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Abstract: A novel maximum power-point tracking approach is proposed based on studies investigating the output characteristics 

of photovoltaic (PV) systems under partial shading conditions. The existence of partially shaded conditions leads to the presence of 

several peaks on PV curves, which decrease the efficiency of conventional techniques. Hence, the proposed algorithm, which is based 

on the modified particle-swarm optimization (MPSO) technique, increases the output power of PV systems under such abnormal 

conditions and has a better performance compared to other methods. The proposed method is examined under several scenarios for 

partial shading condition and non-uniform irradiation levels using Matlab, and to investigate its effectiveness adequately, the results of 

the proposed method are compared with those of the neural network technique. The experimental results show that the proposed 

method can decrease the interference of the local maximum power-point to cause the PV system to operate at a global maximum 

power-point. The efficiency of the MPSO is achieved with the least number of steady-state oscillations under partial shading 

conditions compared with the neural network method. 

Keywords: Photovoltaic(PV), maximum power point tracking(MPPT), step-up converter, artificial neural networks (ANNs), 

particle-swarm optimization (PSO) 

 

1  Introduction1 

The sustainability of solar energy and the 

resulting reduction in its material cost has led to the 

widespread application of photovoltaic (PV) systems 

in daily lives. However, during the practical 

implementation of PV systems, their short life cycles 

and low energy efficiency are the main associated 
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problems. The main reasons for this are the power loss 

and hot-spots, which are caused by the presence of 

partial shadows. 

Under uniform irradiation levels, the tracking 

process of the maximum power-point of PV systems 

based on classical strategies can have a suitable 

performance. However, if a PV system operates under 

a partial shading condition (PSC), the power-voltage 

(P-V) characteristic curve of the PV system will have 

different local maximum points resulting from the 

connection of bypass diodes to reduce the impact of 

hot-spots. 

The existence of several peaks on the PV 

characteristic curve increases the complexity 

associated with the extraction of the global maximum 
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point under these conditions, and there is a need to 

propose a more suitable control system that can 

distinguish between local and global maxima to ensure 

the maximum possible power, thus enhancing the total 

system efficiency. For this reason, the key purpose of 

this study is to propose an intelligent maximum 

power-point tracking (MPPT) tracker that enables the 

efficient prediction of the global maximum 

power-point (GMPP) from a PV system, regardless of 

the condition of the surrounding atmosphere, whether 

under uniform or non-uniform solar irradiation levels. 

In the literature, several global MPP search 

algorithms have been developed to determine the 

global MPP under conditions of partial shading. 

The attempt to deal with such a difficulty has 

been reported in a few papers. Furthermore, a large 

number of these methods have some disadvantages, 

such as their complexity, difficult implementation, 

high cost, and the need for multiple measured 

parameters. A straightforward MPPT method using the 

Fibonacci line search has been observed in Ref. [1]. In 

this method, the research limit is moved repeatedly to 

benefit from the best advantage of the search limit, 

which can track the MPP under the condition of 

uniform irradiation or stable change of irradiation. 

However, it is difficult to extract the global peak under 

local shading and harsh environmental conditions. In 

Ref. [2], the authors designed a three-layer 

feed-forward artificial neural network (ANN) with a 

controller based on polar information for the global 

point tracking of partially shaded solar arrays. 

However, the results of this method were accompanied 

by some drawbacks, such as the excessive complexity 

of the control scheme and a large number of 

computations. In Refs. [3-4] a tracking method was 

proposed to determine the maximum power using both 

simulation software and hardware implementation. 

This method is based on particle swarm optimization 

(PSO), which extracts the global peak (GP) in the case 

of partial shadows to boost the output power of the 

solar system. This technique catches and finds the 

GMPP under various climate circumstances, but the 

global peak should be distinguished via the features of 

the output PV array. Therefore, the function must be 

converted by the output PV array curves, and the PSO 

algorithm is then applied to obtain the global optimal 

solution. Therefore, under any rapid variation of 

irradiation level or partial shading, there will be a large 

number of computations and tracking times. All the 

previously mentioned methods have been designed 

with less intensive non-uniform irradiation levels and 

partial shading. In addition, these methods have 

common weaknesses, such as slow tracking speed, the 

need for training, and obtaining the local optimum. 

In Ref. [5], a new metaheuristic algorithm is 

proposed, namely the adaptive radial movement 

optimization (AMRO), to overcome the output 

problems of PV systems under the PSC, and the 

working process of AMRO is very similar to that of 

RMO. However, in the whole process of the algorithm, 

the coefficients in the AMRO will change adaptively. 

AMRO starts the optimization process by scattering 

multiple particles in a predefined search space. The 

scattered particles are then used as a proposed solution. 

