Ff 

b±p 10j±6×(2m–1) j SirIf 

2 c±p 10j±6×[2(m±i)–1)] j SirSisIf 

3 d±p 10j±6×(2(m∓i)–1] j SirSisIf 

4 

FABC

q 

10−6×[2(r–1)–1)] 1 

IRMS 
10−6×(2r–1) 1 

10+6×[2(r–1)–1)] 1 

10−6×[2(r+1)–1)] −1 

5 a±q 
10+6×[2(r±i–1)–1)] 1 

SisIRMS 
10−6×[2(r±i+1)–1)] 1 

6 b±q 
10×(j±1)±6×[2(r–1)–1)] j±1 

SirIRMS 
10×(j±1)∓6×[2(r+1)–1)] j±1 

7 c±q 
10×(j±1)±6×[2(r±i–1)–1)] j±1 

SirSisIRMS
10×(j±1)±6×[2(–r±i) –1)] j±1 

8 d±q 
10×(j±1)±6×[2(r∓i–1)–1)] j±1 

10×(j±1)±6×[2(–r∓i)–1)] j±1 



Chinese Journal of Electrical Engineering, Vol.7, No.3, September 2021 

 

24

As shown in Tab. 3, the open-circuit DC 
winding MMF harmonics No. 1-3 will induce the jth 
order harmonics in DC coils, where j is the harmonic 
order of Λir(δ, t) given in Eq. (2b). When the position 
of the rotor iron bridge is closer to the inner air gap, 
that is, when dib is larger, the inner air-gap rotor 
saliency, and hence Λ2 in Fig. 3b and Sir in Eq. (2b), 
is smaller. When the rotor iron bridge is adjacent to 
the inner air gap, that is, when dib achieves the 
maximum value dibmax=2.5 mm, Sir is zero. Hence, 
the amplitudes of the No. 1-3 harmonics in Tab. 3 are 
zero. This means that the open-circuit 
DC-winding-induced voltage can be theoretically 
reduced to zero by designing an inner air-gap 
adjacent rotor iron bridge. 

For the on-load operation condition, a zero inner 
air-gap rotor saliency, and hence a Sir=0, is also helpful 
in reducing the inner air-gap field harmonic 
amplitudes due to the armature reaction AC windings 
MMF in Tab. 3. By reducing the amplitudes of the No. 
6-8 harmonics to zero, only No. 4 and No. 5 
harmonics remain for the on-load operation condition. 
This means that the on-load DC-winding-induced 
voltage can also be reduced by designing a rotor iron 
bridge adjacent to the inner air gap. 

4  Finite element verification 

As concluded by the analytical analysis in 
Section 3, it is recommended to design the rotor iron 
bridge in the PS-WFSF machine adjacent to the inner 
air gap closer to the DC winding to achieve a smoother 
inner air-gap magnetic reluctance and hence a low 
DC-winding-induced voltage. This can be verified by 
the FE predicted influence of the position of the rotor 
iron bridge on the DC-winding-induced voltage and 
average electromagnetic torque, as shown in Fig. 6. 
Both the peak-to-peak values of the open-circuit and 
on-load DC-winding-induced voltages Eopen and Eload 
reduced with a higher dib. Owing to the reduced 
air-gap field harmonic amplitudes, the average 
electromagnetic torque Ta is also smaller with a larger 
dib. Compared with the machine with dib=0, the 
average torque Ta of the machine with dib=2.5 mm will 
be slightly reduced by 7.41% from 2.18 N·m to 
2.03 N·m, as shown in Fig. 7. However, the average 
electromagnetic torque of the original PS-WFSF 

machine without an iron bridge is Ta=2.93 N·m, as 
shown in Tab. 2. 

