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Abstract: Accurate, high bandwidth current control is a requirement for high performance vector 
controlled AC drives. Synchronous PI current regulators are the preferred solution for this purpose. Design 
and operation principles of synchronous PI current regulators are well established. However, there are a 
number of issues that must be considered, especially when the drive must operate at high synchronous 
frequencies, including regulator design, effects due to discretization and the associated delays, voltage 
constraints and current sampling issues among other. Inadmissible degradation of the current regulator 
performance and consequently of the drive can occur otherwise. 
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1  Introduction 
Torque produced by an electric machine is a 

function of the current flowing into the stator windings, 
the exact relationship between current and torque 
depending on the machine type (induction, surface/ 
interior permanent magnet, synchronous reluctance, etc.). 
However, most electric machines are fed from voltage 
source inverters. Consequently, accurate, high bandwidth 
control of the torque produced by the machine will 
require some form of closed-loop strategy. High 
performance control methods proposed for AC drives 
can be roughly separated into two major groups: 
● Methods which transform the desired torque into a 

current command. A current regulator provides in this 
case the voltage commands to the inverter. This type 
of control is commonly referred as vector control[1]. 
An advantage of using current regulators is that they 
allow an effective protection of machine and power 
converter against overloads or even short circuits. 

● Methods which obtain the inverter states from the 
desired torque and flux. These methods are commonly 
referred as Direct Torque Control (DTC)[2]

. 
Current regulators implemented in vector control 

methods present two distinguishing characteristics: 
● Contrary to most systems, electrical variables in AC 

machines are typically sinusoidal in steady state, with 
frequencies which can vary between zero and several 
hundred Hz or even kHz. Because of this, the well 
known integral action in a controller is no longer 
capable of providing zero error tracking in steady 
state. Steady state errors are not admissible in most 
applications. 

● Though all the three phase currents need to be 
controlled simultaneously, there are only two 
independent variables, as the phase currents must add 
to zero. Methods which use three independent current 
regulators (e.g. hysteresis, delta modulation used in 
the early years of electric drives[3-4]) are therefore 
conceptually incorrect. 

A variety of current regulator designs have been 
proposed for current control of AC drives[3-5]. Among 
these, PI regulators operating in a synchronous reference 
frame can be considered as the industry standard[5-8]. 
This type of current regulator provides a satisfactory 
solution for the two aforementioned problems: 1) In 
steady state AC variables become DC, meaning that the 
integral action of a PI controller guarantees zero steady 
state error; 2) There are only two regulators (d- and 
q-axis), which is consistent with the fact that the number 
of independent variables is two. 

Fig.1 shows the main blocks of a current regulated 
AC drive, including currents sensors, signal acquisition, 
coordinate rotations, current regulator and modulation. 
Synchronous PI current regulators are always 
implemented digitally due to the need of coordinate 
rotations, which require the use of trigonometric 
functions. While their principles of operation are well 
established, a number of issues must be considered 
especially when the electric drive must operate at 
relatively high synchronous frequencies compared to the 
switching frequency, as otherwise their performance and 
even stability can be compromised. 

 
Fig.1  Schematic representation of a current regulated electric 
machine (Current regulation (CR block) is implemented in the 

discrete domain. Complex vector notation has been used to 
represent the electrical variables of the control) 
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This paper analyzes the design and implementation 
of synchronous PI current regulators for AC drives. 
Influence of machine characteristics, effects due to the 
discrete implementation of the controller and operation 
under voltage constraints (saturation) will be considered. 
The paper is organized as follows. Modeling of three- 
phase AC systems is presented in Section 2, both scalar 
and complex vector notation being used. Inverter 
operation and voltage limits are discussed in Section 3. 
Design and tuning of synchronous PI current regulators 
is discussed in Section 4. Discretization and operation 
under voltage constraints are covered in Section 5. 
Conclusions are summarized in Section 6. 

2  Modeling of three-phase AC systems 
Representation of AC systems and machines, and 

consequently the analysis of their current regulators can 
be addressed using both scalar and complex vector 
notation[1,3,6-9]. Although eventually both notations can 
provide the same results, each notation provides different 
insight into the control problem. The standard d-q scalar 
notation results in multiple-input/multiple-output systems 
(and controllers), requiring the use of matrix algebra. The 
use of complex vector notation simplifies the model of an 
AC machine from a multiple-input/multiple-output system 
to an equivalent single-input/single-output complex vector 
system, it also reduces the order of the system by two, 
enabling the use of powerful analysis methods[7]. 
However, complex vector modeling requires that the AC 
system is symmetric (same parameters in the d- and 
q-axis). It is not suitable therefore for salient machines as 
interior permanent magnet machines or synchronous 
reluctance machines. Both scalar and complex vector 
notation will be used through the paper for the analysis of 
AC systems and their current control problem. 

2.1  Three-phase variables, two phase equivalent 
variables and complex vectors 

2.1.1  Three-phase to d-q transformation and 
complex vectors 

Given a set of three-phase currents, the linear 
transformation in (1) is used to transform the variables 
to an orthogonal d-q coordinate system[1,8]. 
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The i0s component is the average of the three phase 
currents, and is equal to zero for the common case of 
machines with an isolated neutral connection. 