Therefore, the main difference between AMRO and 

other optimization methods is the motion mode of 

particles. ARMO can the MPPT control unit to track 

the GMPP under the PSC. A differential evolution (DE) 

optimization algorithm is proposed in Ref. [6] to track 

and capture the precise GMPP that is executed by a 

single-ended primary inductor converter (SEPIC). The 

result is fast convergence to GMPP. Ref. [7] focuses 

on the performance evaluation and provides a detailed 

comparison for the most recent six works based on 

artificial intelligence technology, which can carry out 

MPPT according to the PSC. 

In Refs. [8-12], modifications of conventional 

MPPT methods are proposed to improve the efficiency 

and performance of these methods, which is an 

improved P&O (MPPT) method based on the adaptive 

duty cycle step of fuzzy logic controllers 
[8]

, and a new 

IC MPPT algorithm is proposed using direct control 

based on the fuzzy duty cycle change estimator 
[9]

. 

Some modifications to the IC method are proposed in 

Refs. [10-12] to extract the GMPP of PV systems 

under the PSC. Ref. [13] proposes a simple and fast 

convergence MPPT method that does not require 

additional control loops or intermittent links. The 

algorithm uses the relationship between the load line 

and I-V curve and combines with the triangle rule to 

obtain a fast response. 

The PSO technique is a method that uses a 
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“swarm” of potential solutions to improve an optimal 

solution to the problem 
[14]

. With this method, the level 

of optimality is measured using a fitness function. The 

PSO is different from other methods of evolutionary 

computation so that members of the swarm, which are 

called “particles”, are dispersed in the space of the 

problem. This paper proposes MPSO and ANN 

algorithms to address the complex nonlinear problem 

of PV systems. Nowadays, heuristic algorithms (PSO) 

have been applied to resolve different engineering 

problems, such as: ① nonlinear optimization problems; 

②  training neural networks; ③  heating system 

planning; and ④ power systems. According to the 

investigation, the PSO technique is easy, effective, and 

robust, and it is a population-based algorithm that can 

be used to treat optimization problems. Some 

modifications are necessary to enhance the 

performance of PSO. Therefore, MPSO modifies 

the velocity step function, controls the velocity 

limit, and controls the search space, as presented 

in detail in Section 6. Therefore, this work 

determines the performance of the MPSO and 

ANN MPPT method under various solar irradiation 

conditions and PSCs.  

Section 2 discusses the PV array model, and 

Sections 3 and 4 discuss PSC and the effect of the 

bypass diode, respectively. Section 5 explains the use 

of the DC-DC boost converter, while Section 6 

presents the MPSO algorithm and application to MPPT. 

Section 7 discusses simulation results, and Section 8 

presents the conclusions. 

Significant contributions are incorporated in this 

work, and these are summarized as follows. 

(1) A modified version of the particle swarm 

optimizer is proposed to enhance the performance of 

MPPT of PVs under the PSC.  

(2) Modified particle swarm optimization (MPSO) 

is compared with an ANN in order to extract the true 

maximum energy from the PV panel at different 

radiation levels under PSCs. 

2  Formulation of PV system  

PV cells are a primary ingredient of solar power 

generation. They use PN junctions to generate a solar 

PV effect and convert solar energy into electricity. The 

output power of a single PV cell is small. However, in 

actual applications, the desired power can be achieved 

once they form a PV array either in series or parallel. 

The output features of PV arrays are nonlinear and 

time-varying and are easily influenced by the incident 

light intensity, cell temperature, load conditions, and 

parasitic impedance, among other factors, resulting in 

solar energy utilization that cannot always be 

maximized 
[15-16]

. 

PV cells are made up of semiconductor material 

PN junctions that generate a direct voltage when 

receiving a PV light. They may be symbolized by a 

parallel connection of both a constant current source 

and forward diode. The equivalent electrical circuit of 

the solar PV cell is seen in Fig. 1, where Iph is the 

photon-provided current, and its value depends on the 

light-receiving area of the PV cell, the illumination 

intensity of the incident light, and the surrounding 

temperature; ID is the reverse current in the PV cell; Ish 

is the shunt current that goes through the bypass 

resistor Rsh, and it is generated owing to the battery 

edge and metal bridge leakage on the metal electrode; 

Rs is the series-connected resistor, which is related to 

the contact resistance and the resistivity of the material 

itself; Ipv and Vpv are the solar PV current and voltage, 

respectively. 