 

Fig. 6  FE predicted variation of DC-winding-induced voltage 

and average electromagnetic torque  

with the position of rotor iron bridge 

 

Fig. 7  On-load electromagnetic torque waveform 

for various dib (BLAC, id=0) 

Fig. 8 shows the FE predicted inner air-gap radial 
flux densities in the machine with dib=0 and dib=2.5 
mm. As shown in Fig. 8, most of the static harmonics 
in the machine with dib=2.5 mm are higher owing to 
the increment in average inner air-gap permeance. 
However, these static field harmonics cannot generate 
the induced voltage in DC winding. Both open-circuit 
and on-load inner air-gap rotating field harmonics can 
be effectively suppressed by designing an inner air-gap 
adjacent rotor iron bridge with dib=2.5 mm, verifying 
the analysis in Section 3. 

As shown in Tab. 2, the open-circuit 
DC-winding-induced voltage predicted by the 
analytical model can be reduced to zero by designing 
dib=2.5 mm. However, as shown in Fig. 9, it has some 
non-zero harmonics due to the lamination steel 
saturation, which is neglected in the analytical model 
in Section 3. As a result, Eopen can be reduced by 
89.92% from 2.78 V in the machine with dib=0 to 0.28 
V with dib=2.5 mm. 
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Fig. 8  Comparison of the FE predicted inner air-gap  
radial flux density 

 

Fig. 9  Open-circuit DC-winding-induced voltages  

at 400 r/min for various dib 

As shown in Fig. 10, Eload can be reduced by 
57.28% from 7.14 V in the machine with dib=0 to 3.05 

V in the machine with dib=2.5 mm. However, not all 
harmonics achieve the smallest value when dib=2.5 
mm. As shown in Fig. 10b, a smaller 6th harmonic can 
be obtained when dib=1 mm. This is caused by the 
lamination steel saturation and the various initial 
phases for different inner air-gap spatial harmonics 
with a 6ωe rotating electric speed––all of which 
generate the 6th DC-winding-induced voltage 
harmonic. 

 

Fig. 10  On-load DC-winding-induced voltages  

at 400 r/min for various dib 

5  Experimental validation 

Since the machine with dib=2.5 mm exhibits the 
smallest DC-winding-induced voltage, it is built and 
tested to validate the previous analytical and FE 
analyses, as shown in Fig. 11. 
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Fig. 11 Photos of the 12/10-pole PS-WFSF prototype  
with dib=2.5 mm 

Since the influence of the DC power supply on the 
induced voltage cannot be separated, the induced 
voltage of the entire DC winding but that of DC coil 2 is 
measured [15]. DC coils 2k (k=1, 2, 3, …, 6) are 
open-circuited, while the rest are connected in series 
with a doubled current for the same DC winding MMF. 

Fig. 12 and Fig. 13 show the measured 
open-circuit and on-load DC coil 2 induced voltages of 
the prototype at 400 r/min, respectively. As shown in 
Fig. 14, both agree well with their counterparts 
predicted by FE, as well as the phase-A winding 
back-EMF. This trend also applies to the static torque, 
as shown in Fig. 15. 

 

Fig. 12  Measured open-circuit A-phase winding back-EMF 
(CH1), DC winding current (CH2),  

and DC coil 2 induced voltage (CH3) 

 

Fig. 13  Measured on-load rotor electric position (CH1), 
A-phase winding current (CH2), DC coil 2 induced voltage 

(CH3), and A-phase winding voltage (CH4) 

 

Fig. 14  Variation of measured and FE predicted A-phase 

winding back-EMF, open-circuit and 

on-load DC coil 2 induced voltages at 400 r/min 

 

Fig. 15  Variation of measured and FE predicted static torques 

(Ia=−2Ib=−2Ic) 

6  Conclusions 

In this study, the influence of the position of the 
rotor iron bridge on the DC-winding-induced voltage 
in a PS-WFSF machine is investigated. Based on the 
MMF-permeance model, the air-gap harmonics of 
the PS-WFSF machine were analyzed. This shows 
that a proper iron bridge position can help reduce 
air-gap harmonics, and hence the DC-winding- 
induced voltage. As predicted by the analytical 
model and verified by the FE model, it is 
recommended to design the rotor iron bridge 
adjacent to the inner air gap closer to the DC 
winding. This is to achieve a smoother inner air-gap 
magnetic reluctance and hence a lower DC- 
winding-induced voltage, although the average 
electromagnetic torque is slightly reduced. 
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