Three-phase variables can also be modeled using 
complex notation, the transformation being (2)[1,8]. 
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Transformations in (1) and (2) can be visualized as 
the currents ia, ib and ic aligned with three axes shifted 
120º from each other being transformed to an orthogonal 
d-q reference frame, as shown in Fig.2. 

 
(a) Three-phase quantities     (b) D-q plane in the stationary and  

synchronous reference frames 
Fig.2  Reference coordinate systems and coordinate rotations 

2.1.2  Coordinates transformations 

The d-q reference frame defined by (1) and (2) is 
fixed in space and will be referred to as a stationary 
reference frame. Variables referred to this reference 
frame will be denoted by a superscript “s”. The two- 
phase components defined by (1) and (2) can be referred 
to an arbitrary reference frame forming an angle e with 
the stationary reference frame, as shown in Fig.2. This 
transformation is defined by (3) and (4) for the case    
of scalar and complex vector notation respectively. 
Variables referred to this reference frame are denoted 
by a superscript “e”. This transformation is especially 
important when the reference frame rotates at the 
electrical frequency e of the electro-magnetic variables 
(currents, voltages, flux-linkages) (5). This rotating 
reference frame is referred to as synchronous reference 
frame. 
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2.2  Modeling of three-phase loads 

D-q models play a major role in the analysis of 
three-phase systems, including electric AC machines. 
Though scalar and complex vector representations can 
be used for this purpose and will eventually provide 
the same results, each has its own advantages and 
disadvantages. Following a three-phase RL load will be 
used to discuss the different options and to analyze the 
current regulation problem in Section 3. Similarities 
between the current control problem of a three-phase RL 
load and a three-phase electric machine will be shown in 
Section 2.2C. 

2.2.1  Scalar model of symmetric RL load 

The current to voltage relationship of a three-phase, 
symmetric RL load with isolated neutral connection 
(Fig.3a), is described using matrix notation by (6). Since 
the neutral of the RL load is isolated (7) must hold. 
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(a) Three-phase RL load            (b) Equivalent d-q system 

 
(c) Equivalent complex vector system 

Fig.3  RL load models 

0a b ci i i                    (7) 

Applying (1) to both the currents and the voltages in 
(6) the two-phase equivalent system (8) is obtained. The 
reduction from three to two dimensions just recognizes 
the fact that the three-phase currents are not independent. 
The equivalent circuit is shown in Fig.3b[8]. 
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It is useful from a modeling and control perspective 
to transform (8) to a synchronous reference frame. This is 
done by applying (3) to both the current and the voltages 
in (8), with (9) being obtained (the corresponding block 
diagram can be found in the right side of Fig.10). It is 
observed that in the synchronous reference frame there is 
cross-coupling between d- and q-axis (eL terms). 
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2.2.2  Complex vector model of a symmetric RL load 

The complex vector transfer function describing an 
RL load in the stationary reference frame (10) is 
obtained by taking the Laplace Transform to currents 
and voltages in (8)[8], where Ys(s) corresponds to the 
stator admittance. 
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This transfer function can be referred to as a 
synchronous reference frame (12) using (4), (5) and 
considering (11)[7]. The equivalent circuit is shown in 
Fig.3c, the corresponding block diagram being shown on 
the right side of Fig.9. 
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Comparing (8) and (9) with (10) and (12) is 
observed that the complex vector representation reduces 

both the order of the system and the number of inputs and 
outputs from two to one. It is also seen from (12) that 
poles (and zeros) in complex transfer functions do not 
need to exist in conjugate pairs as opposed to the scalar 
representation. 

2.2.3  Complex vector model of an induction machine 

For the sake of simplicity, an RL load has been 
chosen in Section 2.2 to introduce scalar and complex 
vector models of three-phase AC systems. However, the 
main target of this work is the study of current regulators 
for electric drives. Regardless of the significant differences 
between an electric machine and an RL load, they share 
some key properties, meaning that most of the conclusions 
reached for the current regulation of an RL load apply to 
the electric machine case. The induction machine will be 
used to illustrate this. 

The nonlinear state equations in the synchronous 
reference frame governing the electrical and elec- 
tromagnetic behavior of an induction motor using 
complex vector notation, with the stator current and the 
rotor flux as the state variables are (13) and (14)[7]. The 
corresponding block diagram is shown in Fig.4. 
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The last term in (13) is the back-emf. Comparing 
(13) and (12) it is observed that the induction machine 
is equivalent to an RL load with the back-emf behaving 
as a disturbance voltage (see Fig.4). Two different 
approaches can be followed for the extension of the RL 
load analysis to the electric machine case. The back-emf 
for the second case can be decoupled, the resulting 
system then coinciding with (12). Alternatively, the 
behavior of the induction machine can be studied from 
the response of an RL load to a disturbance (back-emf) 
voltage[3]. This is further discussed in Section 4. 

3  Voltage needs and limits 
The current regulator provides the voltage command 

to the three-phase inverter feeding the machine. 
Understanding inverter behavior and limits will be 
key for proper current regulator design and drive 
operation. 