 

Fig. 1  Equivalent circuit of PV cell 

To simulate the PV cell in Matlab/Simulink, the 

mathematical equation of the equivalent circuit output 

module is needed. Therefore, Kirchhoff’s Current Law 

(KCL) is used to calculate the output current Ipv of PV 

cells, as shown in the following equation 

 
 

exp 1
pv pv s pv pv s

pv p ph p o
shs

q V I R V I R
I N I N I

RN AKT

    
       

      

(1) 

where Vpv is the solar cell voltage, Rs is the 

series-connected resistor, Rsh is the shunt resistance, q 

is the electron charge (1.6×10
－19

 C), Ns is the number 

of solar cells connected in series, Np is the number of 

solar cells connected in parallel, Io is the reverse 

saturation current under typical test conditions, T is the 



  

 

109 

Al-wesabi Ibrahim et al.: PV Maximum Power-point Tracking Using Modified Particle Swarm 

Optimization under Partial Shading Conditions 

degree of absolute temperature, A is the value of the 

diode ideality constant, and K is the Boltzmann 

constant (1.38×10
－23

 J/K). 

3  Principle of partial shading 

The shading of PV modules can be either 

partial or total owing to the movement of objects 

that can block the sunlight from the PV modules. As 

a result, the output attributes of solar modules are 

more complex with various peak points. The P-V 

curve of the shaded PV array has multiple local 

peaks, rather than only one peak for non-shaded PV 

arrays. Therefore, only the global peak can assure 

the highest power rather than the other different 

peaks. Global peaks and local peaks are shown in 

Figs. 2a-2b. 

 

 

Fig. 2  P-V and I-V curves under PSC condition 

The PV array may be defective owing to different 

aging effects. These effects may also result from 

different outer reasons, which include dust, dirt, 

surrounding plants, and bird droppings, which cause 

partial or total shading conditions and increased 

internal temperature. Hence, these may be the reason 

for more optical and physical cell degradation 

phenomena. 

At times, designers do not consider the shading 

effect, which can be easily ignored. For this reason, it 

is essential to perform detailed predictions of the solar 

resources, considering different factors such as the 

orientation, inclination, and potential shading by 

surrounding trees and buildings. In addition, the partial 

shading problem should be resolved by performing a 

technical solution that can maximize the extracted 

power. 

4  Effect of bypass diode 

In recent years, a serious concern affecting PV 

modules is the partial shading condition because of 

difficulties such as shade due to buildings, trees, sand, 

and objects 
[17]

. The outcomes of the PSC are the hot 

spot phenomenon in PV cells. Therefore, to protect the 

PV modules from the damaging effects of hot-spots, 

problems can be addressed by connecting each module 

with a bypass diode, as shown in Fig. 3. The PSC has a 

higher impact on decreasing the power of solar 

systems, which rely on the shading pattern, a number 

of bypass diodes, and the configuration of solar 

systems. 

The shaded PV module acts as a load rather than 

a generator in that it becomes reverse biased and 

generates heat. This is called the hot-spot effect, and if 

this generated heat exceeds a certain limit, it then 

causes breakdown and damages the cell, becoming an 

open circuit. The bypass diode is inserted into the PV 

system, as shown in Fig. 3, to prevent such a 

dangerous situation. If the PV modules are exposed to 

normal conditions, the bypass diodes will be in the 

reverse cut-off state. If the PV modules are exposed to 

the PSC, the bypass diode conducts to form a 

short-circuit, preventing it from being reversed by the 

reverse leakage current and increasing the overall 

output power. 
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Fig. 3  Modeled subsystem of PV system under the condition of partial shading 

5  DC-DC boost converter 

DC-DC converters are extensively implemented 

in PV systems as a link device between the PV 

generating system and the consumers. In addition, they 

are used to match the process between the voltage of 

PV panels at the MPP and the load voltage. The main 

function of the DC-DC converter is to convert an input 

power Pin = Vin × Iin to Po = Vo × Io with the most 

feasible efficiency. The DC-DC converter is used to 

alter the input voltage level to a higher or lower level. 

Hence, the efficiency η of the DC-DC converter can be 

acquired from Eq. (2) as follows 

 o o o

in in in

P V I

P V I



 


            (2) 

As a result, the relationship between the output 

and input parameters can be calculated as in Eq. (3). 

 
o o in inV I V I               (3) 

The efficiency remains almost constant at specific 

values of the converter current and voltage. Any 

increments of Vin or Iin in Eq. (3) increase in either Vo 

or Io. The DC-DC converter used in this work is a 

boost converter, which steps up the PV voltage level to 

a high output voltage level.  

The block diagram in Fig. 4 shows the basic 

components of the boost converter. Boost converters 

are  

 

Fig. 4  Equivalent circuit of boost converter 

used in applications that require that the input voltage 

be stepped up to a higher level. The voltage ratio can 

be calculated as shown in Eq. (4). 

  1 1o iV V D               (4) 

The duty cycle D in Eq. (4) varies between 0 and 

1. This means that the voltage ratio is always greater 

than 1, which causes the converter to be used as a 

step-up converter 
[18-19]

. 

