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Abstract: The hybrid structure of a power-module package is summarized and classified. Basic and extended planar wire-bond 

designs are analyzed and compared with regular wire-bond modules and planar modules, respectively. The automatic layout method 

can improve the electrical and thermal performance of hybrid structures. A state-of-the-art hybrid structure is introduced, and 

suggestions for alleviating the current and temperature imbalances for future designs are provided. 

Keywords: Junction temperature monitoring, IGBT, conduction voltage 

 

1  Introduction1 

With increasing demand for environmental protection 
and energy savings, electric vehicles (EV) have 
become an important means of ensuring national 
energy security. Almost all countries have formulated 
plans and achieved large-scale production in the past 
10 years [1]. Continuously improving product 
performance and reducing costs are inevitable 
development directions for enhancing the 
competitiveness of EVs [2-4]. 

In Ref. [5], it was estimated that approximately 80% 
of motor drives in EV would still use Si insulated-gate 
bipolar transistors (IGBTs) as power-switching devices 
in 2022. These power devices largely determine the 
performance and cost [6]. In recent years, many 
countries have explored novel packaging methods to 
exploit the advantages of Si IGBT chips [7]. 

Packaging is a necessary process for power devices 
that isolates them from the external environment and 
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protects them [8]. The quality of packaging affects not 
only the electrical, mechanical, and thermal 
performance of power devices but also their cost and 
reliability [8-10]. Additionally, power modules 
determine the system compactness and functions [11]. 

Silicon carbide (SiC) devices have emerged, which 
have small losses and high temperature resistance and 
can operate at high frequencies [12-14]. They promote 
major technological changes in the field of EVs [15-16]. 
SiC motor drives developed by automakers such as 
Tesla and BYD have been on the market for five years, 
demonstrating technological advantages and 
potential [17]. 

Currently, most SiC power devices use the same 
packaging form and specifications as traditional Si 
devices, with a maximum operating junction 
temperature of 150 ℃ or 175 ℃ [18]. Limited by 

parasitic impedance, thermal dissipation, and 
packaging materials, the characteristics of SiC chips 
cannot be fully exploited [19]. The design and 
development of reliable packaging that satisfies 
high-temperature and high-frequency requirements 
have recently become popular research topics [20]. One 
of the design targets is high power density. 

In an EV system, for a 300-400 kW motor drive, a 
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1 200 V/1 500 A SiC power module that can support 
continuous operation at 150 ℃  is required [21-22]. For 

a 1 500-A module, 18-piece 16-mΩ SiC dies must be 
paralleled. For regular economy-based wire-bond 
packaging, it is difficult to include 36 devices in a 
module. As shown in Fig. 1, two limitations exist [15]. 
The first is the width of the conduction path; the 
minimum DBC (Direct bond copper) pattern to 
conduct 1 500 A is 10 mm, which is difficult to realize 
in a conventional wire-bond package. The second 
issue is thermal management, for which the balance of 
the paralleled devices is important [23]. 

 

Fig. 1  Econodual based wire-bond packaging [15] 

A three-phase HPD module is currently preferred in 
the market. For a 250-300 kW motor drive, 
1 200 V/1 000 A operation at 150 ℃  for each phase 
will be very useful in the near future. As shown in 
Fig. 2, there are many designed patterns for a 1 200 V/ 
600 A HP drive module operating at 150 ℃  [15]. It is 
limited to eight parallel dies owing to the two 
aforementioned issues.  

 

Fig. 2  Conventional junction temperature  

estimation methods [15] 

To address this problem, researchers have begun 
developing planar packages [24]. Typical designs are 
shown in Figs. 3 and 4. Limited by manufacturability, 
cost, and feasibility, the maximum number of 
paralleled power devices in each product is usually 
8 [25]. Although more than 100 papers are published 
annuallyon improving the quality of planar packages, 
there is still no systematic solution for paralleling a 
large number of dies. 

 

Fig. 3  Planar package on semi-IDM  

(Integrated drive module) [24] 

 

Fig. 4  Planar packaged module [25] 

Because the top pads of power devices have become 
smaller, it is difficult to control the quality of all the 
top interconnections. In many designs, the top 
connections become poor when a strong force is 
applied to attach the cold plate closely. This is another 
significant challenge in planar packaging [26].  