 
Fig.4  Complex-vector block diagram of a current 

regulated three-phase induction machine 
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3.1  Voltage needs 

Fig.5 shows a schematic representation of the stator 
voltage vs. frequency for an induction machine. It is 
noted that the discussion following also applies for other 
types of AC machines. When the machine is operating in 
steady state, the difference between the stator voltage 
and the inverter voltage limit is the voltage margin 
available for the current regulator transient operation. 
This margin reduces as the frequency increases mainly 
due to the back-emf (last term in the right side of (13)), 
eventually affecting to the current regulator performance. 
Some relevant aspects must be considered in this case: 
● Selection of current commands to produce the desired 

torque depends on the strategy used by outer control 
loops (field weakening, MTPA, ...)[10]. Discussion 
of this issue is beyond the scope of this paper. 
Independent of the strategy being used, current 
commands must be chosen such that in steady state 
there is enough voltage to produce the desired currents. 

● Voltage margin reduction at high speeds will 
unavoidably penalize the current regulator transient 
response. It is critical to guarantee that this does not 
jeopardize system integrity due e.g. to current 
overshoots or even instability of the current loop. 

● When the current regulator operates with a reduced 
voltage margin, it is important to ensure that the 
current regulator utilizes all the available DC link 
voltage[3,10-12]. This involves both proper current 
regulator design and inverter modulation strategy. 

DC link voltage utilization is discussed in the next 
subsection, transient operation of the current regulator 
under transient constraints being discussed in Section 5. 

3.2  Inverter operation and voltage limits 

Fig.6a shows the voltage limits in the d-q plane 
for a three-phase, two-level inverter. The maximum 
fundamental voltage component that can be supplied by 
the inverter is determined by the DC bus voltage and the 
modulation strategy. Operation of the inverter when the 
fundamental voltage is constrained to the inscribed 
circle is commonly referred to as linear operation. It is 
possible to increase the fundamental voltage further by 
allowing the voltage command to move on the hexagon 
limits, which is referred to as overmodulation. The 
maximum fundamental output voltage corresponds to 
six-step operation. In this mode the voltage vector 
remains on each corner of the hexagon for one sixth of 
the fundamental cycle[3,14-17]. 

 
Fig.5  Schematic representation of the voltage vs. speed 

characteristics of an induction machine in steady state 
(Voltage margin accounts for the voltage available to the 

current regulator for transient operation) 

It is up to the designer to constrain the voltage 
command to the linear region or to use overmodulation. 
Choosing one option or the other involves a trade-off 
among: ①The maximum fundamental voltage (and 
consequently current and torque); ② Voltage (and 
consequently current) harmonic content, which will 
affect to torque quality; and ③Inverter switching losses. 
Table 1 summarizes the main properties for different 
modes of operation of the inverter. 

A relevant issue in drives configured to operate in 
overmodulation or even six-step is the transition among 
the different modes. Voltage commands coming from the 
current regulator which are outside the hexagon (see 
Fig.1) cannot be produced physically by the inverter and 
must be limited, several methods have been proposed for 
this. Using the intersection between the commanded 
voltage and the hexagon is likely the most intuitive 
solution, and is referred to as Minimum phase error in 
Fig.6b[11,13]. A concern with this method is that the 
increase of the fundamental component of the output 
voltage vs. commanded voltage in the over modulation 
region is modest (see Fig.7) and cannot provide six-step. 
Minimum distance (see Fig.6b) projects the original 
voltage command on the hexagon[11,13]. Though this 
strategy produces a larger fundamental voltage, it cannot 
provide six-step either unless the voltage command 
becomes infinite. In the method proposed in [14] 
(Constant magnitude in Fig.6b) the voltage command is 
rotated until it intersects the hexagon. An appealing 
property of this method is that it quickly produces 
six-step (whenever *

dqsv ≥ dc2 3V , see Fig.7). Discussion 

on transition between different modes of operation of the 
inverter and the reconfiguration of the control loops can 
be found in [11]. 

Table 1  Modes of operation of the inverter 

 Linear Hexagon Six-step

Fundamental
voltage ≤ dc

1
3

V
* dc

3
V

≤Vmax≤
dc2V


 
dc

2V


 

Harmonic 
content Lowest** Increases with 

modulation index Highest 

Switching 
losses Highest** Decreases with 

modulation index Lowest 

* For Space Vector Modulation or sine-triangle modulation with 
homopolar voltage injection[13] 
** Discontinuous modes of operation in the inverter reduce switching 
losses and increase the harmonic content  

 
(a) Voltage limits for a two  

level inverter 
(b) Over modulation strategies 

(Subscripts 1, 2 and 3 correspond to 
minimum phase error, minimum 
distance and constant magnitude)

Fig.6  Voltage limits for a two-level inverter 
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Fig.7  Fundamental component of the output vs. reference 

voltage for different overmodulation strategies  
(Modulation index M=1 corresponds to the maximum 

fundamental voltage that can be supplied by then inverter, 
which occurs for six-step operation) 

3.3  PWM update and current sampling 

Since synchronous PI current regulators are always 
implemented digitally, different strategies can be used 
for the PWM update and current sampling. The 
discussion following assumes that the PWM uses a 
triangular carrier but also applies for Space Vector 
Modulation. Symmetric PWM(Fig.8-left) updates the 
voltage command once per cycle of the triangular carrier, 
while Asymmetric PWM(Fig.8-right) updates the 
voltage command twice per switching period[3]. In both 
cases, updates must occur at the peaks of the carrier. 
Asymmetric PWM is preferred as it reduces by two the 
delay intrinsic to the PWM operation, enabling higher 
current regulator bandwidths. This can be of great 
interest in drives operating at low switching frequencies, 
but is at the price of doubling the computational burden 
of the current regulator. 