6  Particle swarm optimization 

PSO is a search method that is based on the 

algorithm for improving population randomization, 

where the swarm can be retained for each individual 

particle to represent the candidate solution. The ideal 

solution for the problem is represented by the position 
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in the optimum particle space while the orientation of 

particles and the velocity value are determined by the 

particle’s velocity vector, where each particle obeys 

the current optimal particle and searches the 

optimization in the solution are based on the 

experience of itself flying 
[20-22]

. Although the PSO has 

some advantages, including robustness, flexibility, and 

rapidity, during the tracking process, it is easy for the 

MPP to fall into the local optimum, which causes a 

failure to attain the global peak. 

The PSO scheme is mainly considered as an 

efficient technique for obtaining the global peak under 

the conditions of partial shadow. In Ref. [20], a genetic 

algorithm is used with the PSO to obtain a modified 

method that can find the global peak with faster 

tracking velocity and less oscillation than the 

unadjusted method. In Ref. [21], the predicted 

calculation is currently computed based on the output 

current of the solar power system in the PSC, after 

which the traditional PSO is executed to obtain the 

global maximum point. In Ref. [22], a voltage-based 

PSO method is proposed, where the DC voltage 

super-position principle is applied to obtain the output 

characteristics of PV systems, and the standard PSO 

method is then applied to obtain the global peak point. 

As a result, the PSO method is more robust and rapid 

in extracting the global peak compared to conventional 

methods, where the global peak of the PV curve can be 

extracted proficiently under any surrounding shading 

conditions. 

6.1  Modified particle swarm optimization 

In normal PSO, the part “particles” refers to 

population members, which have a small mass and 

small volume, and are subject to speeds or 

accelerations with the best performance. Every particle 

in the swarm represents a solution in a 

high-dimensional space with four vectors, which are: 

①  present position; ②  after the acceleration of 

particles compared to the old position, it selected the 

personal best position of all particles; ③  particle 

speed; and ④ the global best position for all particles 

that have thus far originated in its neighborhood. 

Every particle regulates its position Xij inside the 

limited search area based on the best position that is 

achieved by itself XPbest.ij and the global best position 

that is achieved by all particles XGbest.ij. Through the 

search procedure for bests that can be detailed with 

equations as follows 
[23]

. 

6.2  Velocity step function 

Conventional PSO employs step function t

ijV , 

which is determined for every particle ith of every jth 

variable at every iteration t, where 0t

ijV ≥ , as seen in 

Eq. (5), refers to a three-part equation. To move from 

one position to another in the search area; particles are 

fixed by three mean the inertia function ω, which 

could be counted in every iteration from Eq. (6); the 

inertia operator limit values and the third term are the 

maximum fit iteration number 
maxt ; the second term 

refers to updating the present location’s procedure, and 

the third represents the method of sharing information 

of the global best solution between old locations. Here, 

an important change is that global optimization should 

also guide the individual optimization to reach the 

optimal solution as the acceleration factor of the 

convergence process, which can be expressed 

mathematically using Eq. (7). Therefore, the other two 

changes made to the old speed function are c1, c2, c3, 

and c4, which are called constant parameters, and the 

random numbers of MPSO, r1, r2, r3, and r4, which are 

between [0, 1]. 

    1

1 1 . 2 2 .

t t t t t t t

ij ij Pbest ij ij Gbest i ijV V c r X X c r X X       

(5) 

   max max min max × 0t t t        ≥   (6) 

 
 

 

1 1

3 3 . .

4 4 . .

2t t t t t

ij ij Gbest j Pbest ij ij

t t

Gbest i Pbest ij

V V c r X X X

c r X X

     


 

(7)

 

6.3  Updating the ith particle position 

Ever particle should transfer towards the 

optimum by properly updating its location utilizing the 

step function t

ijV , as seen in Eq. (8), where the step is 

added to the present location. The step may be positive 

or negative until it becomes zero, after which it is the 

optimum solution 

 
1 1t t t

ij ij ijX X V             (8) 

6.4  Search space limit reduction strategy 

Here, considering decreasing the search area to 

discover the optimum value, which is another 
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modification added to the searching process, which 

requires the adjustment and modification of the limits 

of the controlled variables in each iteration. Therefore, 

for the Xi controlled variable, the limit is modified in a 

reducing way to make it converge to the global best 

location in every iteration compared to its old limit. 

The limit reduction strategy (LRS) could be deduced 

mathematically using Eqs. (9) and (10).  

  1

.max .max max .

t t t t

i i i. Gbest iX X X X         (9) 

  1

.min .min . .min

t t t t

i i Gbest i iX X X X        (10) 

where σ is a factor that is less than 0.1; depending on 

the problem, it is selected randomly and adjusted. 

