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Abstract: Synchronous reluctance machines (SynRMs) have drawn increasing attention in recent years owing to their 
advantages such as low cost, simple structure, ease of manufacture, and high robustness. The main obstacle to the promotion of 
SynRMs is severe parameter nonlinearity, which deteriorates drive performance. Sensorless control methods for SynRMs are critical 
technologies that can broaden the industrial applications of SynRMs. Various methods of parameter identification and sensorless 
control strategies are reviewed and discussed, including self-commissioning, which is analyzed in detail. Furthermore, sensorless 
control strategies that can improve the industrial application of SynRMs are described. Finally, future research trends concerning 
SynRMs are analyzed and discussed. 

Keywords: Synchronous reluctance machines, parameter identification, sensorless control 

 

1  Introduction1 

Synchronous reluctance machines (SynRMs) 
were first introduced in 1923 [1]. The coupling effect 
developed between the rotating sinusoidal magnetic 
field, which is generated by the stator, and the special 
rotor structure generates a reluctance torque. With the 
restrictions on rotor materials and manufacturing 
techniques in earlier days, the saliency ratio, power 
density, and power factor of SynRMs were relatively 
low, which limited the promotion of these machines. 
With the rapid development of power electronics and 
modern control theories, as well as the extensive use 
of microprocessor technology, SynRMs have overcome 
the problem of synchronous control that enables them 
to be applied to electrical drives [2].  

SynRMs are attracting more research interests in 
recent years. There are many advantages of SynRMs 
versus other types of machines, which make them a 
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powerful competitor for general purpose applications 
such as pumps, fans and traction machines in electric 
vehicles [3-5]. The industrial community is considering 
the possibilities of industrial solutions based on 
SynRMs. ABB has developed products including 
SynRMs and drives that can achieve super-premium 
efficiency (IE4) per the standards of the International 
Electrotechnical Commission (IEC).  

Given the variation of motor parameters along 
with the change in the operating environment, the 
precise calculation or identification of motor parameters 
is the primary problem and limitation in realizing 
higher driving performance [6-9]. The rotor position 
estimation is another essential part that needs to be 
designed optimally for the sensorless controlled 
SynRMs, which can further maximize the advantage 
of low cost and promote the application of SynRMs 
for cost-sensitive applications [10-21]. In addition, the 
precise knowledge of motor parameters is favorable 
for the improvement of sensorless control perfor- 
mance of SynRMs. Parameter identification 
methods and sensorless control strategies of 
SynRMs are two key technologies that can increase 
the competitiveness of SynRMs for industrial 
applications.  

This paper aims at presenting a comprehensive 
discussion on state-of-the-art research in parameter 
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identification and sensorless control strategies for 
SynRM drives. This paper is organized as follows. 
Section 2 introduces the parameter identification 
technologies concerning SynRMs. The sensorless control 
methods for SynRMs are reviewed and compared in 
Section 3. Furthermore, future trends concerning 
SynRMs drives are discussed in Section 4. Finally, 
Section 5 discusses the conclusions of this paper. 

2  Parameters identification of SynRMs 

In high-performance control of SynRM drives, 
the precise knowledge of motor parameters, including 
inductances and resistance, is highly advantageous. 
The accuracy of the parameters applied for control 
strategies is closely related to drive performance. For 
industrial applications, time spent on parameter 
identification results in loss of production. Hence, 
accurate and fast parameter identification and 
self-commissioning are essential for the industrial 
applications of SynRMs. Apart from the thermal 
influence, the stator resistance of SynRMs can be 
regarded as a constant value. For the inductances, the 
constant value cannot fully describe their characteristics. 
Inductances as a function of current or flux-current 
map models are mostly adopted and are more reliable 
to fit the magnetic characteristics of SynRMs well. 
Different aspects of parameter identification for 
SynRMs, adopted by various studies, will be discussed 
and reviewed in this section.   

2.1  Finite element analysis (FEA) and analytical 
model methods  

FEA is the basic method that can obtain the 
parameters based on the motor structure during the 
design process. The magnetic flux density distribution 
of a typical SynRM FEA model is shown in Fig. 1 [22]. 
However, the application of the FEA based method has 
some limitations since the detailed design data can 
only be accessed by the motor designer and producer, 
which are protected trade secrets and hinder the 
industrial applications of FEA based method.  

