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Abstract: Long-term storage (LTS) can provide various services to address seasonal fluctuations in variable renewable energy by 

reducing energy curtailment. However, long-term unit commitment (UC) with LTS involves mixed-integer programming with 

large-scale coupling constraints between consecutive intervals (state-of-charge (SOC) constraint of LTS, ramping rate, and minimum 

up/down time constraints of thermal units), resulting in a significant computational burden. Herein, an iterative-based fast solution 

method is proposed to solve the long-term UC with LTS. First, the UC with coupling constraints is split into several sub problems that 

can be solved in parallel. Second, the solutions of the sub problems are adjusted to obtain a feasible solution that satisfies the coupling 

constraints. Third, a decoupling method for long-term time-series coupling constraints is proposed to determine the global 

optimization of the SOC of the LTS. The price-arbitrage model of the LTS determines the SOC boundary of the LTS for each sub 

problem. Finally, the sub problem with the SOC boundary of the LTS is iteratively solved independently. The proposed method was 

verified using a modified IEEE 24-bus system. The results showed that the computation time of the unit combination problem can be 

reduced by 97.8%, with a relative error of 3.62%.  
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1  Introduction1 

Unit commitment (UC) with various security 
constraints is a key tool for simulating the unit 
dispatch of various generators in power system 
optimization, the electricity market, and generation 
expansion planning [1-2]. Traditional UC is a 
mixed-integer linear programming problem involving 
a large amount of 0-1 variables indicating the on/off 
states of thermal units and coupling interval 
constraints (ramp rate constraints and minimum 
up/down time constraints) [2]. When incorporating the 
high penetration of renewable energy sources such as 
wind and solar power, short-term storage is an 
effective technology for addressing the diurnal 
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fluctuations in variable renewable energy (VRE) [3-4]. 
However, seasonal fluctuations over multiple weeks or 
months require long-term storage technologies to shift 
energy over long periods [5]. Beyond diurnal storage, 
research has observed that storage technologies with 
an even longer duration (> 12 h) can support the 
integration of high penetration of VRE by shifting 
energy during multi-day periods of supply and demand 
imbalances. Several candidate long-term storage (LTS) 
technologies are available, such as pumped hydro, 
hydrogen, and compressed air energy storage [6]. 

Although many efforts have been made for the 
technical and economic assessment of LTS [7-8], a key 
limitation lies in modeling long-term storage in UC. 
Generally, UC with short-term storage is solved by 
selecting representative periods or decomposing the 
problem into several minor sequential problems [9-10]. 
In contrast, UC with long-term storage must consider 
inter-period arbitrage, thereby increasing the 

2096-1529 © 2023 China Machinery Industry Information Institute 



Chinese Journal of Electrical Engineering, Vol.9, No.3, September 2023 

 

40

computational burden owing to the coupling 
constraints of long-term storage, particularly the state 
of charge constraint.  

Four main methods are used to address the 
above problems ①  scenario-based method [10-11], 
②  piecewise sequential method, ③  Lagrangian 
relaxation (LR) based method, and ④  parallel 
horizon-splitting method. For scenario-based methods, 
representative days are selected based on temporal 
clustering algorithms, such as k-means [12], 
k-medoid [13], and hierarchical clustering 
algorithms [14]. Nevertheless, typical periods are 
independent and cannot exchange energy, leading to 
deviations in the results and underestimation of the 
value of seasonal storage when incorporating a high 
share of renewable energy [15]. Ref. [16] proposed a 
novel seasonal storage model based on inter-period 
and intra-period states to model the sequential 
characteristics between typical periods. For the 
piecewise sequential method, the long-term dispatch 
problem is decomposed into many smaller problems 
that are solved sequentially. The final state of the units 
in each period is restricted to the state of the units of 
the next period to satisfy the ramp rate constraints and 
minimum up/down time constraints of the thermal 
units. In Ref. [17], the entire year of time-series data in 
the high-resolution test system was separated into 61 
individual periods with 144 consecutive hours and run 
consequently. Although this approach guarantees the 
feasibility of a solution, its optimality is not 
guaranteed. For the LR-based method, system-wide 
constraints are relaxed using the introduced 
Lagrangian multipliers and solved iteratively until 
convergence. Ref. [18] developed a surrogate LR 
method and proved its convergence to optimal 
multipliers. This method was recently applied to the 
hourly UC problems in Ref. [19]. Ref. [20] proposed a 
fast solution method for solving the UC problem based 
on LR and dynamic programming. For the parallel 
horizon splitting method, the long-term horizon is first 
split into many small periods, a feasible solution is 
then by solving each subproblem in parallel, and the 
feasibility of solutions for the original problem is 
iteratively validated [21-22]. The approach performs well 
in addressing long-term optimization problems with 

ramp rate and minimum up/down time constraints on 
the thermal units. However, this approach fails to 
include long-term storage technologies whose energy 
arbitrage over a period is longer than the 
representative period. 