6.5  Velocity limit control 

The last modification here is that the velocity step 

or step length is limited according to the 

maximum/minimum values of controlled variables 
max

iX , min

iX  which is suitable when moving to the 

achieved optimum solution. The velocity limits limits

iV  

may be revised according to each circumstance or 

system with an appropriate choice of the value of the 

velocity limit operator β given as in Eq. (11) 

  max minlimits

i i iV X X         (11) 

6.6  Combination of MPSO and studied problem 

This section shows how the optimization handles 

PV system difficulties, in other words, defining the PV 

system difficulties-controlled variables and objective 

function and system constraints. In addition, the 

optimization technique described above is now 

performed on an MPPT controller for the PV system 

under consideration, which operates under the PSC. 

Fig. 5 shows the flowchart of the complete 

implementation process of the proposed work using 

MPSO. Here, a particle’s position is taken as the duty 

ratio (d) of the converter, and the fitness value of a particle 

is the generated PV power Ppv of the whole PV system. 

 

Fig. 5  Particle swarm optimization process flowchart 

For a DC-DC power converter, if the output 

voltage is constant, the input voltage (PV output 

voltage) can be calculated from the output voltage Vo 

and the duty cycle (d). For instance, for the step-up 

converter used in this thesis, the input voltage can be 

calculated as follows 

  1in oV V d               (12) 

Therefore, to execute the PSO algorithm for PV 

systems, the particle position (
t

ijX ) in Eqs. (5)-(7) can 

be measured as the duty cycle 
t

ijd of the PV converter, 

while the velocity ( t

ijV ) can be measured as the 

variation of the duty cycle ∆
t

ijd .  

The variation of the duty cycle ∆
t

ijd is influenced 

by two variables, the best solution obtained by the 

particle itself (Pbest), and the best solution in the whole 

population (Gbest). If the present duty cycle 
t

ijd  is not 

obtained from these two values, and it will be updated 

using a high velocity. When the condition in Eq. (14) 

is satisfied, Pbest in Eq. (13) will be updated; otherwise, 
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Pbest maintains its current value. Then, the fitness value 

of every particle will be estimated to see if the Gbest 

value requests to be updated. 

 t

best ijP d                 (13) 

    t

ij bestf d f P            (14) 

where f is the objective function that should be 

improved. 

6.7  Procedure for PSO algorithm 

Step 1: Initialization. At the primary stage, PSO 

generates particles randomly in the search area. 

Step 2: Evaluation of fitness. Estimate the fitness 

value of every particle by transferring the candidate 

solution to the objective function. 

Step 3: Choose the personal best and global best  

 

solution. Discover the particles’ own best solution and 

global best solution amongst all particles. 

Step 4: Update the location and speed of each particle. 

Estimate the new location and speed of every particle. 

Step 5: Conclusion of convergence. Re-initialize 

the PSO algorithm if the constraint is not met. In other 

words, the algorithm stops when the Gbest starts. 

7  Simulation results and discussion 

Matlab/Simulink is one of the significant tools 

which are used to determine the performance 

(robustness and effectiveness) of the recommended 

MPPT algorithm. The modeling of PV system with a 

boost converter and MPPT algorithms was done in the 

Matlab, which is shown in Fig. 6. 

 

Fig. 6  Matlab/Simulink model of ANN and PSO MPPT system 

The parameters of the PV system, DC-DC boost 

converter and, PSO algorithm are listed in Tabs. 1-3 
[14, 23]

. 

A comparative analysis of the proposed system was 

done with the actual values, ANN, and PSO algorithm 

under environmental conditions. 

Tab. 1  Detail of PV module 

Parameter Value 

Maximum power Pm/W 250  

Maximum power voltage Vm/V 30.2  

Maximum power current Im/A 8.28 

Open-circuit voltage Voc/V 36.0 

Short-circuit current Isc/A 8.56 

Number of series modules Ns 4 

Number of cells per module Ncell 60 

Tab. 2  PSO algorithm parameters 

Parameter Value 

Populations size P 300 

Inertia weight ω 0.4 

Constants (c1, c2, c3, c4) 1.3, 2, 10, 0.002 5 

Velocity limit operator β 0.1 

Generations (Iterations) t 300 

LRS operator σ 0.1 

Tab. 3  Specifications of DC-DC boost converter 

Parameter Value 

Inductance L/mH 1.147 8 

Capacitance C/mF 0.467 6 

Load resistance/ 100 

Switching frequency/kHz 50 



Chinese Journal of Electrical Engineering, Vol.6, No.4, December 2020 

 

114 

The PV experimental platform that was used as a 

reference to design the proposed system is shown in 

Fig. 7. 

