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Abstract: A particle swarm optimization algorithm to search for an optimal five-stage constant-current charge pattern is 

proposed. The goal is to maximize the objective function for the proposed charge pattern based on the charging capacity, time, 

and energy efficiency, which all share the same weight. Firstly, an equivalent circuit model is built and battery parameters are 

identified. Then the optimal five-stage constant-current charge pattern is searched using a particle swarm optimization 

algorithm. At last, comparative experiments using the constant current-constant voltage (CC-CV) method are performed. 

Although the charging SOC of the proposed charging pattern was 2.5% lower than that of the CC-CV strategy, the charging 

time and charging energy efficiency are improved by 15.6% and 0.47% respectively. In particular, the maximum temperature 

increase of the battery is approximately 0.8 ℃ lower than that of the CC-CV method, which indicates that the proposed 

charging pattern is more secure. 

Keywords: Li-ion batteries, charging strategy, multi-stage constant current, particle swarm optimization, equivalent circuit 

model 
 

1  Introduction1 

With the reduction in fossil fuel energy and 
increasingly severe environmental problems, electric 
vehicles (EVs) are a new development milestone due 
to their advantages of zero emission [1-4]. Li-ion 
batteries with high energy density and a low 
self-discharge rate are becoming more and more 
popular in EVs, and have motivated studies to enhance 
their charging performance. These issues directly point 
to the kind of charging strategy that should be adopted. 
One common charging strategy for Li-ion cells is the 
traditional constant current-constant voltage (CC-CV) 
method, but the charging time for the CV mode is too 
long [5]. Although the efficiency of pulse charging is 
relatively high, the control method of the charger is 
too complicated [6]. 

In order to cut back on the charging time and 
simplify the charger control method, a multi-stage 
constant-current (MS-CC) method is proposed with 
these characteristics [7]. The charging process is often 
divided into five stages [8], and this is called five-stage 
constant-current (5SCC) charging. As shown in Fig. 1, 

                                                        
* Corresponding Author, Email: yongli@hnu.edu.cn 
* Supported by the Key Research and Development Program of Hunan 

Province of China (2018GK2031), the National Natural Science Foundation 
of China (51822702), and the Excellent Innovation Youth Program of 
Changsha of China (KQ1802029). 

 Digital Object Identifier: 10.23919/CJEE.2019.000013 

pre-charging with a small current is used to prevent 
damage caused by a large current in Stage 1. When the 
terminal voltage increases to the desired level of 4.2 V, 
the charging switches to the next stage, and a new, 
smaller charging current is used until Stage 5 has 
completed. 

 

Fig. 1 Five-stage constant-current (5SCC) charge method 

A better 5SCC charging strategy would take the 
charging capacity, energy efficiency, time, and 
temperature rise into consideration. Due to the 
performance limitations of the Li-ion battery, these 
indicators cannot be optimal at the same time. The 
optimal current pattern in 5SCC charging can be 
regarded as a multi-objective optimization problem. 
To select the optimal objects and algorithm in the 
5SCC method, several charging approaches have 
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been proposed recently [9-15]. Ref. [14] used an 
equivalent circuit model to optimize charging time 
and loss. A Taguchi-based algorithm was used in Ref. 
[15] to achieve multi-objective optimization for the 
charging capacity and time, which reduced the cost of 
the experiment.  

In this study, the particle swarm optimization 
(PSO) algorithm is employed to optimize charging 
capacity, time, and efficiency simultaneously. The 
obtained 5SCC charge pattern could result in a 
larger charging capacity and higher charging 
energy efficiency within a shorter time for Li-ion 
batteries. 

The flowchart of the proposed method is shown 
in Fig. 2, and the rest of this paper is organized as 
follows. A second-order equivalent circuit model is 
built in Section 2. The battery parameters are 
identified in Section 3. The proposed PSO algorithm 
for this optimization problem is illustrated in 
Section 4 in detail. The experiment results are 
shown in Section 5. Finally, The conclusion is 
presented in Section 6. A commercially available 
18650 Li-ion battery is used in the experiments. The 
rated capacity of the battery is 2.62 Ah, the 
maximum allowable charging current is 2 C, and the 
charging limit voltage is 4.2 V. 