Sampling the currents at the peaks of the triangular 
carrier(commonly known as synchronous sampling, see 
Fig.8c) is the preferred strategy in AC drives[18]. 
Synchronous sampling is easy to implement and is 
claimed to provide the mean value of the current over the 
switching period, getting rid therefore of switching 
harmonics without the use of an anti-aliasing filters, 
which otherwise would compromise the current regulator 
bandwidth. 

It is finally noted that traces shown in Fig.8 use a 
constant switching frequency. Modulation strategies 
using variable switching frequency have also been 
proposed, as synchronized PWM[1,3] and random 
PWM[19], which are of common use e.g. in electric 
traction. 

 
Fig.8  Waveforms and current sampling for the case of 

symmetric and asymmetric PWM 

4  Synchronous PI current regulators 
The transformation of three phase loads to a 

reference frame rotating synchronously with the 
excitation frequency was already shown to have the 
appealing property of transforming sinusoidal signals 
into dc signals. A PI regulator implemented in this 
reference frame should therefore provide zero steady-state 
error, independent of the excitation frequency. This 
form of controller is denoted as a synchronous PI 
current regulator and can be considered the standard in 
current controlled AC drives[5-6]. 

4.1  Classical synchronous PI current regulators 

In its simplest implementation, the PI current 
regulator shown in the synchronous reference frame is 
given by (15), its block diagram is shown in the left side 
of Fig.9. 
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The scalar representation of this controller can be 
seen in the left side of Fig.10 (without dashed lines). The 
regulator can be transformed into a stationary reference 
frame using (4) and (11), (16) being obtained. 
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An effective way to tune the current regulator gains 
is zero-pole cancellation. The controller zero i pK K  is 
selected to be equal to the(estimated) cut-off frequency 

 
Fig.9  Complex vector block diagram of a current regulated 
RL load using a classical synchronous PI current regulator, 

shown in a synchronous reference frame 

 
Fig.10  Scalar block diagram of a current regulated RL load 
using a classical synchronous PI current regulator, shown in a 

synchronous reference frame. Dashed lines correspond the 
complex vector PI current regulator in Fig.16 
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of the RL load, s (17). The proportional gain Kp is then 
selected to obtain the desired closed-loop bandwidth 
bw (in rad/s).  
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               (17) 

The closed-loop transfer function in the stationary 
reference frame obtained from (10) and (16) is (18). 

Bandwidth and synchronous frequency are 
normalized to p.u. by dividing by the system bandwidth 
s =R/L 
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A suitable tool to evaluate the behavior of the closed 
loop system is (18) the Frequency Response Function 
(FRF), which is obtained by making s = j[7-8]. Fig.11 
shows the FRF for the transfer function in (18). It is noted 
that as complex vectors can rotate both forwards (positive 
frequencies) and backwards (negative frequencies), the 
FRF must include both positive and negative frequencies. 
Furthermore, use of a logarithmic frequency scale is not 
possible unless some trick is implemented to avoid the 
frequency zero crossing. Two important facts are noticed 
from Fig.11. 
● In all the cases the FRF has a unity gain and zero 

phase shift at the synchronous frequency. This 
means that the current regulator guarantees perfect 
tracking (no error) in steady state. This holds for 
any synchronous frequency, regardless of current 
regulator bandwidth. 

● A resonance in the FRF occurs near the synchronous 
frequency whenever the synchronous frequency is 
different from zero. This resonance increases as the 
synchronous frequency increases. 

Transients in the current will excite the resonances 
shown in Fig.11, eventually resulting in a degradation of 
the current regulator dynamic response. Fig.12 shows the 
time response of the synchronous PI current regulator 
to a step-like q-axis current command for different values 
of the synchronous frequency. As the synchronous 
frequency increases, current control degradation 
(overshoot, increased settling time and cross-coupling 
between d- and q-axis) is readily visible. 

 
Fig.11  Classical synchronous PI current regulator FRF  
for different fundamental frequencies. Current regulator  

was tuned for 200Hz bandwidth 

 
Fig.12  Classical synchronous PI current regulator time 

response, shown in a synchronous reference frame, to a step-like 
command in the q-axis for different fundamental frequencies 

The results shown in Fig.12 were obtained for 
certain values of the system pole and current regulator 
bandwidth. The behavior of the closed-loop system 
depends on the synchronous frequency e and closed- 
loop bandwidth bw vs. load cut-off frequency s (17). 
Fig.13a shows the resonance peak of the FRF, while 
Fig.13b shows the overshoot of the time response to a 
step-like command, as a function of the synchronous 
frequency and closed-loop bandwidth, normalized in 
p.u. of the system cut-off frequency s. The risks of 
operating at(relative) high synchronous frequencies with 
(relative) low current regulator bandwidths are evident 
from this figure. 

