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Abstract: Power converters with insulated gate bipolar transistor(IGBT) are widely used in 
diverse industrial applications such as traction systems. As the IGBT is one of the most fragile 
components in power electronics converter, remaining useful life(RUL) prognostic of IGBT is 
important to guarantee system reliability. This paper presents a review of data-driven prognostic for 
IGBT RUL. In this paper, common data-driven prognostic methods are summarized. Features of 
data-driven prognostic approaches of IGBT are discussed, and main approaches are compared to each 
other. Four common problems of these schemes are presented and discussed. In addition, some other 
desirable studies to improve IGBT RUL estimation are proposed. 
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1  Introduction 
Insulated gate bipolar transistors(IGBTs) are power 

semiconductor switches widely used in medium- and 
high-power motor drives and power supplies. According 
to a recent industry-wide survey[1], 31% of responders 
stated that power semiconductor devices were the 
most fragile components in power electronic converters. 
The survey indicated that around 42% of switches 
utilized in power electronics systems were IGBTs. 
Fig.1 is a fault distribution chart of converters on 
CRH3 trains running on Wuhan-Guangzhou high- 
speed railway in 2009~2013[2]. As shown in Fig.1, 
IGBTs are the most fragile components, which 
account for about 64% of all faults. Consequently, 
IGBTs used in railway applications are considered to 
be leading edge critical device whose failure rate 
increases the overall probability of malfunction in 
railway traction chains[3]. 

Motivated by such reports of IGBT failures, the 
technology of condition monitoring(CM) and prognostic  
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Fig.1  Fault distribution of converters on CRH3 trains[2] 

is actively applied to detect incipient faults and to take 
corrective actions before a catastrophic failure occurs. 
CM is used to assess the current health condition, while 
prognostic is used to predict the health condition in the 
future. With only CM techniques, it is still unknown that 
how much remaining useful life(RUL) is left before a 
failure occurs. 

The main prognostic approaches for IGBTs can be 
classified into two categories: 1) the model-based 
approach; 2) the data-driven approach. The model-based 
approach is useful when failure models that emulate the 
actual failure mechanism are available. On the other 
hand, the data-driven approach does not require specific 
knowledge of a product. Instead, information about 
health condition is extracted from historical data on 
the performance of a product. Thus, the data-driven 
approach can be useful when failure models are not 
available or too complex to formulate. 

Kabir et al.[4] presented a review of data–driven 
prognostics in power electronics. Some literature was 
listed without the comments on relative merits. Moreover, 
CM wasn’t distinguished from prognostic. Oh et al. [5] 
presented a review about physics-of-failure, CM, and 
prognostics of IGBT, but data-driven prognostics 
weren’t widely described. 

The aim of this paper is to present a review of 
existing approaches for IGBT RUL data-driven 
prognostics. The structure is as follows: the second 
section describes the failure mode and mechanism of 
IGBT modules. Next, the third section summarizes 
commonly used data-driven prognostic approaches. 
Then, existing data-driven prognostic methods of IGBT 
are introduced. The fifth section offers the summary of 
main approaches and four common problems are 
presented. As well, some other desirable studies to 
improve IGBT RUL estimation are proposed. Finally, 
the conclusions are given in the sixth section. 

2  Failure modes of IGBT modules 
The failure modes of IGBT modules can be divided 

into two kinds: chip-related failure and package-related 
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failure[5-7]. 
The chip-related failure is generally considered to 

be caused by overstress(such as transient over-voltage, 
over-current, electrical-over-stress) and wear out 
mechanisms during operation[6]. The failure mechanisms 
of chip-related failure mainly include[6]: 

(1) Electrical overstress(EOS). 
(2) Electrostatic discharge(ESD).  
(3) Latch-up and triggering of parasitic. 
(4) Charge effects-ionic contamination or hot 

carrier injection. 
(5) Electromigration, contact, and stress-induced 

migration. 
(6) Thermal activation. 
(7) External radiation-mobile ions and particles. 
(8) Other mechanisms for MOS-gated devices. 
Since overstress is a short transient process, RUL 

prediction does not apply to such failures. However, as 
for the chip-related failure caused by wearing out, RUL 
prediction can be performed. 