 

Fig. 7  Platform of experimental PV lab 

The first simulation was performed to produce 

the characteristic curves of the PV array under uniform 

and non-uniform weather conditions, where the PV 

array is not connected to the boost converter or MPPT 

algorithms. Therefore, many cases of PV arrays under 

the PSC were also tested in the first simulation. For 

the second simulation, PV modules connected to the 

boost converter and MPPT algorithms, which were 

tested under uniform and non-uniform weather 

conditions and the corresponding maximum power, 

voltage, and current generated by the PV array under 

different combinations of solar irradiance according to 

the configuration presented in Tab. 4. In addition, 

many cases were examined for comparison between 

the actual results of the experimental platform and the 

MPPT algorithms (MPSO and ANN). Six cases are 

listed in Tab. 4 to show that MPSO is better than ANN 

in the field of MPTT of PV systems. 

The P-V characteristics of the PV array under 

uniform and non-uniform weather conditions are 

shown in Fig. 8. All PV modules were exposed under 

full radiation for Case 1; hence, there was only one 

MPP generated at 1 000 W, while another three cases 

of PV modules were exposed under the PSC for Cases 

2, 3, 4, 5, and 6. All six cases were tested and 

presented to explain and distinguish between the 

global peak of local peaks, which is given in Fig. 8. 

The P-V characteristic curves show that three peaks 

were established for Cases 2, 3, and 4 because the 

PV arrays were partially shaded by three different 

solar irradiances values, where the global MPP for 

the 2, 3, and 4 cases are (701.8, 433.4, and 942.8, 

respectively). In addition, four peaks were 

established for Cases 5 and 6 because the PV arrays 

were partially shaded by four different solar 

irradiance values, where the global MPP for the 5 

and 6 cases are (708.3 and 561.2). 

In scenario 1, the PV system is exposed to the 

same levels of irradiation and under uniform radiations 

conditions (1 000, 1 000, 1 000, and 1 000 W/m
2
) and 

one constant temperature (25 ℃) as presented in Fig. 

8a, where the PV curve has one global peak (1 000 W). 

Meanwhile, Fig. 9 shows a comparison of the power 

and voltage for both MPSO and ANN with the 

measured value of the lab experiment platform, and it 

shows that the proposed MPPT method (MPSO) can 

track the actual maximum power (1 000) efficiently 

under uniform radiation conditions. The MPSO-based 

MPPT method provided Pmax, Vmax, and Imax data 

points that match data points measured from the actual 

Simulink model with respect to the lab experiment 

platform. Further, the output of MPSO is better than 

the output of the ANN controller under uniform 

weather conditions. Finally, the global maximum 

power point is effectively extracted using the MPSO 

tracker within a short period compared to the ANN 

method. 

In scenario 2, the PV system is exposed to 

nonuniform levels of irradiation and PSCs (1 000, 900, 

500, and 1 000 W/m
2
) and one constant temperature 

(25 ℃), as shown in Fig. 8b, where the PV curve has 

several local peaks and one global peak (701.8 W), 

which the MPPT trackers need to track and achieve 

this global peak.  

Fig. 10 displays the output power and voltage for 

all of the MPSO, ANN, and actual values, which 

indicates that the proposed MPPT method (MPSO) is 

capable of efficiently tracking the actual maximum 
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power under nonuniform levels of irradiation and 

PSCs. The MPSO-based MPPT method provides the 

data points Pmax, Vmax, and Imax, which match the 

measured data points obtained from the actual 

Simulink model with respect to the lab experiment 

platform. In addition, the output of MPSO is better 

than the output of the ANN controller under the PSD 

and non-uniform irradiation levels. 

Tab. 4  Irradiance data input, ANN, and PSO output data power and voltage 

 

Cases 

Radiations 

Pmax-Actual/W Pmax-MPSO/W Pmax-ANN/W Vmax-MPSO/V Vmax-ANN/V 

 PV 1 PV 2 PV 3 PV 4 

 Case 1 1 000 1 000 1 000 1 000 1 000.0 998.7 725.9 316.0 269.4 

 Case 2 1 000 900 500 1 000 701.8 698.9 559.7 264.4 236.6 

 Case 3 1 000 400 600 400 433.4 421.0 302.8 205.2 174.0 

 Case 4 900 1 000 1 200 900 942.8 939.0 723.3 306.2 268.9 

 Case 5 500 800 1 200 650 561.2 552.1 547.2 235.0 233.9 

 Case 6 700 1 000 650 900 708.3 681.1 560.1 261.0 236.7 

 

Fig. 8  P-V characteristics of the PV array under uniform and non-uniform weather conditions 
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Fig. 9  Comparison of PMPP, VMPP, and the actual values for 

both the MPSO and ANN for scenario 1 

 

 

Fig. 10  Comparison of PMPP, VMPP, and the actual values for 

both the MPSO and ANN for scenario 2 

In scenario 3, the PV system is exposed to 

nonuniform levels of irradiation and PSCs (1 000, 400, 

600, and 400 W/m
2
) and one constant temperature 

(25 ℃). As presented in Fig. 8c, the P-V curve has 

various local peaks and one global peak (433.4 W), 

which the MPPT trackers are supposed to track to find 

this GP.  