Classical synchronous PI current regulator time 
response, shown in a synchronous reference frame, to 
a step-like command in the d- and q-axis for two 
different fundamental frequencies bw200×2rad/s. 

 
(a) Resonance peak of the FRF 

 
(b) Overshoot of the time response (step input) 

Fig.13  a) resonance peak and b) overshoot in the time 
response of the FRF vs. bandwidth and synchronous 

frequency of a classical synchronous PI current regulator 
(Bandwidth and synchronous frequency are normalized to 

p.u. by dividing by the system bandwidth s=R/L) 
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Experimental results showing the response of the 
synchronous PI current regulator to step-like commands 
in the q and d axis current for two synchronous 
frequencies of 50Hz and 200Hz are shown in Fig.14. 
These results confirm the deterioration (overshoot, 
cross- coupling) of the current regulator response as the 
synchronous frequency increases. 

An ideal synchronous PI current regulator should 
show a response independent of the synchronous 
frequency when viewed in a synchronous reference 
frame. Two different approaches to achieve this are 
discussed in the next subsections: ①Cross-coupling 
decoupling and ② The complex-vector PI current 
regulator[7-8]. This last one is equivalent to the internal 
model control discussed in [9]. 

4.2  Synchronous PI current regulators with cross- 
coupling decoupling 

A behavior independent of the synchronous 
frequency can be achieved using the scheme shown in 
Fig.15. The current controller is seen to include a gain 
equal jeL in the feedback path which compensates 
the effect of the load cross-coupling. It is noted that 
the decoupling block implemented by the controller 
uses and estimation of the load inductance, L̂ which 
will differ from the actual value. The effects of the 
inductance estimation errors must therefore be 
considered[7-8]. It is also noted that there is no error in 
the fundamental frequency e, as this frequency is set by 
the digital signal processor implementing the control. 

4.3  Complex-vector synchronous PI current regulator 
(internal model control) 

The idea behind the complex-vector synchronous PI 
current regulator is to use the controller zero to cancel the  

 
Fig.14  Experimental results for an RL load  

(R=1.1, L=3.7mH) (Classical synchronous PI current 
regulator time response, shown in a synchronous reference 
frame, to a step-like command in the d- and q-axis for two 

different fundamental frequencies. bw=200×2rad/s) 

 
Fig.15  Current regulated RL load using a classical 
synchronous PI current regulator with cross-coupling 
decoupling, shown in a synchronous reference frame 

system pole. This is in principle the same concept 
discussed in Section 4.1. However, the cancellation 
discussed in Section 4.1 was only effective for the case of 
a fundamental frequency equal to zero. The complex- 
vector synchronous PI current regulator (19) considers 
for the zero placement the displacement of the load pole 
with the fundamental frequency. This design is shown in 
Fig.16. 
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Assuming exact zero-pole cancellation (17), the 
closed- loop transfer function in the stationary reference 
frame is equal to (20), which in a synchronous reference 
frame transforms to (21). 
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
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 

         (21) 

Fig.17 shows the FRF for both the synchronous PI 
current regulator with cross-coupling decoupling in 
Fig.15 and the complex vector synchronous PI current 
regulator in Fig.16, obtained making s=j in (20). 
Perfect matching between system and controller 
parameters (17) is assumed. The FRF shifts with the 
fundamental frequency, but its shape remains invariant, 
contrary to the FRF shown in Fig.11 for the classical 
synchronous PI current regulator. In a synchronous 
reference frame, the closed-loop transfer function (21) is 
seen to be that of a first-order system with the desired 
bandwidth bw and independent of the synchronous 
frequency. 

 
Fig.16  Current regulated RL load using a complex vector 
PI current regulator, shown in a synchronous reference frame 

 
Fig.17  Synchronous PI current regulator with 

cross-coupling decoupling and complex vector PI current 
regulator FRF for different fundamental frequencies 
(Current regulator was tuned for 200Hz bandwidth) 
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Complex vector synchronous PI current regulator 
time response, shown in a synchronous reference 
frame, to a step-like command in the d- and q-axis 
for two different fundamental frequencies bw200×

2rad/s. 
Experimental results showing the response of the 

complex vector synchronous PI current regulator to step 
changes in the d- and q- axis current commands are 
shown in Fig.18, for two synchronous frequencies of 
50Hz and 200Hz. These results confirm that the 
response of the current regulator is not affected by the 
synchronous frequency. The synchronous PI current 
regulator with cross-coupling decoupling provides 
similar performance, and as such the results are not 
included due to space constraints. 

It is finally noted that while both the synchronous 
PI current regulator with cross-coupling decoupling 
and the complex vector design provide the same 
performance ideally, the second is more robust against 
errors in the system parameters (i.e. incorrect zero-pole 
cancellation (17))[8]. 

4.4  Back-emf effects and compensation 

As discussed in Section 2.2C, an electric machine 
can be modeled as an equivalent RL load with the 
back-emf acting as a disturbance (see Fig.4). Back-emf 
occurs at the synchronous frequency and is proportional 
to the rotor speed and the flux linkage. On the other 
hand, it is observed from Fig.5 that the voltage drop in 
the stator transient impedance, i.e. the voltage requested 
by the current regulator to inject the desired current into 
the equivalent RL load, is relatively small.  Therefore, 
at medium-high speeds the back-emf can be viewed as 
large disturbance interfering with a small control signal. 