In summary, the above methodology makes it 
difficult to address the long-term UC problem using 
LTS. Regarding the operation of renewable-dominated 
power systems with LTS, focusing on the optimal 
operation schedule of thermal generators, renewable 
generators, and LTS to increase renewable energy 
utilization. LTS is used to shift renewable energy 
curtailment to the peak period of load demand by 
optimizing the yearly operation schedule. For the 
entire charging/discharging optimization problem of 
LTS to be covered, the schedule horizon should be an 
entire year. The time-coupling constraints of the state 
of charge (SOC) of LTS are difficult to decompose 
owing to a lack of global vision. Obtaining “good 
enough” solutions for the original UC while improving 
significantly solving efficiency is necessary.  

The motivation of this paper is to propose a fast 
solution for solving long-term UC with LTS coupled 
constraints based on time horizon splitting. The main 
contributions of this paper are as follows.  

(1) Based on the time horizon splitting method, the 
framework and detailed procedure of the bi-level 
optimization model for UC with time-coupling 
constraints of LTS are proposed to improve the solving 
efficiency. The upper-level model solves the UC 
without LTS using a time-horizon splitting approach to 
perform a chronological simulation of the power 
system. The lower-level model solves the 
price-arbitrage model of the LTS to optimize its yearly 
operation based on the locational marginal prices 
(LMPs) from the upper-level model and nodal net load 
constraints. The lower-level model is used to generate 
the SOC targets at the end of each sub problem. The 
upper-level model is then run again with the optimized 
operation results of the LTS from the price-arbitrage 
model as constraints for the LTS. 

(2) A method for constructing an SOC boundary of 
the LTS at the end of each sub problem is proposed to 
decouple the time coupling constraints. Moreover, a 
method for constructing a feasible solution to the 
original problem based on the sub problems is 
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proposed to obtain a “good enough” solution 
compared with the original problem. 

The remainder of this paper is organized as follows. 
The proposed LTS model and UC problem with the 
LTS is presented in Section 2. The procedure for 
horizon splitting and solution construction is presented 
in Section 3. Section 4 also presents the simulation 
results. Finally, Section 5 concludes the paper by 
summarizing the results. 

2  Mathematical modeling  

2.1  Nomenclature 

(1) Indices 
s   Index of storage 
t  Index of period 
g  Index of generator 
z  Index of node 
kt  Index of period for the k-th sub problem 

Ψ  Index set of generator units 
T Index set of time indices 

TΨ  Index set of conventional generator units 

RΨ  Index set of renewable source generator units 

SΨ   Index set of long-term energy storage units 
(2) Variables 

,g tS   Starting status binary variable 

,g tD   Shutdown status binary variable 

,g tU   Online/offline state 
c
,s tP   Charging power of storage s at period t 
d
,s tP   Discharging power of storage s at period t 

,g tP   Power output of generator unit g at period t 
up
,g tR   Upward spinning reserve capability of 

generator g at period t 
down
,g tR  Downward spinning reserve capability of 

generator g at period t 
up
,s tR   Upward spinning reserve capability of 

storage s at period t 
down
,s tR  Downward spinning reserve capacity of 

storage s at period t 
Nk Number of sub problems 

,g ka  Periods that must be adjusted in the end part 
of k-th sub problem 

,g kb  Periods that must be adjusted in the 
beginning part of (k+1)-th sub problem 

ka  Maximum value of ,g ka  

kb  Maximum value of ,g kb  

(3) Parameters 
tΔ   Duration of a period 
net
tD   Net load at period t 

PTDF Power transfer distribution factor matrix 
,s tS   State of charge of LTS units at period t 

re
,s tS   State of charge of storage s after supplying 

reserve at period t 
pb
tσ  Dual variable of system-wide power balance 

constraint 
tc
tσ  Transmission upper limit 
tc
tσ  Transmission lower limit 
( )0 ,g tf P Generation cost function 

c
sη , d

sη  Charging/discharging efficiency of storage s 

tc   Electricity price at period t 
on
gc  Startup cost of generator g 
off
gc  Shutdown cost of generator g 
en
sE   Rated energy of storage s 
cap
sE   Rated capacity of storage s 
max
sS   Maximal SOC limitation of storage s 
min
sS  Minimal SOC limitation of storage s 
min

gP  Minimum technical output level of generator g 
max

gP  Maximum technical output level of 

generator g 
RU
gρ  Ramp-up rate limitation of generator g 
RD
gρ  Ramp-down rate limitation of generator g 
on
gm  Minimum online time of generator g 
off
gm  Minimum offline time of generator g 