The winding function is adopted in Refs. [6-7] to 
calculate the SynRMs inductances. The analytical 
model is a simpler way to compute the SynRMs par- 
ameters, which are then compared to the results obtained 
from the FEA in Ref. [8]. A combination of analytical 

equations and FEA is used for inductance iden- 
tification for a machine model in terms of stator 
quantities in Ref. [23]. The numerical analysis tools 
give valuable initial information about machine 
parameters. However, the deviations from actual 
parameter values cannot be predicted and prevented 
as they depend on manufacturing tolerances and 
final material properties. 

 

Fig. 1  Magnetic flux density distribution of a typical  

SynRM FEA model 

2.2   Offline identification using signal injection and 
monitoring equipment 

This type of identification method adopts different 
signals to excite the SynRMs and observe the response 
to estimate the parameters. A typical test bench for 
SynRMs parameter identification is shown in Fig. 2 [24].  

 

Fig. 2  Dedicated test bench diagram for SynRMs  

parameter identification 

Since power converters are mostly applied to 
control SynRMs, the influence of space and time 
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harmonics on machine parameters must be considered. 
A detailed review of the identification methods for the 
synchronous reactance of permanent magnet synchronous 
motor (PMSM) is presented in Ref. [9]. Most methods 
designed for PMSM parameter identification can also 
be applied to SynRMs, especially ones that work at 
standstill conditions. The sinusoidal supplybased methods 
and vector-controlled drive based methods are compared 
in Ref. [25]. The DC decay tests are performed to 
measure the SynRMs parameters. In Ref. [26], the 
authors proposed load tests for the machine and the 
acquired data are processed using linear regression and 
artificial intelligence-based techniques to obtain reliable 
estimates of the machine parameters. These methods 
are more suitable for laboratories where the equipment 
necessary for testing is available.  

2.3  Identification based on power converters 

Power electronics converters are more competitive 
and practical for SynRM parameter identification. The 
precise rotor position information from the encoder or 
resolver makes it more competitive for improving 
identification accuracy. Similar to the methods 
introduced in the previous subsections, different signal 
patterns are generated using the converters and are 
applied to the SynRMs. Unlike the identification 
procedure for PMSMs, the current or voltage vector 
can be injected along both axes without locking rotor, 
since there is no additional torque produced due to the 
absence of permanent magnets. Since the cross-coupling 
effect is relatively severe for SynRMs, the injection of 
both d,q-axis current at the same time is necessary, and 
the rotor locking is acceptable to guarantee the stability 
of the rotor. The tested SynRMs should be characterized 
through the entire d,q-axes current plane to cover the 
saturation and cross-coupling region.  

A typical current-flux model characteristic is 
shown in Fig. 3[27]. Both the positive and negative 
current along both axes are effected to emulate motoring 
and generating modes and lower the influence of the 
stator resistance thermal effect and inverter 
nonlinearity. To fit the multiple current-flux models, 
artificial intelligence methods are proposed in   
Ref. [28]. However, these kinds of methods require 
higher computation ability, which needs to record 
and process the data offline. 

In Refs. [29-31], the principles are similar, with the 
rotor rigidly fixed or free to rotate, current or voltage 
signals are injected along each axis and then to both axes. 
The sampled voltage or current signals can then be 
processed to compute the SynRMs flux to fit the char- 
acteristic models. The typical parameter identification 
setup including injecting signals and monitoring responses 
is shown in Fig. 4 [27]. For some tests in these studies, the 
detachment of the load or additional rotor blocking is the 
principal limit of wide industrial applications.  

 

Fig. 3  Currents as functions of the fluxes(the mesh surfaces 
correspond to the fitted model, and the stars and circles show 

the measured sample test) 

 