The effects due to the back-emf can be analyzed 
using the transfer function between output current and 
back-emf voltage. These can be readily obtained from 
(12), (15) and (19), being (22) for the synchronous PI, 
(23) for the synchronous PI with cross-coupling 
decoupling and (24) for the complex vector synchronous 
PI current regulators. 

2
bemf p i( j )

e
dqs
e

e

i s
v L s L R K s K


   

     (22) 

 
Fig.18  Experimental results for an RL load  

(R=1.1, L=3.7mH) Complex vector synchronous PI current 
regulator time response (shown in a synchronous reference 
frame, to a step-like command in the d- and q-axis for two 

different fundamental frequencies, bw=200×2rad/s) 

2
bemf p i( )

e
dqs
e

i s
v L s K R s K


  

        (23) 

2
bemf p i p( j ) j

e
dqs
e

e e

i s
v L s L R K s K K 


    

  (24) 

Fig.19 shows an example of the response of the 
different current regulator designs to a step-like change 
of the back-emf voltage. Several conclusions are reached: 
● The DC gain is always zero, meaning that in steady 

state the disturbance voltage is fully compensated 
by the current regulator. This was expected as 
disturbance rejection to DC signals in steady state 
is inherent to the PI controller. The settling time is 
similar for all the designs. 

● The back-emf voltage bemf
ev  is a function of the 

rotor flux and the speed. In many applications 
speed dynamics are significantly slower than 
current regulator dynamics, while flux will either 
remain constant or will vary according to speed 
(field weakening). Consequently bemf

ev  will change 
slowly. Its effects are therefore easily compensated 
by the current regulator. 

● An exception can be servo drives with low mechanical 
inertia, for which speed dynamics might not be 
negligible compared to current dynamics. Back-emf 
decoupling can be used in this case. 

● The use of active resistance in the feed-back path 
(see in Fig.20) is an effective mechanism to increase 
the stiffness of the current regulator against bemf

ev . 
This fictitious resistance adds to the physical 
resistance but without consuming power[7]. Current 
regulator (25) and gain selection (26) are easily 
deduced from (19) and (17) respectively. The active 
resistance is selected as Ra=bwLR in [12,21]. 

 
Fig.19  Simulated response of different current regulator 

designs to a step-like disturbance voltage (shown in a 
synchronous reference frame.bwe200×2rad/s

Ra=2R for the active resistance case) 

 
Fig.20  Current regulated RL load using a complex vector 
PI current regulator with active resistance Ra (shown in a 

synchronous reference frame) 
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i bw a

p bw

( )
·

K R R
K L




 
 

            (26) 

Benefits of active resistance can be observed in 
Fig.19. 

4.5  Current regulator representation using a state- 
feedback structure 

The synchronous current regulator (25) can be 
represented as a state-feedback regulator, augmented 
with integral action and the reference feedforward[20-21], 
where Kt is the reference-feedforward gain, Ki is the 
integral gain, and K1 is the state-feedback gain. In a 
general case, the gains are complex, which is marked 
with boldface symbols. 

* * *i
t 1( )e e e e e

dqs dqs dqs dqs dqsv i i i i
s

   
KK K       (27) 

This structure, illustrated in Fig.21, is useful for 
better understanding the direct discrete-time design in 
Section 5. 

Using (12) and (27) with the assumption *e e
dqs dqsv v  

the closed loop response is obtained, 
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e
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e
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The two closed-loop poles can be arbitrarily placed 
by means of Ki and K1 and the one zero by means of  
Kt

[21]. Choosing the gains (29) makes the regulator in (27) 
mathematically equivalent to the regulator (25) with the 
gain selection in (26). 
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5  Digital implementation 
As explained before, synchronous current regulators 

are implemented digitally. The implementation can be 
based on ① approximation of the continuous-time 
design; or ②direct discrete-time design. 

The first approach is more straightforward to apply. 
The continuous-time design is simply discretized by 
means of the Euler (or Tustin) method and the angular 
errors due to the computational delay and the PWM are 
compensated for in the coordinate transformation. 
However, the sampling frequency should be at least  

 
Fig.21  Synchronous current regulator in the form of 

state-feedback regulator 

1020 higher than the closed-loop bandwidth and the 
maximum synchronous frequency. If this requirement is 
not fulfilled, the actual closed-loop system deviates 
significantly from the desired one due to discretization 
errors, leading to the cross-coupling between the axes, 
oscillations, and even instability. 

In the direct discrete-time design, the exact 
sampled-data model of the system(including the 
sampling and hold effects) is first developed and the 
regulator is then designed directly in the discrete-time 
domain. The system delays can be properly taken into 
account, which enables significantly better performance 
and robustness at low sampling frequencies. 

In the following, discrete-time regulators resulting 
from these two fundamentally different approaches are 
presented using the same regulator structure. The 
sampled-data model of the system to be controlled is 
first developed and a discrete-time control algorithm 
is then defined. The gains resulting from the two 
approaches are then given. 