L  Rated transfer capacity of transmission line l 
G  Power transfer distribution factor matrix of 

nodes to transmission lines 
,g tα  Capacity factor of generator g at period t 

Dε  Spinning reserve coefficient of load 

Rε   Spinning reserve coefficient of load of 
renewable energy source 

, k

k
g tτ  Continuous operation time of generator g 

before the final moment in the k-th sub problem 
1k

gκ
+  Continuous shutdown time of generators 

after the initial moment in (k+1)-th sub problem 
k
gγ  Continuous operation time of generators 

before the final moment in k-th sub problem 
1k

gμ
+  Continuous shutdown time of generators 

after the initial moment in (k+1)-th sub problem 
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2.2  Model of long-term storage 

Short-term storage (STS) operates intraday to charge 
and discharge during the day, whereas LTS operated 
from a few days to several years. For instance, 
solar/wind generation variation has a short-term 
variation of seconds to a few days and a long-term 
variation of a few days to several years. The 
short-term variations can be addressed by curtailing 
user loads or storing energy in batteries. Seasonal 
variations must be stored for longer periods because 
they require much larger amounts of energy. In this 
paper, hydrogen storage is considered a candidate 
technology for LTS. The LTS modeling is simplified to 
focus on the proposed solution methodology for 
long-term UC problems. The detailed technical 
modeling of the LTS is available in Ref. [23]. 
Two-layer operation structures for the LTS are 
proposed. The lower layer models the operation within 
an intra-period, and the upper-layer models the 
operation within an inter-period, considering the state 
changes between these periods. The mathematical 
description of LTS is expressed as follows 

 
c c d
, ,

, 1 , en en d
s t s s t

s t s t
s s s

tP P t
S S

E E
η

η+

Δ Δ
= + −    (1) 

 
c
,

d cap
,

0 s t

s t s

P

P E

⎧⎪
⎨
⎪⎩

≤

≤
   (2) 

 min max
,s s t sS S S≤ ≤     (3) 

 ,1 ,s s TS S=      (4) 

where Eq. (1) describes the dynamics of LTS during 
dispatching periods. Eq. (2) limits the maximum charging 
and discharging power of the LTS. Eq. (3) limits the 
minimum and maximum SOCs of the LTS. Eq. (4) 
indicates that the final SOC must equal the initial SOC 
within 8 760 h. For LTS, the final SOC does not require to 
be equal to the initial SOC within a typical period.  

Based on the locational marginal prices, modal net load 
profiles, and power flow limitations from the UC problem 
defined in Section 2.3, the upper-layer model is used to 
optimize the day-to-day operation of the LTS. The SOC 
goals at the end of each period are generated using an 
upper-layer model. The SOC is considered a forced 
constraint for sub problems within an intra-period for each 
period. The long-term horizon can be divided into 
numerous small, independently solvable sub problems 
using this technique. The objective of the upper-layer 

model, which is to maximize the operating revenue of the 
LTS, is expressed as a linear programming problem, as 
formulated in Eqs. (5)-(11). The revenue is the 
discrepancy between the amount of electricity purchased 
and sold in the energy market, as shown in Eq. (5). The 
LMP is calculated using Eq. (6) from Ref. [24]. Eqs. (7) 
and (8) limit the maximum discharging and charging 
power of the LTS, respectively. t

netD  and net
tD  are 

calculated using Eq. (9). Eq. (10) ensures that the LTS 
power outputs are limited by the maximum transmission 
capacity of the transmission lines. Eq. (11) contains the 
operating constraints of the LTS.  

 
c
,d d

, cmax
s

s t
s t s t

s t T s

P
P c t

ψ

η
η∈ ∈

⎛ ⎞
− Δ⎜ ⎟⎜ ⎟

⎝ ⎠
∑∑    (5) 

 ( )pb tc tc
t t t tc σ σ σ= − − × PTDF   (6) 