Fig. 4  Parameter identification setup with signal injection  

and flux calculation scheme 
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The intense requirement for research concerning 
self-commissioning is attracting increasing attention 
over the past several years. Self-commissioning has 
become an essential feature for modern electric drives 
used in general purpose applications. Several studies 
are focused on self-commissioning methods of 
SynRMs. Several methods use bipolar voltage steps as 
excitation signals. The stator flux linkage is estimated 
using the measured currents and the reference (or 
measured) voltage. In Refs. [30-33], the applied 
voltage steps are selected sufficiently low that the 
steady-state is achieved, making the flux computation 
highly sensitive to the stator resistance and inverter 
voltage. The higher the test voltage, the lower is the 
effect of the stator resistance and offset errors on the 
estimated flux. The method proposed in Ref. [34] uses 
bipolar voltage steps with a larger magnitude (up to 
the rated voltage) compared with the ones used in   
Refs. [30-33]. The whole range of currents is scanned 
during a single voltage step, and the steady-state is not 
reached. A piecewise mathematical function is fitted to 
the measured samples. Overall, the method in Ref. [34] 
works well for self-axis identification, but the number 
of parameters for the cross-coupling model makes the 
fitting process too tedious for practical applications. 
The test signals pattern in Ref. [34] and the fitted 
model of Ref. [35] are combined in Ref. [27] with 
consideration of the cross-coupling effect and the 
number of parameters needed to describe the cross- 
coupling effect is only one. For the algorithms proposed 
in Ref. [36], tens of parameters, as well as separate 
postprocessing and interpolation algorithms, would be 
needed. The relatively high test voltage makes the 
rotor almost still during the cross-coupling test. The 
results obtained using Ref. [27] are comparable to the 
ones obtained from the constant speed identification in 
Ref. [29]. To improve the accuracy of the method 
proposed in Ref. [27], the effects of the variation of 
stator resistance, inverter voltage distortion, iron losses, 
and undesired rotor movements are further investigated 
in Ref. [37]. The method is also combined with the 
high-frequency signal injection to cover a wider range 
of inspected currents in Ref. [38]. Even though the 
inspection area for the self- and cross-coupling tests 
was increased, it demonstrated that the observed flux 
characteristics maintained a constant state. The application 

of multiple self-commissioning methods is still limited 
for practical industrial applications owing to the 
relatively high requirement of processors. However, 
the increasing use of fast digital signal processors in 
modern variable speed drives will be an enabling 
factor for the application of these methods on a larger 
scale. In addition, online parameter identification 
methods of PMSMs have been reported in some 
studies. In addition, more investigation concerning 
SynRM online parameter identification is still required, 
it is an important developing trend for SynRM drive 
strategies. 

3  Position sensorless control of SynRM drives 

One of the most important advantages of 
SynRMs is low cost and robustness. Hence, position 
sensorless control of SynRMs is a further 
improvement to reduce cost, downsize the system 
volume and enhance the system reliability. Position 
sensorless control is driving increasing attention 
from academic to industrial applications. In this 
section, we compare and present major sensorless 
techniques for the entire speed range from low to 
high speed. There are mainly two categories of 
sensorless control methods: fundamental frequency 
model-based sensorless methods applied to the 
middle and high-speed range, and saliency-based 
sensorless control applied to the low-speed range. 
The model-based method is investigated and 
comercialized earlier. However, it may fail when the 
speed is too low owing to the low signal to noise 
ratio (SNR) caused by parameter inaccuracy and 
inverter nonlinearity. The saliency-based methods 
have recently been widely investigated to broaden 
the effective operational range of sensorless 
SynRMs drives. The common types of SynRMs 
sensorless control methods are listed as in Tab. 1. 

Tab. 1  Summary of SynRMs sensorless control methods 

EEMF 
Model-based 

DFO 

Rotating injection 

Sinusoidal signalsSignal 
injection Pulsating 

injection Square-wave 
signals 

PWM based 

Saliency-based

Stator current variation based 
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3.1  Fundamental-frequency model-based sensorless 
control methods 

The model-based sensorless control methods are 
recommended once the operational speed is over a 
certain threshold value since there are no additional 
losses, torque ripples, and audible noise. The 
maximum output torque limit caused by the injected 
signals could be released. Mostly, the model-based 
sensorless methods of SynRMs is categorized into 
extended electromagnetic force (EEMF) based methods 
and direct flux observer (DFO) based methods.  

3.1.1  EEMF model 

The EEMF methods are based on the tracking of 
extended back EEMF since the rotor positional 
information is contained in the EEMF signals [10-14]. 
The rotor position can be directly calculated as 
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where θe is the estimated rotor position, eα, eβ, uα, uβ, iα 
and iβ are the EEMF, voltage, and current of the 
SynRM in an α,β-reference frame, respectively. Rs is 
the stator resistance, Ld and Lq are self-inductance in 
the d,q-axes reference frame. ωe is the electrical speed 
of the SynRM. The EEMF method is based on voltage 
estimation that is more suitable for higher speeds. The 
influence of model uncertainty containing parameter 
uncertainty and measurement error on position 
estimation accuracy is analyzed in Ref. [39]. For the 
relatively severe nonlinearity of the SynRM, the 
magnetic saturation is investigated in Ref. [10]. The 
observer should ensure a stable and sufficiently fast 
estimation of error dynamics at different speeds and 
loads. A robust adaptive speed observer is designed for 
estimating the rotor position without voltage sensors [40]. 
The proposed observer structure could improve the 
robustness against parameter variation. The design 
method for the full order EEMF observer is analyzed 
in Ref. [41]. To reduce the observer complexity, a 
reduced-order position observer with stator resistance 
adaption is introduced in Ref. [42]. The effect of the 
observer gain on the noise reduction is studied using 

eigenvector analysis. Sliding mode observers are 
based on variable structure design with a sign function 
that is commonly applied for EEMF [43]. A Luenberger 
observer-based state-space model of the SynRM is 
presented with phase current and EEMF as states [44]. 
The effect of stator iron loss on position estima-   
tion using extended Kalman filter is investigated in   
Ref. [45]. 