To reduce the complexity of the planar packaging 
design and the fabrication procedure in Ref. [27], a 
hybrid packaging structure for high-temperature SiC 
power modules was presented [28]. The structure 
combines the benefits of the wire-bond and planar 
packaging structures, as shown in Fig. 5. The hybrid 
power module achieved almost the same footprint and 
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parasitic resistance as the planar structure. This 
structure is also known as a stacked power package.  

 

Fig. 5  Concept of the hybrid structure [28] 

Refs. [29-31] presented similar ideas for forming 
three-dimensional (3D) current commutation loops, 
which can reduce the parasitic inductance. In these 
studies, a lead frame, connection strips, and vias were 
used to connect the different layers. This approach 
does not require double-sided solderable devices.  

Hybrid packaging is also a feasible and useful 
method for increasing the power density and 
paralleling numerous dies. With careful design, the 
parasitic parameters of a hybrid packaged power 
module can be significantly reduced compared with 
those of a regular wire-bond module [32]. It can also be 
easily extended as the basic structure of a planar 
package without transfer-molded plastic, which may 
help build a better connection of the double-sided 
pin-fin baseplate.  

In this study, to better exploit hybrid packages, we 
categorize and review the benefits and drawbacks of 
various hybrid structures, packaging design methods, 
and the applications of hybrid structures in power 
converters.  

2  Hybrid packaging structures 

2.1  Basic wire-bond-based structure 

In most hybrid structures, the basic idea is to use the 
bottom DBC and the top conduction layer to conduct 
current separately. These two conduction paths usually 
overlap and can significantly reduce the parasitic 
parameters. The top conduction layers are presented in 
Tab. 1. 

Tab. 1  Classification of the top-side layer 

Basic concept Detailed structure Ref.

 [28]

[30]

 [29，
31-33]

 [34]

 [35-37]

In Ref. [28], a lead frame was selected as the top 
conduction layer. To insulate the DBC and top layers, 
a high-temperature polyimide insulation material 
(EpoTek 600/ Duralco 128) was used to cover the 
conduction layers and fill the gaps. Compared with the 
planar structure presented in Ref. [27], this hybrid 
structure has the same footprint and is 50% smaller 
than the baseline wire-bond version. However, the 
fabrication procedure is complex, as shown in Fig. 6. 

 

Fig. 6  Complex fabrication procedure [28] 

To reduce the complexity, a multilayer printed 
circuit board (PCB) with vias was used as the top 
conduction layer in Ref. [30]. In addition to a simpler 
structure, more complex routing can be achieved using 
PCBs. This allows current paths to be more flexible 
and allows an embedded gate-driver circuit to be 
embedded in the module. As shown in Fig. 7, a small 
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footprint was achieved, compared with that of a 
regular TO-247 discreet device. 

 

Fig. 7  PCB used as the top layer [30] 

However, unless a special high-temperature 
insulation layer is used in the PCB, it is difficult to 
directly bond the DBC and top layers using a regular 
reflow procedure. Additionally, a large current (>300 
A) may not be easily achieved by the thin copper layer 
of a regular PCB. 

By using a flexible PCB as the top layer [31, 36], an 
inductance of <1 nH was obtained in the power loop. 
Simultaneously, the gate drive, decoupling capacitors, 
and DC-link capacitors were integrated with flexible 
PCBs, as shown in Fig. 8. Vias were used to transfer 
the current from the top layers to the DBCs. In 
contrast, flexible PCBs were bent and directly soldered 
onto the DBC in Ref. [32]. The parasitic inductances 
in the power and gate loops decreased by 52% and 
76%, respectively.  

 

Fig. 8  Flexible PCB used as the top conduction layer [36] 

In Ref. [37], DBC was used as the top conduction 
layer, and a low stray inductance and balanced current 
sharing were achieved. As shown in Fig. 9, two 
layouts with the power terminals in different locations 
can both support the paralleling of five SiC dies. 
However, it is difficult to parallelize more dies with 
these designs. 