 

Fig. 2 Flowchart of the proposed method 

2  Battery model 

To optimize the charging current of the 5SCC 
charging procedure, a battery model must be 
formulated. The second-order equivalent circuit of a 
Li-ion battery is adopted here, as shown in Fig. 3, 
where OCV is the open circuit voltage; Vt is the 
terminal voltage; R0 is the ohmic resistance; R1 and  
R2 are the polarization resistances; and C1 and C2 are 
the polarization capacities. 

 

Fig. 3 Equivalent circuit model of Li-ion battery 

The equivalent circuit formulations are as follows 
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where i1 and i2 are the currents applied in R1 and R2. 
Solving formulas (1) and (2) 
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In a recursive discrete-time form, formula (3) is 
expressed as follows 
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The changes in the SOC during the charging 
process can be expressed as follows 

 0 0

1 ( )d
t
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SOC SOC i

Q
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(5) 

where rateQ  is the rated capacity of the battery, which 
is tested by the 0.05 C (C is the rate that defines the 
current corresponding to complete charging or 
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discharging of the battery with one hour) current. 
Discretize the formulation 

 1[ 1] [ ] ( 1)
rate

SOC k SOC k i k t
Q

+ = + + ∆  (6) 

3  Identification of battery parameters 

The OCV of the battery model should be 
identified first. Generally, it is assumed that the 
polarization voltages during charging and discharging 
at the same current have approximately equal values, 
but in opposite directions, and the internal resistance 
of the battery is changeless. The relationships are 
expressed as follows 

 ch R PV OCV V V= + +  (7) 

 disch R PV OCV V V= − −  (8) 

where VR is the voltage applied in R0, and VP is the 
polarization voltage. As is shown in Fig. 4, the OCV is 
related to the SOC, which is obtained by calculating 
the average of the charge curve and the discharge 
curve at a low current. Here, the smallest current is 
taken to be 0.05 C, so the OCV can be derived as 
follows 

 ( )
2

ch dischV V
OCV SOC

+
=  (9) 

 

Fig. 4 The curve of OCV-SOC for Li-ion battery 

The next step is to identify parameters with R0, R1, 
R2, C1, and C2. The specific procedures are as follows: 

1) Empty the test battery and let it stand for 2 h to 
allow the battery to reach a stable state; 

2) Perform the constant-current charging operation 
on the test battery for 90 s, and then allow it to sit for 2 
h to obtain voltage data reflecting the relevant 
polarization effect.  

To obtain test data separated by 5% SOC, the 
charging current is 2 C, so the charging time is 90 s. 
The excitation current and response voltage curves 

throughout the testing process are shown in Fig. 5. As 
is shown in Fig. 6, when the charging current drops to 
zero, the battery voltage drops instantaneously, hence 
R0 can be obtained as follows 

 2 1
0

2 1

V VR
I I
−

=
−  (10) 

 

Fig. 5 Overall test curve for Li-ion battery 

 

Fig. 6 Local amplification curve for Li-ion battery 

Since there is no current input, this process can be 
regarded as a zero-input response, hence Vt can be 
defined as follows 

 10 1 20 2exp( / ) exp( / )tV OCV V t V tτ τ= + − + −  (11) 

 1 1 1 2 2 2,R C R Cτ τ= =  (12) 

where V10 and V20 are the polarization voltages just 
before standing. Then the polarization voltage and 
time parameters can be obtained by least square 
fitting, so the data for R1, R2, C1, and C2 can be 
calculated. Thereby, the battery model parameters 
separated by 5% SOC are identified through the least 
square algorithm in the MATLAB curve fitting tool 
(cftool), and the battery model parameters separated 
by other subtle SOC can be acquired by linear 
interpolation.  