Package-related failures are most common in power 
electronic systems. At present, there are two main kinds 
of package structures:wire-bond structure and 
press-pack structure[8]. Since wire-bond modules are 
most widely used[9], this paper only discusses the failure 
mechanism of wire-bond modules without discussing 
that of press-pack modules. The structure of wire-bond 
modules is as shown in Fig.2 [7]. 

The package-related failure is primarily a wearing 
out failure due to thermomechanical fatigue stress. In 
Fig.2, the IGBT module is multilayer structure with 
various materials, the coefficient of thermal expansion 
(CTE) which differs. During operation, IGBT modules 
are subjected to thermal cycling for a long time. Due to 
the mismatch of CTE, the internal structure of the device 
is expanded to different degrees under thermomechanical 
stress, thus causing wearing out of IGBT modules. The 
failure mechanisms of package-related failure mainly 
include[10]: 
●  Bond wire fatigue, including bond wire lift off and 

bond wire heel cracking. 
●  Aluminum reconstruction. 
●  Brittle cracking and fatigue crack propagation. 
●  Corrosion of the interconnections. 
●  Solder fatigue and solder voids. 
●  Gate oxide degradation. 

In addition, the most common failure is bond wire 
fatigue and solder fatigue. 

Since the package-related failure is mainly a 
wearing out failure, which is a gradual process, it is 
necessary to predict RUL of IGBT modules. 

 
Fig.2  Structure of wire bond modules[7] 

3  Common data-driven prognostics 
The commonly used data-driven approaches of 

prognostics are summarized in Fig.3, which mainly 
includes conventional numerical techniques and machine 
learning methods[11-12]. Some of the conventional 
numerical techniques used for data-driven prognostics 
include Kalman filters[13], particle filters[14], regression[15], 
statistical methods[16], etc. Machine learning algorithms 
include neural networks[17], decision trees[18], and 
support vector machines[19], etc. These methods can 
be broadly classified into supervised, semi-supervised, 
and unsupervised learning techniques. Another popular 
technique used for prognostics is fuzzy logic[20]. When 
applied to prognostics, fuzzy logic is typically applied in 
conjunction with a machine learning method, and is used 
to deal with some of the uncertainty that all prognostics 
estimates face. 

Although lots of data-driven methods are being 
employed for prognostics in a wide range of different 
applications, only a few of them have been employed so 
far for the prognostics of IGBTs. Degradation in 
electronics is more difficult to detect and inspect than in 
most mechanical systems and structures due to the small 
scale (micro- to nano-scale) but complex architecture of 
most electronic products[21]. 

4  Data-driven prognostics of IGBT 
At present, most of the data-driven prognostics of 

IGBTs are based on the process shown in Fig.4[22]. 
Firstly, accelerated ageing experiments are carried out to 
accelerate ageing and failure of IGBTs. Then, prognostic 
algorithm will be developed based on the data collected 
in the experiments. Suitable precursors will play an 
important role, which will influence the accuracy to a 
large extent. 

The aging failure of IGBT modules is a slow 
process. As the operation time increases, the modules’ 
performance will decrease due to cumulative damage  

 
Fig.3  Common data-driven approaches of prognostic 

 
Fig.4  Process of IGBT prognostic algorithm development[22] 
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caused, thus leading to the change of parameters and 
signals. That’s to say, the precursor can reflect the aging 
level of IGBT modules. Consequently, the selection of 
precursors is very important to predict the RUL of IGBT 
modules. 

The commonly used precursors are VCE(on), IC, VGE, 
VGE(th), Ton, Toff, and Tj

[23]. It can be seen that VCE(on) is 
the most suitable precursor for prognostic considering 
online measurement, genericity, calibration, accuracy, 
linearity, and sensitivity in Fig.5. 