The PWM is modeled with the ZOH in stator 
coordinates. An inherent computational delay z1 of the 
digital processor and the inverter voltage saturation are 
taken into account. 

The anti-windup mechanism based on the realizable 
reference is also included. 

5.1  Voltage saturation and sampled-data model 

Fig.22(a) shows the system seen by the digital 
current regulator[21-23]. This model includes the following 
important phenomena: 
● The phase currents are sampled in synchronism 

with the PWM(cf. Fig.8). Therefore, the switching- 
cycle-averaged models and quantities can be used 
in modeling and control design. 

● The PWM is modeled using the zero-order hold 
(ZOH) in stator coordinates[21-22], i.e., the actual 
stator voltage ( )s

dqsv t  in stator coordinates is piecewise 
constant between two consecutive sampling instants.  

● The inverter voltage is limited, cf. Fig.6. The limited 

 
(a) System seen by the digital current regulator operating in 

synchronous coordinates 

 
(b) Corresponding sampled-data model 

Fig.22  Digital implementation (The PWM is modeled 
with the ZOH in stator coordinates. An inherent 

computational delay z1 of the digital processor and the 
inverter voltage saturation are taken into account) 
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(realizable) voltage reference is denoted by *s
dqsv . If 

the voltage reference *s
dqsv  is inside the voltage 

hexagon, *s
dqsv = *s

dqsv  holds. 
● The computation of the new voltage command 

takes finite time, typically less than one sampling 
period. The new voltage command is applied in the 
beginning of the next sampling period, which 
causes one sampling-period delay in the control 
system. This computational delay should be considered 
in the control design, unless the sampling frequency 
is very high compared to the bandwidth and to the 
synchronous frequency. 

Fig.22(b) shows a sampled-data model equivalent 
to Fig.22(a). The development of the model is briefly 
explained in the following. In stator coordinates, the 
sampled current is (30), where the pulse-transfer 
function (31) is obtained from (10) as [20]. 
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Transforming this model to synchronous coordinates 
leads to 

( ) ( ) ( ) ( )e e e e
dqs d dqs dqsi z z v z v z

z


 


Y


      (32) 

where ( j )e eR L T   and  jj eT R   . The effect 

of the computational delay, transformed to synchronous 
coordinates, is[21-23] 

j1 *( ) e ( )eTe e
dqs dqsv z z v z          (33) 

The model in Fig.22(b) is directly applicable to 
nonsalient permanent magnet synchronous machines and 
to induction machines. Using the above-mentioned 
assumptions, the closed-form sampled-data model for 
salient synchronous machines is derived in [21]. The 
nonlinear saturation characteristics can also be included 
in the model[24]. The hold-equivalent models can also be 
expressed using the series expansions[20-21]. 

5.2  Control algorithm 

The discrete-time state-feedback control algorithm, 
analogous to (27), is considered 

*
i i i( 1) ( ) ( ) ( )e e e e

dq dq dqs dqsv k v k i k i k     K      (34) 

* *
t 1 2 i( ) ( ) ( ) ( ) ( )e e e e e

dqs dqs dqs dqs dqv k i k i k v k v k   K K K  (35) 

where e
dqiv  is the integral state, Ki is the integral gain, 

Kt is the feedforward gain, and K1 and K2 are the 
state-feedback gains. Fig.23 shows the corresponding 
block diagram, where also the anti-windup mechanism is 
included and it will be discussed in Section 5.6.  

The computational delay increases the order of the 
discrete-time system as compared to the continuous-time  

 
Fig.23  Discrete-time synchronous current regulator 

system. However, the full-state feedback can still be 
easily realized using (33) and the gain K2 in (35). The 
realizable voltage reference needed in (33) can be 
obtained from the PWM or it can be calculated from 
the simple geometry of the voltage hexagon[17,24]. 
Naturally, the proper coordinate transformations between 
stator and synchronous coordinates are needed in both 
cases. 

It is also worth noticing that the control algorithm 
given in (34)~(35) can be used for approximating the 
continuous-time designs, as will be further discussed in 
Section 5.4. 

5.3  Closed-loop system 

Using (32)-(35), the closed-loop response of the 
system is obtained 
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where the coefficients depend on the motor parameters 
and the controller gains 

j j
0 2 i 1e ( ) ee eT T    a K K K        (37) 

j j
1 1 2e (1 ) ee eT T     a K K         (38) 

j
2 2e 1eT  a K              (39) 

j
0 i t( ) e eT b K K             (40) 

j
1 t e eTb K                (41) 

The model in (36) can be used for analysis of the 
closed-loop response as well as the pole and zero 
locations resulting from different gain selections. 

5.4  Approximation of the continuous time design 

The gains of the discrete-time regulator (34)~(35) 
can be determined based on the continuous-time 
regulator design. When approximating continuous-time 
designs, the angular error of 3/2eT caused by the ZOH 
and computational delays should also be compensated 
for[25]. Embedding this compensation into the gains 
given in (29) yields 

 j 3 2
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i bw a( j ) e eT
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2 0K                  (45) 
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When these gains are used in (35), the continuous- 
time integrator is approximated with the Euler method, 
but the control performance would be essentially the 
same for the Tustin method as well. The problems at low 
sampling frequencies originate from the delays, which 
are omitted in the continuous-time designs; only the 
angular error of the delay is compensated for in 
(42)~(45). 