 ( )d cap net
,0 min ,s t s tP E D≤ ≤      (7) 

 ( )c net cap
,0 min ,s t t sP D E−≤ ≤      (8) 

 
net max min

, , ,
R T

t z t g t g g t g
z g g

D D P U P
ψ ψ

α
∈ ∈

= − +∑ ∑ ∑  (9) 

 
( )

c
,

c
,

0 s t

s t s

P

P L

⎧⎪
⎨
⎪⎩

≤

≤
    (10) 

 Constraints (1)-(4)   (11) 
where pb

tσ  is the dual variable of the system-wide 
power-balance constraints. tc

tσ  and tc
tσ  are the 

vectors of the dual multiplier of the transmission 
upper- and lower-limit constraints, respectively. 
Positive t

netD  and net
tD  are the differences between 

the load demand and power output of renewable 
energy. Negative t

netD and net
tD  represent renewable 

curtailment. 

2.3  UC problem with long-term storage 

The UC model is formulated as a linear program that 
optimizes the schedules of generators and energy 
storage under a series of technical constraints. The 
objective function is to minimize the operating costs. 

[ ] ( ) ( )on off
0 , , ,1,min

T

g t g g t g g tT
t g

f f P c S c D
Τ Ψ∈ ∈

= + +∑ ∑  (12) 

where ( )0 ,g tf P is the generation cost function with a 
piecewise linear function. The second term of Eq. (12) 
on the right-hand side is the startup and shutdown cost. 

The constraints of the proposed model are expressed 
as follows 

 
d c

, , , ,g t s t z t s t
g s z s

P P D P t+ = + ∀∑ ∑ ∑ ∑     (13) 



 Bo Li et al.: Fast Solution Method for the Large-scale Unit Commitment Problem with Long-term Storage 

 

43 

 min max
, , ,g t g g t g t gU P P U P≤ ≤     (14) 

( )
( )

RU min RU
, , 1 , ,

RD min RD
, 1 , , ,

max ,

max ,

g t g t g g t g g g t

g t g t g g t g g g t

P P U P S

P P U P D

ρ ρ

ρ ρ

−

−

⎧ − +⎪
⎨

− +⎪⎩

≤

≤
 (15) 

 , , 1 , ,g t g t g t g tU U S D−− = −   (16) 

 { }, , ,, , 0,1g t g t g tU S D ∈    (17) 

 
on

, ,
g

t

g t g
t m

U S τ
τ = −
∑≥   (18) 

 
off

, ,1
g

t

g t g
t m

U D τ
τ = −

− ∑≥    (19) 

 max
, ,0 ,g t g t g RP P g tα Ψ∀ ∈≤ ≤     (20) 

 , , , ,g t g z t z
g z

L P G D G L− −∑ ∑≤ ≤    (21) 

 
up up

, , , ,
T S R

g t s t D z t R g t
g s z g

R R D P
Ψ Ψ Ψ

ε ε
∈ ∈ ∈

+ +∑ ∑ ∑ ∑≥   (22) 

down down
, , , ,

T R S R

g t s t D z t R g t
g s z g

R R D P
Ψ Ψ Ψ

ε ε
∪∈ ∈ ∈

+ +∑ ∑ ∑ ∑≥   (23) 

 max up
, , , ,g g t g t g tP U P R g t+ ∀≥    (24) 

 min down
, , , ,g t g t g g tP U P R g t+ ∀≥     (25) 

 cap up
, , ,s s t s tE P R s t+ ∀≥       (26) 

 down
, , ,s t s tP R s t∀≥      (27) 

( ) ( )c down c d up
, , , ,re

, 1 , en en d

s t s t s s t s t
s t s t

s s s

t P R t P R
S S

E E

η

η+

Δ + Δ +
= + −   (28) 

 min re max
,s s t sS S S≤ ≤     (29) 

 Constraints (1)-(4)   (30) 

where Eq. (13) is the power-balance constraint. 
Eq. (14) limits the minimum and maximum power 
outputs of the thermal generators. Eq. (15) represents 
the ramp-up and ramp-down limitations of the thermal 
generators. Eqs. (16) and (17) define the relationship 
between the online states and the startup/shutdown 
decision variables. Eqs. (18) and (19) are the minimum 
online and offline time constraints, respectively. Eq. 
(20) limits the maximum power outputs of the 
nonthermal generators. Eq. (21) is the power flow 
constraint of the transmission lines. Eqs. (22) and (23) 
are the up- and down-spinning reserve constraints, 
respectively. Eqs. (24) and (25) define the upward and 
downward spinning reserves supplied by the thermal 
generators, respectively. Eqs. (26) and (27) define the 
upward and downward spinning reserves supplied by 

the energy storage, respectively. Eqs. (28) and (29) 
constrict the SOC of energy storage when supplying 
spinning reserves. Eq. (30) contains the operating 
constraints of the energy storage defined in Section 2.2. 