To realize a high-current power module [36], a 
method that separates the module into four individual 

units is presented. This can increase the manufacturing 
yield in mass production. Additionally, the power and 
gate paths can be better balanced with a symmetric 
design. With this structure, 18 dies can be paralleled in 
a phase-leg design with an economically sized power 
module, as shown in Fig. 10. With a similar idea, a 
power module with nine paralleled 25-mΩ  dies was 
designed and fabricated in Ref. [38]. A 800 V/900 A 
double-pulse test at 150 ℃ was conducted. 

 

Fig. 9  ABB hybrid structure using DBC as the top layer [33] 

 

Fig. 10  Stacked module design with 18 paralleled dies [32] 
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2.2  Planar top interconnection-based structure  

As reported in Ref. [39], double-sided cooled power 
modules have several advantages over single-sided 
cooled modules. Most planar power modules can 
achieve a lower parasitic inductance and higher 
packaging density. The thermal performance can be 
improved by double-sided cooling; thus, temperature 
swings and thermal stress may be reduced. 
Theoretically, eliminating wire bonds in planar 
packages can extend their lifetimes [40].  

Hybrid structures can be easily changed to planar 
packaging if the wire bonds are replaced with copper 
strips or DBCs. Tab. 2 classifies the main planar 
structures by the top-side connection style and 
introduces an extended hybrid structure. With three or 
four conduction layers in the power module, the 
extended hybrid structure has a more flexible design 
than common planar packages. 

Tab. 2  Top-side interconnection method 

Top-side interconnection method Typical structures in 
references 

 [24, 41-43] 

 [44-47] 

 [25, 48-53] 

 [54-55] 

Another benefit of the extended hybrid structure is 
its large support area. As shown in Fig. 11, in the 
typical planar structures, other than transformed 
plastic, dies are the only effective support. In Ref. [40], 
the total area of the dies was approximately 1/4-2/5 of 
the total power module. Thus, dies may be 
overstressed if the pressure is not well controlled 
during the bolting to the cold plate [41]. 
Transfer-molded plastic is the only choice for reducing 
stress on dies, particularly in commercial 
products [45, 56]. With transfer-molded plastic, it is 
relatively difficult to solder the heat sink directly in the 

packaging procedure [57-58]. Thermal grease must be 
applied on both sides of the DBC, which may 
significantly increase the thermal resistance [59]. In the 
extended hybrid structure, a second layer of DBC 
surrounds the die [60]. It can provide additional support 
for the top DBC and even the top pin-fin 
baseplate [55, 61]. Because the area of the second-layer 
DBC is usually approximately two to four times the 
die area, the stress is significantly reduced. With this 
support, the extended hybrid can omit the 
transfer-molded plastic and only use a regular 
encapsulant, as in the wire-bond module. Thus, the 
manufacturability can be improved, and a 
double-sided pin-fin plate can be easily soldered. 

 

Fig. 11  Typical planar structures [40] 

In some planar methods, the researchers soldered 
the phase-leg dies on the top and bottom conduction 
layers separately and then flipped the top layer side, as 
shown in Fig. 12 [49, 62]. Subsequently, they were 
stacked into full pieces. However, it is difficult to 
control the flatness of both soldering sides, and 
paralleling a large number of dies is almost 
impossible [40]. Thus, large-scale manufacturing is 
difficult.  

In other methods, to simplify the fabrication 
procedure and control quality, power dies are soldered 
only on the bottom conduction layers [63]. This implies 
that the midpoint should exist in both the top and 
bottom conduction layers [64]. There must be a transfer 
interconnection point in the package, and the main 
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methods for this current transfer are presented in 
Tab. 3. An extended hybrid structure was obtained 
using this final method. 