The battery model parameters related to the SOC 
are shown in Fig. 7. The dots are the model parameters 
separated by 5% SOC, which are obtained by 
experiment. The solid lines are acquired by linear 
interpolation, based on discrete points obtained from 
the experimental data. 
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Fig. 7 Battery model parameters 

4  PSO-based optimization 

4.1  Formulate optimization problem 

The charging objective function value is 
determined by the following three items: charge 
capacity ratio (SOC), charging time (T), and charging 
energy efficiency (ƞ), which is derived as follows 
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where ƞ is the charging energy efficiency when the 
5SCC charging process is complete.  

Here, assume objective function F1 is equal to the 
SOC, and F2 refers to the charging time that is 
standardized by the SOC. It can be expressed as 
follows 

 max
2 min max min

max min
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T T
F SOC SOC SOC

T T
−

= + −
−  (14) 

where SOCmin and SOCmax are 80% and 100% 
respectively, and Tmin and Tmax are 30 min and 90 min 
respectively. Similarly, the efficiency is standardized 
by the SOC, and is derived as follows 
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( )F SOC SOC SOCη η

η η
−
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−  (15) 

where ƞmin and ƞmax are 90% and 100% respectively. 
To find an optimal 5SCC charge pattern that results in 
a larger charging capacity and higher charging energy 
efficiency within a shorter charging time, the 
objective function and the constraints are formulated 
as follows 
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where and α β γ， are the weightings of the charge 
capacity ratio, charge time, and charge energy 
efficiency respectively, which are set to 1/3. This 
means that the importance of the charge capacity ratio, 
charge time, and charge efficiency are all the same. 

4.2  PSO-based optimization 

To maximize the objective function based SOC, T, 
and ƞ, the main operating steps are described as 
follows: 

Step 1) Generation of the initial charge patterns. 
Based on the battery characteristics, the maximum 
charge current should be less than 2 C, so the rules 
established for this study are as shown below: 

 10 A 5.24 A( 1,2,3,4,5)k kI I k+≤ ≤ ≤ =  (17) 

Assume that the initial population has 100 
particles, each of which is uniformly distributed and 
randomly valued within the definition domain. 

Step 2) Battery charging simulation. Based on the 
equivalent circuit and battery parameters, the charging 
simulation can be divided into the procedures shown 
in Tab. 1. 

Step 3) Pbest and Gbest calculation. For each charge 
pattern, the fitness function can be evaluated by 
formula (16). Compare the fitness value with its Pbest 
value, and if the fitness value is better than Pbest, it 
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becomes the new local best value. Compare the Pbest of 
all particles to obtain the global best value Gbest. 

Tab. 1 Charging simulation procedures 

1. Initialize i1=i2=0, SOC=0. 

2. Input the charging current i, assume i=I1. 

3. Seek the battery model parameters based on the SOC. 

4. Calculate i1 and i2 according to formula (4). 

5. Calculate Vt and SOC according to formula (1) and formula (6) 
respectively. 

6. Judge whether the charging process is complete according to the 
returned Vt and SOC. If SOC reaches the set value or Vt reaches the 
cut-off voltage, the charge period switches to another stage; otherwise, 
return to procedure 3. 

7. Update i from I2 to I5 successively and repeat procedures 3~6. 

8. Calculate ƞ according to formula (13). 

9. Output SOC, T, and ƞ. 

Step 4) Convergence determination. When the 
best fitness value Gbest is no longer updated, the global 
optimization solution has been found. 

Step 5) Updating the particle position to obtain a 
new charging pattern.The new charging pattern can be 
acquired by the normal updating formulations of the 
PSO algorithm, which are shown below 

 1 1 best( 1) ( ) ( ) ( ( ))I k w k I k c r P I k∆ + = ∆ + − +  

 2 2 best( ( ))c r G I k−  (18) 

 ( 1) ( ) ( 1)I k I k I k+ = +∆ +     (19) 

 max max min
max

( ) ( )kw k w w w
k

= − −  (20) 

where k is the number of iterations, and kmax is defined 
as the maximum number of iterations, which is 200. ΔI 
(k) is the mutative current of each of the five stages in 
the k iteration, and I (k) is the charging current of all 
stages in the k iteration. w(k) is the inheritance weight 
in the k iteration, so wmax and wmin are defined as the 
maximum and minimum inheritance weight, which are 
1 and 0.2 respectively. r1 and r2 represent evenly 
distributed random values that have a variation range 
of [0,1]. c1 and c2 are the self-awareness and 
population-social factors, which are equal to 1.5 in this 
study. 