3  Framework of the time horizon splitting 
method 

In this section, a fast solution method for UC problems 
with long-term temporally coupled constraints is 
presented. The computational burden is reduced by 
computing the sub problems in parallel.  

3.1  Algorithm procedure 

Fig. 1 shows a flowchart of the proposed method. 
Detailed descriptions are as follows. 

 

Fig. 1  Long-term operation procedure with LTS 

Step 1: Construct the UC model without LTS, as 
formulated in Eq. (31). The UC problem is divided 
into K sub problems, which can be easily solved in 
parallel, as shown in Eq. (32). This is because the 
time-coupled constraints (e.g., ramp rate and minimum 
on/off time constraints of the thermal units) between 
the different sub problems are removed. 

Step 2: Construct a feasible solution for the UC 
model without LTS based on the solutions from all the 
sub problems in Step 1. The solutions between 
adjacent sub problems must be verified to satisfy the 
time-coupling constraints. Otherwise, the solutions of 
the sub problems must be adjusted to satisfy the 
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temporal coupling constraints. Section 3.4 describes 
the validation process. 

Step 3: Optimize the annual discharging/charging 
schedule of the LTS. The LMP, net load curve, and 
on/off states of the units are obtained in Step 2. As 
shown in Eqs. (5)-(11), the SOC targets of the LTS 
that can be integrated into the UC with LTS as the 
SOC constraints are optimized by solving the model. 

Step 4: Construct a solution for the original 
long-term UC model with LTS, as shown in Eq. (33). 
The initial and end SOCs of the LTS in each sub 
problem are set as constraints that can decouple the 
original UC with LTS into independent sub problems. 

3.2  UC model without LTS 

The UC model without LTS is constructed based on 
the UC model with LTS in Eqs. (12)-(30), whose 
compact forms are as follows 

[ ] ( )

( )
{ }

on off
, , ,1,

, ,

1 1

, , ,

min

s.t.

, , ,

, , 0,1 ,

T

g t g g t g g tT
t g

g t z t
g z

g t g t g t T

f C P c S c D

P D

U S D g t

Τ Ψ

Ψ

∈ ∈

⎧ ⎡ ⎤= + +⎣ ⎦⎪
⎪

=⎪
⎨
⎪ ⋅⎪
⎪ ∈ ∀ ∈⎩

∑ ∑

∑ ∑
A P U S D d≤

 (31) 

where C(·) denotes the variable cost function of the 
thermal unit, represented by the first term in Eq. (12). 
A1 denotes the coefficient matrix for the associated 
constraint variables, and d1 denotes the constant 
column vector. In Eq. (31), the first row reflects the 
power balance constraint and the second row represents 
the inequality constraint consisting of Eqs. (14)-(16) and 
Eqs. (18)-(25). The third row represents the binary 
variable constraint for the units, as expressed in Eq. (17). 
Eq. (31) is a mixed-integer programming problem with 
two time-coupling constraints: minimal on/off time and 
ramp rate constraints.  

Horizon splitting is used to decouple the 
time-coupling constraints, resulting in Nk sub problems. 
The mathematical models of the sub problem can be 
represented as follows 

 

[ ] [ ]

( )
{ }

1 11,

, ,

1 1

, , ,

min 1,

s.t.

, , ,

, , 0,1 ,

k k k kt t

g t z t
g z

g t g t g t T

f t t t

P D

U S D g tΨ

+ ++⎧ ∀ ∈ +
⎪

=⎪⎪
⎨
⎪ ⋅
⎪

∈ ∀ ∈⎪⎩

∑ ∑
A P U S D d≤

 (32) 

where tk is the time interval for the k-th subproblem. 
For instance, 8 760 h in a year can be divided into 365 
days, Nk=365, 1 2 3650, 24, ,t t t= = = 8 760. When 
k=1, the initial state and online/offline duration of 
the units are assumed to be given, and the state and 
online/offline duration at the end of the problem are 
not constrained. When k>1, the initial and end 
states and the online/offline duration of the units 
are not constrained. Therefore, the UC model in Eq. 
(30) can be decoupled into Nk sub problems, which 
can be solved in parallel. The optimal solution for k-th 
sub problem is [ ] [ ] [ ] [ ]1 1 1 11, 1, 1, 1,, , ,

k k k k k k k kt t t t t t t tx P U S
+ + + ++ + + +

⎡= ⎣  

[ ]11,k kt tD
++
⎤
⎦ .  