3.1.2  DFO model 

Similar to the EEMF methods introduced in the 
previous subsection, the flux linkage can be calculated 
based on the voltage integration, where the rotor 
position can be computed by the inverse tangent 
calculation of the flux linkage in the stationary 
reference frame [18,46-48]. The rotor position estimation 
based on DFO can be expressed as 
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where ψα and ψβ are the flux of the SynRM in an 
α,β-reference frame. The accuracy of the DFO method 
is less precise as compared to EEMF. The 
phase-locked loop (PLL) is found effective for many 
applications owing to its high precision, high 
reliability, low complexity, and low computational 
burden. PLL is adopted for flux position estimation in 
Ref. [49]. For specially designed SynRM windings 
with thermistor cablings as search coils for monitoring 
motor temperature, the position tracking performance 
is independent of the motor parameters [50]. The 
closed-loop flux observers adaptively combining the 
machine voltage and current models are commonly 
adopted. The DC drift and initial value problem 
associated with the pure integrator used in the observer 
can be addressed. The solution to damp DC offsets 
caused oscillation was illustrated in Ref. [51]. Similar 
to the methods based on EEMF, the sensitivity of the 
estimation accuracy on motor model uncertainty is 
analyzed in Ref. [39]. The system mismatch, 
including resistance, inductance, voltage, and 
current measurement, could deteriorate estimation 
performance to some extent. An online tracking 
algorithm can improve the DFO based method 
estimation performance. 
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3.2  Saliency-based sensorless control methods  

Estimation methods relying on the model of SynRMs 
fail to estimate the position at lower speeds. As the 
SynRMs are inherently salient, methods estimating the 
position, even at standstill condition, are readily 
applicable. These methods can be roughly categorized 
as signal injection methods [15-21], modified PWM 
based methods [52-53], and methods based on stator 
current variation without additional signal [11,54-56]. 
Signal injection-based sensorless control methods are 
based on the principle of tracking the saliency of the 
SynRMs that are effective in the zero and low-speed 
region of sensorless control operation [57-61]. The signal 
injection-based sensorless control methods can be 
categorized into rotating and pulsating signal injection 
based on the injection pattern. The pulsating signals 
can be either sinusoidal or square-wave signals. The 
SynRMs high frequency (HF) models in the low-speed 
region can be expressed in the rotor or stator reference 
frame as 
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where the subscript h indicates the HF components, Ldh 
and Lqh are the d,q-axes incremental self-inductances, L1 
= (Ldh + Lqh)/2, L2 = (Ldh – Lqh)/2. The most applied 
signal injection-based sensorless control scheme is as 
shown in Fig. 5. The pulsating signal injection and 
rotating signal injection are injected into d,q-axes and 
α,β-axes reference frame, respectively. 

 

Fig. 5  Typical signal injection-based SynRMs sensorless 

control methods 

The saliency-based sensorless control methods of 

SynRMs are similar to those applied to interior 
PMSMs (IPMSMs). The main principle is tracking 
the saliency of the rotor according to the induced 
current HF components by injecting different 
patterns of signals [62]. The critical parameters in the 
injection mechanism are analyzed in Ref. [63]. The 
saliency-based sensorless control methods applied 
for IPMSM has been well-reviewed and concluded 
in Ref. [62]. Hence, this paper focuses on the unique 
characteristics of SynRMs such as relatively severe 
nonlinearity and cross-coupling effects that need to 
be noted explicitly during the injection design 
procedure. 

3.2.1  Parameter nonlinearity of SynRMs 

The parameters of SynRMs show evident nonlin- 
earity, as illustrated in Section 2. The d-axis flux 
component saturates severely as a function of the 
corresponding current component, and the d-axis satura- 
tion is coupled with the q-axis saturation. There are 
saturation dependent estimation errors of anisotropy 
based sensorless control algorithms [64]. 