5  Results and discussion 

5.1  Results of simulation and experiment 

As is shown in Fig. 8, the best fitness value Gbest 
is no longer updated after 40 iterations, which means 

the convergence of the PSO algorithm has been 
reached. It is demonstrated that the proposed searching 
algorithm can obtain a global optimization solution 
with fast convergence performance. Similarly, the 
behavior of the SOC, T, and ƞ curves in Fig. 9 has 
similar convergence characteristics. After many algorithm 
tests, the best 5SCC charging combination is found to 
be [1.532 C, 0.978 C, 0.668 C, 0.393 C, 0.257 C]. 

 

Fig. 8 Evolutionary trends of fitness value 

 

Fig. 9 Optimization results of three objective functions 

A real charging experiment is then conducted to 
verify the correctness of the optimal charging pattern 
obtained from the simulation. Fig. 10 shows the curves 
for the voltage, current, and SOC obtained by the 
simulation and the experiment. In Tab. 2, it can be 
clearly observed that the total charging efficiencies of 
both simulation and experimental results are quite 
close to each other, as the difference in their total  

 

Fig. 10 Comparison curve between simulation and experiment 
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charge time is about 28 s. The SOC values of the 
experiment and the simulation, which are 94.12% and 
94.98% respectively, are approximately the same. It is 
proved that the equivalent circuit model used in this 
study is suitable for evaluating the performance of the 
5SCC charge method. 

Tab. 2 Simulation and experiment comparison 

Charging 

comparison 

Charging 

time/s 

Charging 

SOC/% 

Charging 

efficiency/% 

Simulation 3024 94.98 93.10 

Experiment 2996 94.12 93.01 

5.2  Comparative experiment with CC-CV 

To evaluate the performance of the obtained 
charging pattern, a comparative experiment is carried 
out using the CC-CV method and the obtained 
charging pattern. In the CC-CV charging process, the 
current in the CC stage is 1.532 C (i.e., 4.013 A), and 
the CV stage is complete when the charging current is 
less than 0.1 C (i.e., 0.262 A). 

Fig. 11 shows the waveforms of the battery 
temperature rise, voltage, and current as a function of 
time in the comparative test. It is evident that the 
5SCC charging strategy can help speed up the 
charging process and reduce the temperature rise. In 
the 5SCC method, the temperature rise reaches a 
maximum at the end of the first stage, at 
approximately 18 ℃. The results of the comparative 
experiment are shown in Fig. 12. The charging time 
of the proposed method is 2 996 s, which is 
approximately 553 s less than that of the CC-CV 
strategy, which means the charge speed is improved 
by 15.6% compared with the traditional CC-CV 
strategy. Although the charging SOC of the proposed 
charging pattern is 2.5% lower than that of the 
CC-CV strategy, the temperature rise showes an 
obvious decrease of 4.3%. It is demonstrated that the 
0.47% improvement in charging efficiency is helpful 
in reducing the temperature rise, which is of great 
significance to improving charging safety, especially 
when the battery is implemented in electric cars on a 
large scale. Therefore, the proposed charging pattern 
produces the best result for balancing the various 
functions. 

 

Fig. 11 Waveforms of the battery temperature rise, voltage,  

and current in the comparative experiment 

 

Fig. 12 Results of the comparative experiment 

6  Conclusions 

A PSO algorithm to search for an optimal 5SCC 
pattern is proposed in this paper to enable a larger 
charge capacity within a shorter charging time, and 
ensure a higher charging energy efficiency. The 
experimental results verify the correctness of the 
established battery model and the effectiveness of the 
obtained charging pattern. Although the charging SOC 
of the proposed charging pattern is 2.5% lower than 
that of the CC-CV strategy, the charging time and 
charging energy efficiency is improved by 15.6% and 
0.47% respectively. In particular, the temperature rise 
of the battery was approximately 0.8 ℃ less than that 
of the CC-CV method, which means that the obtained 
charging pattern is more secure.  
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