Fig.24(a) shows example results, measured using a 
6.7kW synchronous reluctance motor drive[24]. Even if 
the load is different, essentially the same design 
principles are used as in this paper. The cross-coupling 
and overshoot seen in the response originate mainly 
from the digital delays, even if the sampling frequency 
is 25 times the closed-loop bandwidth and about 30 
times the synchronous speed. If the sampling frequency 
were increased, the response would better match the 
designed one. 

The green dashed line shows the response of the 
discrete-time system without the computational delay. 

5.5  Direct discrete-time design 

For the direct discrete-time design, the gains can be 
solved from (37)~(41) as 
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(a) Continuous-time design (42)~(45) with bw200×2rad/s 

 
(b) Discrete-time design (46)~(49) with bw500×2rad/s 

Fig.24  Experimental results for a 6.7kW synchronous 
reluctance motor drive rotating at e160×2rad/s 

Due to the full-state feedback, the poles can be 
arbitrarily placed by choosing the characteristic 
coefficients a0, a1 and a2. The open-loop pole z = 0,  
originating from the computational delay in (33), is 
already in the optimal location, thus it is feasible to 
choose a0=0. The direct discrete-time equivalent of the 
regulator (25) is obtained by choosing the other 
coefficients as [21]: 
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where the constants bwe T   and  ae R L T   are 
used for the exact mappings of the desired continuous- 
time pole locations in the discrete-time domain. This 
choice leads to the closed-loop response in (51). Poles 
are placed at (52), the last one being cancelled with the 
corresponding zero. 

* *(1 )( ) (1 )( ) ( ) ( )
( )( ) ( )

e e e
dqs dqs dqs

zi z i z i z
z z z z z

  
  

  
 

  



 (51) 

  a j

0

e eR R L T

z
z

z 



   


 


  

         (52) 

The step responses corresponding to (21) and (51) 
are compared in Fig.25. Setting  = 0 (or, equivalently, 
setting bw to infinity) would give the dead-beat 
response. This choice is not recommended, however, 
due to high sensitivity to the model parameters. 

The tuning of the control system is simple, i.e., 
the same input parameters are needed as in the 
continuous-time design: L,R,Ra and bw. It can also be 
realized that the computationally complexity resulting 
from the direct discrete-time design (46)~(49) is not 
much more than that of the continuous-time design 
(42)~(45). Naturally, the computational efficiency of 
the algorithm can be optimized in the both cases as 
compared to the representation shown in Fig.23. 

Fig.24(b) shows example results, measured using 
the discrete time design with the 6.7kW synchronous  

 
Fig.25  Step responses of the continuous-time system (21) 

and the discrete-time system, where bw= e T  (The green 
dashed line shows the response of the discrete-time system 

without the computational delay) 
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reluctance motor drive. It can be seen that the control 
response matches very well to the designed one. If 
desired, the sampling frequency could be lowered. 

5.6  Anti-windup based on the realizable references 

The current regulator should implement mechanisms 
for guaranteeing proper operation under voltage  
constraints. If the voltage reference *e

dqsv  is outside the 
voltage hexagon, cf. Fig.6, the control loop becomes 
nonlinear. The voltage reference may exceed the limit 
for large current reference steps, especially at large 
speeds(cf. Fig.7). This inverter voltage saturation will 
cause the integral state of the regulator to wind up unless 
some suitable anti-windup mechanism is applied. 

The anti-windup mechanism can be designed based 
on the concept of realizable references[9,12-13,26]. The 
unlimited (ideal) voltage reference *e

dqsv  is given by 
(35). If the realizable current reference *e

dqsi  were 
applied to the regulator instead of *e

dqsi , the unlimited 
voltage would equal the realizable voltage reference 

*e
dqsv , i.e., 

* *
t 1 2( ) ( ) ( ) ( ) ( )e e e e e

dqs dqs dqs dqs dqiv k i k i k v k v k   K K K  (53) 

The realizable current reference (54) can be solved 
from (35) and (54). 

* *
*

t

( ) ( )
( ) ( )

e e
dqs dqse e

dqs dqs
v k v k

i k i k

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K

       (54) 

which is applied for the integrator according to Fig.23. 
This mechanism has no effect in the linear modulation 
range where * *e e

dqs dqsv v  holds. 

6  Conclusions 
Design and implementation of synchronous PI 

current regulators for AC drives has been addressed in 
this paper. Both complex vector and state feedback 
approaches have been used. Tuning methodology, effects 
due to discretization and the associated delays, and 
effects due to voltage constraints have also been 
considered. It is concluded that, if properly designed and 
tuned, synchronous current regulators can provide 
excellent performance even under adverse conditions 
(low switching frequency vs. fundamental frequency 
ratio). On the contrary, ignoring aspects such as cross- 
coupling, the delays intrinsic to digital control systems, 
or the existence of severe voltage constraints when the 
drive operates at high speeds, can produce a serious 
degradation of the control, and even compromise its 
stability. 
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