Fig. 11 shows the output power and voltage for 

all the MPSO, ANNs, and actual values. Moreover, it 

shows that the proposed MPPT method (MPSO) can 

efficiently track the actual maximum power under 

nonuniform levels of irradiation and PSCs. The 

MPSO-based MPPT method gives Pmax, Vmax, and Imax 

values that are very close to the measured values 

obtained from the actual Simulink model with respect 

to the lab experiment platform. 

 

Fig. 11  Comparison of PMPP, VMPP, and the actual values for 

both the MPSO and ANN for scenario 3 

In scenario 4, the PV system is exposed to the 

PSCs for which the radiations level are (1 000, 400, 

600, and 400 W/m
2
) and one constant temperature 

(25 ℃), which are seen in Fig. 8d. The P-V curve has 

various local peaks and one global peak (433.4 W), 

which the MPPT trackers are supposed to track to 

obtain this GP.  

Fig. 12 shows the output power and voltage for 

all the MPSOs, ANNs, and actual values. Furthermore, 

it shows that the proposed MPPT method (MPSO) is 

intelligent and able to track the actual maximum 

power under PSCs. The MPSO-based MPPT method 

has Pmax, Vmax, and Imax values that are clearly close to 

the measured values obtained from the actual Simulink 

model with respect to the lab experiment platform. 

 

Fig. 12  Comparison of PMPP, VMPP, and the actual values for 

both the MPSO and ANN for scenario 4 

In scenario 5, the PV system is exposed to 

nonuniform levels of irradiation and PSCs (500, 800, 

1 200, and 650 W/m
2
) and one constant temperature 



  

 

117 

Al-wesabi Ibrahim et al.: PV Maximum Power-point Tracking Using Modified Particle Swarm 

Optimization under Partial Shading Conditions 

(25 ℃). As shown in Fig. 8e, the P-V curve has 

various local peaks and one global peak (561.2 W), 

which the MPPT trackers are supposed to track to find 

this GP.  

Fig. 13 presents the output power and voltage for 

all the MPSO, ANNs, and actual values. Moreover, it 

shows that the proposed MPPT method (MPSO) can 

efficiently track the actual maximum power under 

nonuniform levels of irradiation and PSCs. Moreover, 

the proposed system has been tested under four peaks 

(global and local) and can distinguish between the 

global peak of local peaks. 

 

 

Fig. 13  Comparison of PMPP, VMPP, and the actual values for 

both the MPSO and ANN for scenario 5 

In scenario 6, the PV system is exposed to 

nonuniform levels of irradiation and PSCs (700, 1 000, 

650, and 900 W/m
2
) and one constant temperature 

(25 ℃). As shown in Fig. 8e, the P-V curve has 

various local peaks and one global peak (708.3 W), 

which the MPPT trackers are supposed to track to find 

this GP.  

Fig. 14 shows the output power and voltage for 

all the MPSO, ANNs, and actual values. Moreover, it 

shows that the proposed MPPT method (MPSO) can 

efficiently track the actual maximum power under 

nonuniform levels of irradiation and PSCs. Moreover, 

the proposed system has been tested under four peaks 

(global and local), and it can distinguish between the 

global peak of local peaks. 

The efficiency is an important principle that is 

utilized to assess the performance of the MPPT model, 

which is found by the equation below 

max-Actual max-MPPT

max-Actual

1 100%
P P

P



       (15) 

 

Fig. 14  Comparison of PMPP, VMPP, and the actual values for 

both the MPSO and ANN for scenario 6 

The results of the efficiency study are presented 

in Tab. 5 and show that the simulation is based on the 

performance study MPPT technique under observation. 

It is observed that the irradiance value changes from 

400 to 1 200 W/m
2
, and the temperature remains the 

same for all four modules (25 ℃).  

Tab. 5  Performance efficiency for the MPSO and ANN 

Cases 
Pmax-Actual 

/W 

Pmax-MPSO 

/W 
Efficiency of 

MPSO(%)  
Pmax-ANN/ 

W 

Efficiency 

of ANN(%)  

Case 1 1 000.0 998.7 99.870 725.9 72.590 

Case 2 701.8 698.9 99.586 559.7 79.752 

Case 3 433.4 421.0 97.139 302.8 69.866 

Case 4 942.8 939.0 99.597 723.3 76.718 

Case 5 561.2 552.1 98.378 547.2 97.505 

Case 6 708.3 681.1 96.160 560.1 79.076 

Regardless of the irradiation, the proposed MPSO 

performs effectively, which can be seen from Tab. 4. 