A research group from Cranfield University focuses 
on RUL prognostic with Monte-Carlo simulation and 
some literature has been published in [3,22,24]. In these 
literature, collector emitter voltage(VCE) is used as a 
precursor parameter. The RUL prediction process of 
these literature is shown as Fig.6[22]. The stochastic 
degradation models are developed based on probabilistic 
distributions. Gamma, Exponential, Poisson and combining 
distribution models have been studied. According to the 
literature, the Poisson model has less errors in 
comparison to the Gamma model. The combined model 
provides better prediction performance compared to the 
single statistical distribution model. With failure model 
based on time delay neural network (TDNN), prediction 
results can be improved. The RUL result of TDNN 
failure model using normalization techniques is 
shown as Fig.7. Errors of the approach with TDNN is 
less than 4% compared to more than 20% of just 
stochastic model based approach.  

 
Fig.5  Performance comparisons of precursors for IGBT[23] 

 
Fig.6  RUL prediction process[22] 

 
Fig.7  RUL of TDNN failure model using normalization 

techniques[3] 

A particle filtering(PF) based method provides the 
probability distribution of RULs, which recursively 
estimates and updates the probability distribution of life 
model parameters as additional measurements. Saha et al. 
[25] described a preliminary example with collector 
emitter current(ICE) as a precursor. Patil et al. [26] 
proposed a prognostic approach based on Mahalanobis 
distance(MD) and PF methods. In their study, once an 
anomalous behaviour was detected by the MD method, 
an algorithm based on PF was triggered to predict the 
RUL with an error of approximately 20%. Sequential 
importance resampling(SIR) PF method was utilized, 
and VCE was used as a precursor parameter in the    
study. Haque et al. [23] employed auxiliary particle 
filtering (APF) when IGBT entered the degradation 
region identified by a simple slope-based method.    
The algorithm is shown as Fig.8 and the trajectory of 
VCE,ON using PF is shown as Fig.9. The APF increased  

 
Fig.8  APF-based RUL estimation algorithm[23] 

 
Fig.9  Trajectory of VCE,ON using APF and SIR PF 

with different number of particles[23] 
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diversity in samples to reduce estimation variance and a 
smaller error 17.8% was found. 

Ahsa et al. [27] adopted two machine learning 
methods, neural network (NN) and adaptive neuro fuzzy 
inference system (ANFIS). Relatively accurate prediction 
can be made based on information beyond half-life. The 
errors calculated using NN and ANFIS are 19.04% 
and 30.91%, respectively. VCE is used as a precursor 
parameter in the study. Samie et al. [28] presented a 
prognostic technology based on ANFIS system. They 
selected VCE-SAT as precursor parameter and considered 
temperature as working condition parameter under the 
condition of a fixed maximum IC-SAT. The error of the 
best results was 8.1%. Algassi et al. [29] also 
developed a prognostic technology based on ANFIS in 
fusion with failure dynamics using VCE, ΔVCE, Tj, ΔTj 
as precursors. The process of RUL estimation is 
shown as Fig.10 and Fig.11 and the prognostic result 
Fig.12. The error of 1.76% is got.  

 
Fig.10  Structure of ANFIS[27] 

 
Fig.11  The process of RUL estimation based on fuzzy logic[29] 

 
Fig.12  RUL simulation using ANFIS model[29] 

Algassi et al. [30] developed a prognostics model 
based on fuzzy knowledge. The process of RUL 
estimation based on fuzzy logic is shown as Fig.13[31]. 
VCE and ΔVCE are used in the fuzzy system as precursor 
parameters. The experimental data shows that VCE is the 
best degradation indicator and ΔVCE indicates the 
dynamic of degradation process[30] . The result is shown 
as Fig.14 with an error value of 0.51%. However, the 
relationship between variables and the information of 
the experts are required to construct fuzzy rules and 
membership function. Besides, linguistics variables are 
used, and the boundary demarcation of them greatly 
affects the accuracy of prognostics. 

Algassi et al. [32] proposed a state based prognostic 
model for predicting RUL. The study employed transition 
probabilities models to predict RUL, but overall the 
system did not provide high accuracy of RUL prediction. 