 

Fig. 12  Flipped DBC method in planar packages 

Tab. 3  Transfer interconnection methods 

Transfer interconnection method Typical 
references 

 [65-68] 

 [24, 45] 

 [54-55] 

To achieve a high-current power module, Ref. [55] 
presented a method that separates packages into 
individual units to improve manufacturability. With 
this structure, 12 dies can be paralleled for each 
phase leg in a compact power module, as shown in 
Fig. 13. In Fig. 13, 1 is DC positive terminal, 2 is DC 
negative terminal, 3 is AC terminal, 4 is DBC on the 
lower part of the upper tube, 5 is DBC on the lower 
part of the upper tube, 6 is SiC chip on the upper tube, 
7 is SiC chip on the upper tube, molybdenum chip on 
the upper tube, 8 is copper chip on the upper tube, 9 is 
copper chip on the upper and lower bridge, 10 is DBC 
on the lower part of the lower tube, and 11 is DBC on 
the lower part of the lower tube. 12 is lower tube SiC 
chip, 13 is lower tube SiC chip connected to 

molybdenum sheet, 14 is lower tube connected to 
copper sheet. 

 

Fig. 13  Layout of the stacked planar power module [55] 

In Ref. [54], a double-pulse test at 800 V/400 A at 
150 ℃ was conducted on a power module with the 
same structure. 

3  Hybrid module design considerations 

3.1  Electrical design for hybrid module 

In Ref. [30], the power module had a single MOSFET 
and a diode in each switch of the phase leg. Kelvin 
connections were used to isolate the main and gate 
currents of the MOSFETs. The MOSFETs and diodes 
were paired to minimize the switching loops. To 
further reduce the parasitic parameters, ceramic DC 
decoupling capacitors were integrated into the module, 
as shown in Fig. 14. Compared with the conventional 
wire-bond module, the loop inductance was reduced 
by 35%, and the footprint was reduced by 40%. The 
loop inductance was measured as 3.6 nH, which 
agreed well with the simulation. 

 

Fig. 14  Paired MOSFETs and diodes [30] 

Ref. [25] proposed a hybrid package consisting of 
two DBC substrates, SiC devices, bonding wires, 
power terminals, and signal terminals. As shown in 
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Tab. 2, the structure had a short power loop with 
mutual inductance cancellation, and it exhibited an 
ultralow parasitic inductance.  

In Ref. [31], the bonding wires were oriented 

toward the power terminals to shorten the loop. The 

smallest commutation-loop area was achieved by 

comparing several possible electrical designs, as 

shown in Fig. 15. Through Ansys Q3D simulations, 

the parasitic parameters were extracted and compared. 

The optimized parasitic inductance was only 1.8 nH. 

Ref. [36] also reported test results. The voltage 

overshoot was reduced by 55% compared with that of 

a commercial power module, and the total switching 

energy was reduced by 57% (Fig. 16). 

 

Fig. 15  Paired MOSFETs and diodes [31] 

 

 

Fig. 16  Layout comparison [36] 

Ref. [34] reported similar results. In a 
finite-element analysis (FEA) simulation, the gate path 
inductance and power path inductance were reduced 
by approximately 76% and 50%, respectively. As 
shown in Fig. 17, both the ringing and the power loss 
were reduced. 

 

Fig. 17  Waveform comparison [34] 

Ref. [38] introduced a stacked power module with 
nine power dies paralleled, as shown in Fig. 18. 
Compared with the conventional wire-bond module, 
the novel structure exhibited a neat waveform. 

 

Fig. 18  Power module with nine dies paralleled and 

 a neat waveform [38] 

3.2  Thermal design for hybrid module 

The design and evaluation of the cooling capability are 
core steps in packaging development [69]. In most 
studies, the thermal network models have been 
abstracted. As shown in Fig. 19, in Ref. [31], a low 
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thermal resistance of 0.225 ℃/W was obtained. A 
reduction of approximately 40% was reported 
compared with the traditional method 
(baseplate+TIM(Thermal interface material) 
+heatsink). 

 

Fig. 19  Thermal-resistance calculation in Ref. [31] 

To improve the reliability of the power module 
and reduce the junction temperature variation, a 
thermal buffer layer was added to the power 
module [70]. Extra heat was absorbed by the buffer 
layer, and the temperature fluctuations were 
reduced. Phase-change materials was used as the 
buffer layer and placed around the SiC MOSFETs, 
as shown in Fig. 20. This technology can also be 
applied to hybrid structures. 