From the figures above, we can determine that the 

MPSO is near to the GMPP. The efficiency of the 

MPSO achieved with the least number of steady-state 

oscillations is 99%, which demonstrates that PSO is 

better in uniform and non-uniform irradiance 

conditions or PSCs. 

As mentioned previously, there is a variety of 

techniques to determine the MPP under PSCs based on 

modified conventional methods, and smart methods 

have been developed in different studies, such as 

modified traditional methods, PSO, the Fibonacci line 



Chinese Journal of Electrical Engineering, Vol.6, No.4, December 2020 

 

118 

search method, ANN technology, and Cuckoos’ 

behavior method. It can be observed that there are 

some differences in the real tracking mode, as 

presented in Tab. 6. 

Tab. 6  Comparison between different tracking techniques under the partial shading conditions 

Method Tracking mode Speed Advantages Disadvantages 

Modified conventional 

methods 
[24-26] 

In the first stage, a normal program is 

executed, then the adjacent is scanned 

during the second stage. 
Normal Easily applied Large vibration and unstable output 

Modified particle 

swarm optimization 

A typical swarm intelligence 
algorithm, a candidate solution is 

signified by every particle, and the 

optimal solution of the problem is 

denoted by the particle position in the 

ideal space. 

Fast Swift tracking speed and very 

robust. 

Complex calculation, and it is easy for the 

MPP to decrease to the local optimum, 

which causes a failure of the GP tracking 

Fibonacci line 

search
[27-28] 

The horizon of searching is iteratively 

restricted and shifted. Slow Easily applied Complex calculation 

Artificial neural 

network 
[29-31] 

The training process is complicated, 

and is totally based on experimental 

measurements. 

Slow 
Can be trained offline and 

applied in the on-line 

environment 
Difficult computation 

Cuckoos’ behavior 
method

 [32-35] 

It is similar to particle swarm 

optimization, and depends on the 
population algorithm. 

Fast Rapid convergence and 
effective randomization 

Complex calculation, and failure of both 
solution quality and convergence velocity 

 

The above discussions and results conclude that 

the modified PSO technique can track the actual 

maximum power regardless of the shading conditions 

and scenarios. For all considered shading scenarios, it 

was observed that the proposed method can easily 

track the actual maximum power for an UP-S250 PV 

array system. In addition, under non-uniform 

irradiation conditions for all scenarios, it can be shown 

that the proposed technique exhibits a rapid response 

and good stabilization at the actual MPP, and the 

global MPPT can be tracked rapidly with an efficiency 

of almost 99% for all investigated scenarios, as shown 

in Fig. 15. Further, it can be applied to solve 

engineering problems. 

 

Fig. 15  Comparison efficiency 

8  Conclusions 

An important objective of MPPT methods is that 

they are primarily used in practice to obtain the 

maximum power of PV systems and to provide this 

power to the consumer load. When the PV system is 

influenced by uniform solar irradiation, the 

characteristic of the system will be nonlinear with only 

one MPP, which can be easily obtained using a simple 

control technique, such as perturb and observe, 

modified perturb and observe, and incremental 

conductance (INC). Conversely, in the case of 

non-uniform solar irradiation conditions, the 

characteristic curve of the PV system will have 

multiple MPPs, which are visible owing to the 

connection of bypass diodes to each PV module that is 

connected to eliminate the effect of hot spots. The 

existence of these multiple peaks on the characteristic 

curves of PV systems has motivated researchers to 

design a more suitable method that can distinguish 

between each peak point on the P-V curve, thus 

enabling the determination of the accurate maximum 

power for delivery to the load. 

The main work of this study and the results 

achieved are as follows. 

(1) Proposed an effective MPPT-tracking method 

to predict the global maxima power point (GMMP) of 

a PV system under all conditions of the surrounding 

weather either under normal conditions, such as 

uniform irradiation conditions or under abnormal 

conditions, such as partial shading conditions. 

(2) A database has been obtained from the 

experiment platform for analysis, and it was used to 

train the MPSO and ANN. The MPSO and ANN were 

proposed by using two inputs (the PV system voltage 
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and current) and one output (the duty cycle). The 

MPSO generated the desired duty cycle, which gives 

the desired maximum voltage accordingly. 

(3) The proposed method was studied under 

different scenarios involving partial shading levels to 

determine its effectiveness. The proposed technique 

was shown to effectively and robustly track the global 

maximum power as required. The proposed scheme 

has an excellent tracking performance in terms of 

efficiency and stability, as shown by the simulation 

results. 
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