5  Summary and discussion 
Table 1 is the summary of main approaches. In fact, 

the accuracy ratio comparison of various methods  

 
Fig.13  The process of RUL estimation based on fuzzy 

 
Fig.14  RUL simulation in defuzzified model[30] 
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Table 1  Summary of main data-driven prognostics approaches of IGBT 

Approaches Precursors Errors(%) Advantages  Disadvantages 

Poisson ＞20 

Gamma ＞33 
Computationally efficient, 
real-time, and embeddable Low accuracy Monte-Carlo  

simulation 
Fusion with TDNN ＜4 High accuracy -- 

SIRPF 21 

Conventional  
numerical  
techniques 

Nonlinear filters 
APF 17.8 

-- Relatively low accuracy 

NN 19.04 

VCE 

30.91 
-- 

VCE-SAT 8.1 -- 

Relatively low accuracy  
and large data based 

Machine learning 
ANFIS 

VCE, Tj 1.76 High accuracy 

The structure is difficult to determine, the 
algorithm is complex, the calculation 
efficiency is low, and the convergence 

speed is slow  

Fuzzy logic Fuzzy logic VCE 0.51 High accuracy The relationship between variables and the 
information of the experts are required

  
from the literature is not significant without unified 
error calculation method, and it is necessary to 
consider the period in which the prediction starts (the 
closer to the failure, the more accurate the prediction 
is). The evaluation of various methods should 
consider feasibility, amount of data, amount of 
calculation, and so on. There are many inherent 
problems in artificial neural networks, including the 
difficulty in determining the network structure, the 
complexity of the algorithm, the low computational 
efficiency, and the slow convergence rate, which is 
not conducive to engineering applications. As for 
fuzzy logic, it requires expert information to construct 
fuzzy rules, which is not conducive to engineering 
applications. 

In addition to the comments in Table 1, there are 
four common aspects that need to be improved in the 
above approaches: 

(1) A single precursor VCE is employed in most 
literature. There are multiple failure mechanisms in 
the aging process of IGBT. A VCE based technique 
may fail to detect the degradation as the competing 
mechanisms cancel the effects of each other. One 
method of resolving this issue is to do prognostics 
associated with multi-precursors. 

(2) Aging precursors are always impacted by 
junction temperature(Tj). A more accurate prediction 
needs to eliminate the effect of temperature. One 
method of resolving this issue would be to determine 
a temperature dependent correction parameter to 
account for changes in temperature. 

(3) Precursor measurements of selected samples 
are used in building failure models or system training 
step, which are used to predict the RUL of other 
samples. Individual differences should be considered.  

(4) The failure threshold is an assumption, 20% 
change in the VCE as an example, which will vary as 
individual differences, multiple failure mechanisms, 
etc. 

The above literature didn’t involve the theoretical 
basis of the selection of data-driven algorithms. Such 
study is needed to match IGBT aging characteristics and 
data-driven algorithms. It is not a good approach to use a 

large amount of algorithms and choose according to the 
results. Furthermore, reasonable enough prognostic 
metrics are also missing. In recent literature, accuracy 
is the only criterion. Prognostic metrics that take into 
account the prediction horizon length, sensitivity    
to damage state estimation, modality of confidence 
distribution, preference distribution around actual time 
of failure, and stability/robustness of the prediction 
would be desirable. 

A practical method of indicators measurement, 
noise filtering, and on-line measurement of Tj warrant 
special attention, as they are the fundamentals of 
data-driven IGBTs CM and RUL prognostic for accuracy 
and practicality. 

6  Conclusion 
Literature and main approaches of data-driven 

IGBTs RUL prognostic are reviewed in this paper. 
Features, advantages and disadvantages are commented 
on. The main approaches are compared to each other. 
Monte-Carlo simulation with TDNN has the highest 
accuracy, but PF is more practical. Four common 
problems are presented and some solutions are proposed. 
In addition, some desirable studies are proposed. 
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