 

Fig. 20  Improved thermal dissipation method [70] 

Through computational fluid dynamics (CFD) 
simulations, the airflow condition and temperature 
distribution of the converter system can be analyzed. 
In Ref. [31], the suction-mode fan and exhaust-mode 
fan were compared, and the distribution and 
centralization fan configurations were analyzed. The 
temperature increase in the magnetic cores and dies 
was carefully considered to ensure safe and 

high-power-density operation, as shown in Fig. 21.  

 

Fig. 21  Thermal-performance simulation presented  

in Ref. [31] 

In Ref. [37], using a flexible PCB, the power 
module was separated into three submodules. They 
were mounted on three sides of the heat sink. 
Accordingly, as shown in Fig. 22, a 3D 
system-in-package integration method was proposed, 
and the volume of the forced air cooling system was 
only 0.346 L. 

 

Fig. 22  3D system-in-package integration and  

thermal simulation [37] 
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In EV applications, water cooling is the optimal 
cooling method for most motor drive systems. Pin fins 
are commonly used in wire-bond power modules. A 
thinner pin exhibits a smaller pressure drop, which 
typically corresponds to a higher flow speed. Each 
layout design has an optimal fitness. It is difficult to 
directly compare with analytical equations, because 
convection cooling involves turbulent flow. As shown 
in Fig. 23, CFD-based simulations have been widely 
used in several commercial module designs [15]. 

However, when coolant flows through the pin fins, 
there must be parallel, serial, and/or mixed flows [71]. 
For minimizing the temperature difference between 
the dies, the pin-fin designs close to the inlet and 
outlet areas should not be identical. Manually 
comparing hundreds of layout designs using CFD is 
difficult. Thus, automatic layout optimization of the 
power module should be used to achieve the optimal 
electrical and thermal designs [72]. 

 

Fig. 23  Pin-fin optimization [15] 

3.3  Automatic module optimization method 

To fully explore the fast switching capability of 
advanced power devices, low parasitic parameters are 
crucial [73-74]. Ref. [75] provides an example of layout 
optimization. As shown in Fig. 24, a lead-frame-based 
planar module was fully considered and designed with 
a power-loop layout. Compared with state-of-the-art 
power modules, several additional features were 
integrated into the proposed module, with a similar 
power rating and volume. 

 

Fig. 24  Experience-based layout design [75] 

However, for most manual designs, the number of 
design candidates was less than 30. Researchers have 
attempted to find better solutions and explore 
automatic layout design methods [76]. These automatic 
designs have already achieved crucial cost savings in 
power module design. They can automatically perform 
advanced model abstractions, electrical parasitic 
extractions, and thermal analyses [77]. As shown in 
Tab. 4, in automatic design, the first step is the 
automatic generation of design candidates, which 
typically include component representations, 
placement methods, and routing methods. 

Tab. 4  Typical automatic design items  

Main item Steps Typical methods in references 

Automatic 
layout 

generation

Component 
representation 

Die only [78], die and terminal [79], die 
terminal and DBC path [80] 

Placement method
Sequence pair [81], corner sequence [82], 

O-tree [83], B-tree [84], adjacent 
constraint graph [85] 

Routing method Maze searching [86], line searching [87]

Layout 
evaluation

Electrical evaluation FEA [34, 78], PEEC [88], LBM [89], 
equation-based method [90] 

Thermal evaluation CFD [35, 91], equation-based  
method [29, 90, 92], FDM [90], LBM [93]

Optimization 
algorithm — 

Genetic algorithms [82], particle swarm 
optimization [94], clonal selection [95], 
ant colony [96], bacterial foraging [97], 

immune algorithm [98] 

Similar to regular wire-bond modules, the shortest 
and most feasible wire bonds are commonly used in 
hybrid structures. Detailed wire-bond connections do 
not require special descriptions in the code. Thus, the 
optimization procedure can be accelerated by coding 
only power devices and terminals in the string [82]. 

Almost all the placement methods in automatic 
design can be easily extended to hybrid structures by 
simply repeating the coding procedure at the top layer. 
The routing methods for a regular planar module can 
be directly applied to a hybrid structure. Additionally, 
almost all optimization methods can be used in hybrid 
packaged modules. 