A new position sensorless control method for 
SynRMs involving the superimposing of a HF current 
using a HF current control system is proposed in Ref. 
[65]. The amplitude of the superimposed HF current 
can be controlled within the range of a small constant 
value with the proposed method, which can improve 
the robustness of the parameter variation. The HF test 
voltage and HF test current injection methods are 
compared in Ref. [66]. The adopted 2DoF current 
control and adaptive tracking controllers in the paper 
can lower the effect of parameter nonlinearity to a 
certain extent. It is proved that the HF test current and 
HF test voltage injection achieved quite a similar 
behavior and need nearly the same implementation 
effort. The parameter adaption laws are proposed in 
Ref. [67], where stator resistance, d-axis inductance 
and q-axis inductance adaption algorithms could be 
respectively applied according to different speed and 
load conditions. In Ref. [68], it is shown how 
saturation effects could be readily alleviated by using a 
digitally implemented quadrature PLL observer, 
together with linear regression, so that easy digital 
implementation, stable operation, and null parametric 
dependence can be achieved. 
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3.2.2  Cross-coupling effect of SynRMs 

For the SynRMs sensorless control based on HF 
signal injection, when the cross-coupling effect is 
neglected as in the case of IPMSMs, there will be a 
persistent estimation error that can be expressed as 

 
arctan[2 / ( )]

2
dqh qh dh

err
L L L

θ
−

=  (5) 

where Ldqh is the cross-coupling mutual inductance. 
The position estimation error caused by the cross- 
coupling effect is analyzed in Ref. [69] as shown in 
Fig. 6. This error deteriorates the performance of the 
sensorless drive when the estimated position is used 
instead of the actual one.  

 

Fig. 6  Rotor position estimation error caused by the 

cross-coupling effect 

Normally, the estimation error caused by the 
cross-coupling effect can be simply compensated 
based on the FEA results or offline measurement using 
a lookup table (LUT) [66,70]. However, the uncertainty 
and inaccuracy of the test results and disturbance may 
further worsen drive performance. The impact of the 
position error as a function of the working point and 
the technique to minimize the influence is introduced 
in Refs. [71-72]. Stable operation of the SynRMs with 
a load at a very low speed can be guaranteed. In    
Ref. [69] and Ref. [73], a cross-coupling factor is 
proposed to combine both d,q-axes current HF 
component information to extract the rotor position in the 
measured reference frame. The measured reference 
frame is defined to lag the estimated reference frame 
by 45 degrees, where the current signals containing 
position information can be maximized. In addition, 
the injected signals were set to be discontinuous, 
which can suppress voltage errors and improve the 
stability of the estimation. However, the dynamic 

performance of the proposed method is lower owing to 
the delay of FOC commands. Instead of the commonly 
used current demodulation, the position error feedback 
was extracted at the output of the observer’s flux maps 
in Ref. [74], which resulted in immunity toward the 
cross-coupling effect caused position error. 

4  Future trends of SynRMs drives    

The SynRMs are promising alternative candidates 
for industrial applications. To further improve the 
competitiveness of this type of machine, there are 
several aspects concerning drive technologies that can 
be further investigated and developed. 

(1) Low cost but also effective inverters should 
be developed for applications to maximize the 
low-cost advantages of SynRMs. The corresponding 
control methods that need less digital calculation and 
signal processing should be investigated as well. 

(2) Online parameter identification and observer 
self-adaption tuning are the future developing trends 
since the accuracy of identified parameters, and 
flux-current models of SynRMs are fundamental to 
multiple advanced control strategies. 

(3) The position estimation for sensorless control 
of SynRMs needs to be further improved and 
consummated using adaptive and artificial intelligence 
methods to increase the robustness concerning parameter 
nonlinearity and uncertainty. Furthermore, the problem 
of intrusive noise caused by widely used HF injection- 
based methods should be ameliorated. 

(4) The efficiency/torque optimized control strategies 
need further investigation. The transition performance 
of online searching based methods is supposed to be 
improved. The methods to obtain more precise 
equivalent circuit models of SynRMs demand prompt 
solutions. 

(5) Another obstacle to the promotion of SynRMs 
is the torque ripple. At present, most efforts to lower 
torque ripple that have been made are focused on 
designing procedure. The ripple suppressing from the 
control side should be investigated. 

5  Conclusions 

SynRMs have drawn increasing attention in 
recent years with the development of technologies. 
With lower cost, simpler rotor structure, and competitive 
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performance versus IMs and PMSMs, SynRMs are 
promising and could be widely applied in domestic 
and industrial applications. State-of-the-art SynRMs 
drive strategies covering parameter identification and 
sensorless control were discussed. The advantages and 
disadvantages of various approaches were concluded 
and compared. Finally, the authors provided some 
advice concerning future research trends and interests 
for reference. 
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