In the electrical performance evaluation step, the 
finite-element method can achieve the highest accuracy; 
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however, the geometry must be redrawn and re-meshing 
must be performed for each candidate [31]. This method is 
too slow for automatic layout optimization. In comparison, 
the partial element equivalent circuit (PEEC) can 
significantly reduce the simulation time but slightly 
increases the error, as shown in Tab. 5 [99] (Rank from 
1 to 4; 1 is the best, and 4 is the worst).  

Tab. 5  Electrical evaluation methods  

Method Accuracy Simulation speed 

FEA 1 4 

Analytical equations 4 1 

Method of moments+PEEC 2 3 

LBM+PEEC 2 2 

During the routing procedure, an incorrect 
connection may occur during the path autogeneration 
step. In the electrical evaluation step, the judgement of 
the correctness of all connections accounts for a large 
portion of the evaluation time. To accelerate the 
judgement, a lattice Boltzmann method (LBM)-based 
method was proposed in Ref. [89]. Because the LBM 
does not need to solve matrices directly, it can make a 
judgement in the middle of the calculation. This reduces 
the total electrical evaluation time by up to 40%. 
Moreover, with a larger number of components, the 
computational advantage of the LBM is more significant. 

As shown in Tab. 6(Rank from 1 to 4; 1 is the best, 
and 4 is the worst), the most accurate simulation 
method for evaluating the thermal performance of a 
power module with a pin-fin baseplate is the finite 
element analysis (FEA). This is a conventional CFD 
method [100]. However, it takes a long time to evaluate 
the candidates and is difficult to embed in the 
optimization loop because of meshing and 
convergence issues. In contrast, analytical 
equation-based methods are fast, but the relative error 
may exceed 30% [92]. 

Tab. 6  Thermal evaluation methods 

Methods Accuracy Simulation speed 

FEA 1 4 

Analytical equations 4 1 

FDM 3 3 

LBM 2 2 

In Refs. [101-102], improved finite difference 
methods (FDMs) were used to solve the partial 

differential equations of Stokes’ theorem. They can 
balance accuracy and simulation speed. Moreover, these 
methods can be easily used in iterative optimization. The 
LBM is a special type of FDM for solving partial 
differential equations. It is believed that the LBM is 
faster than the other FDMs because it has an innate 
parallel calculation ability. With the help of the 
turbulence model, the LBM can be used to simulate the 
inlet and outlet pressure differences and the flow 
velocity around the cylinders of the pin-fin heat sink 
power module. Owing to its easy coding features, it can 
be integrated into optimization algorithms. 

Ref. [93] presented a power module optimization 
demonstration and achieved good performance. A 
simulation with the LBM had a smaller error than a 
simulation based on CFD, as shown in Fig. 25 and Tab. 7. 

 

Fig. 25  Thermal evaluation comparison [93] 

Tab. 7  Literature comparison [93] 

Method
Re=20 Re=40 Re=100 Re=200 

dC W /L D dC W /L D  
dC  

lC dC lC

CFD 2.1 0.9 1.6 2.2 1.4 0.3 1.4 0.6

LBM 2.1 0.9 1.6 2.3 1.4 0.3 1.4 0.6

4  Hybrid modules in power converters 

To demonstrate the small footprint and parasitic 
parameters of the hybrid-structure packaging, a 
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three-phase single-switch rectifier was used as an 
example [28]. To simplify the control, the circuit uses 
seven SiC diodes and one SiC power switch, as shown 
in Fig. 26. Through a detailed simulation and 
comparison, the footprint of the hybrid structure was 
found to be equal to that of the planar structure and 
50% smaller than that of the regular wire-bond 
structure. In the system simulation, the voltage spike 
of the power switch was reduced from 305 V to 289 V 
compared with the wire-bond version, indicating a 
significant parasitic reduction in the power path. A 
high-temperature converter test was successfully 
conducted to verify the packaging design. In the test, 
the junction temperature was maintained at 250 ℃, 
and the total converter efficiency reached 96.1%. 

 

Fig. 26  Hybrid package used for a high-temperature  

converter [28] 

In Ref. [36], a hybrid module-based converter 
system was operated in a 100-kHz hard-switching 
mode, and it achieved a peak efficiency of 98.3%. The 
electrical design and thermal design are presented in 
detail in Fig. 27. The difference in efficiency between 
the design and experiment was <1%, and the 
difference in temperature was <8 ℃ . Parasitic 
inductance reduction and thermal resistance reduction 
were achieved, and a systematic design procedure for 
the hybrid structure was demonstrated.  

In Ref. [37], for a hybrid-module-based three-phase 
converter, a 20-kW forced air cooled system was 
designed, as shown in Fig. 28. Power tests verified a 
peak power density of 19.3 kW/L. The experimental 
results also indicated a far smaller voltage overshoot, 
1.8 times faster switching, and 60% switching loss 
reduction compared with the regular wire-bond 
module. 

 

Fig. 27  Hybrid package used for a high-switching-speed 

converter [36] 

 

Fig. 28  Hybrid package used for a three-phase converter [37] 

With the submodule using hybrid packages, Fig. 29 
shows the interleave ability for a 5.5-kW water-cooled 
single-phase inverter [35]. Compared with the 
commercial wire-bond module, the inverter loss was 
reduced by 16.1% at a switching frequency of 20 kHz 
and 28% at a switching frequency of 120 kHz (Fig. 
29). This implies that with the same efficiency, the 
switching frequency can be increased to 1.7 times that 
of the regular module.  

In summary, hybrid packaged module-based 
converters have considerable potential for increasing 
the power density. They can exploit the advantages of 
power devices and achieve high efficiencies.  
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Fig. 29  Hybrid package used for a interleaved single  

phase converter [35] 

5  Conclusions 

To better exploit the advantages of the hybrid power 
packaging structure, the basic structure, extended 
planar structure, electrical design, thermal design, 
automatic layout methods, and related converter 
system designs are reviewed. Through comprehensive 
classification and comparison, the hybrid structures 
were introduced and discussed. The presented hybrid 
structures are summarized in Tab. 8. 

Tab. 8  Summary and comparison of hybrid structures 

Structure Package 
style Power rating Other features 

Poly.+Cu+Poly.+
DBC 

Wire-bond 
package 

Adequate for low 
ratings, difficult 
for high ratings 

Difficult to 
manufacture 

PCB+DBC Wire-bond 
package 

Adequate for low 
ratings, difficult 
for high ratings 

Can be integrated 
with gate drive and 
sensor and provide 
high power density

Flexible 
PCB+DBC 

Wire-bond 
package 

Adequate for low 
ratings, difficult 
for high ratings 

Can be integrated 
with gate drive and 
sensor, no need for 
transfer connection

DBC+DBC Wire-bond 
package 

Adequate for 
both low and high 

ratings 

Can be separated into 
sub-units for very 

large currents 

DBC+DBC+ 
DBC 

Planar 
package 

Adequate for 
both low and high 

ratings 

More flexible than 
common planar 

structure 

The following conclusions are drawn.  
(1) The hybrid structure can significantly reduce the 

parasitic parameters and can be used to parallelize a 
large number of dies. 

(2) The extended planar package based on the 
hybrid structure exhibited more 3D interconnection 
freedom. An advanced layout can be designed using 
this feature. Because DBCs are used to support the 
stress, the structure can eliminate transfer-molded 
plastic.  

(3) Thermal design is important, as the power 
density can be increased by >30% compared with that 
of a regular wire-bond module. Automatic layout and 
thermal optimization methods should be improved and 
utilized in future designs. 

In the near future, to further exploit the advantages 
of the hybrid package, four points should be noted. 
First, to reduce the parasitic parameters and balance 
the parallel devices in the gate path, the positions of 
the gate terminals can be designed in the center layout 
of the power module. Second, when the current rating 
is increased, the transfer interconnection should be 
carefully designed. Third, for power modules 
operating at >1 000 A, the use of multiple power 
terminals at the same electrical point should be 
considered to increase reliability. Finally, because 
hybrid structures may increase the number of 
packaging steps, the manufacturing capability and cost 
should be considered for production. 

Hybrid-structure packages allow the deep 
exploration of power devices and can increase the 
capacities of power modules. 
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