3.3  UC model with LTS 

A feasible solution to Eq. (32) is obtained by solving 
the sub problems in parallel. Subsequently, the LMP, 
net load curve, and renewable energy curtailment can 
be obtained. The temporal profile of the SOC of the 
LTS is obtained by solving the price-arbitrage model 
in Eqs. (5)-(11). To decouple the time-coupling 
constraints of the LTS, the SOC targets are used for 
the initial and end of each sub problem in Eq. (32) as 
the boundary constraints. In Eq. (33), the first row 
reflects the balance of power in the power system, and 
the second row is an inequality constraint that includes 
Eqs. (2), (3), (14)-(16), (18)-(27), and (29). The third row 
is an inequality constraint that includes Eqs. (1), (4), and 
(28). Eq. (4) indicates that the SOC at the initial and final 
time intervals of each sub problem should be equal to the 
SOC obtained by solving the model in Eqs. (5)-(11). The 
fourth row is the same as in Eq. (17). 

 

[ ] [ ]

( )
( )

{ }

1 11,

d c
, , , ,

c d
2 2

c d
3 3

, , ,

min 1,

s.t. ,

, , , , ,

,

, , 0,1 ,

k k k kt t

g t s t z t s t
g s z s

g t g t g t T

f t t t

P P D P t

U S D g tΨ

+ ++⎧ ∀ ∈ +
⎪
⎪ + = + ∀
⎪
⎪

⋅⎨
⎪

⋅ =⎪
⎪

∈ ∀ ∈⎪
⎩

∑ ∑ ∑ ∑

≤A P U S D P P d

A P P d

 (33) 

where A2 and A3 denote the coefficient matrices of the 
corresponding constraints. d2 and d3 denote the 
constant column vectors.  

3.4  Construction of a feasible solution 

The constraints for all successive solutions, [ ]11,k kt tx
++  and 
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[ ]1 21,k kt tx
+ ++ , are validated, including the minimal 

up/down time and ramp rate constraints. Assuming 
that in the k-th sub problem, generator g requires 
re-dispatch periods ,g ka  at the end of the time interval 

1[ 1, ]k kt t ++  and periods ,g kb  at the beginning of the 
time interval 1 2[ 1, ]k kt t+ ++  in the (k+1)-th sub 
problem. The four cases are as follows. 

Case (1) , 1
kg tU =  and , 1 0

kg tU + = : Generator g is 
online at the end of the time interval 1[ 1, ]k kt t ++  
and offline at the beginning of the time interval 

1 2[ 1, ]k kt t+ ++ . 
on on RD

, , 1

on RD
, , , 1

&

1 &

0 Otherwise

k k

k k

k
g g g g t g t g

k
g k g g g t g t g

T T P P

a T P P

τ ρ

τ ρ
+

+

⎧ < −
⎪

= − >⎨
⎪
⎩

≤
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In Eq. (34), if RD
, , 1k kg t g t gP P ρ+− ≤  and onk

g gTτ ≥ , 
then the minimum uptime constraints and ramp-up 
limitation are satisfied. The power output of generator 
g does not require adjustments. If onk

g gTτ < , the 
minimum uptime constraints are not satisfied. The 
on/off status of generator g must be adjusted. If 

RD
, , 1k kg t g t gP P ρ+− ≥ , the ramp-up limitation is not 

satisfied, and the output of generator g must be 
adjusted. In Eq. (35), the discussion is similar to that 
of Eq. (34). 

To illustrate the constraint validation procedure,  
Fig. 2 shows an example of Case (1). The minimum up 
and down times for unit g are set to 4 h and 2 h, 
respectively. Unit g is started online for 2 h before the 
end of the k-th period and shut down for 3 h following 
the beginning of the (k+1)-th period. Here, , 2

kg tτ =  
and 1 3k

gκ
+ = . When generator g satisfies the ramp-up 

rate constraints, ag,k=4 and bg,k=0; otherwise, ag,k=4 
and bg,k=1.  

 

Fig. 2  Illustration of constraint validation 

Case (2) , 0
kg tU =  and , 1 1

kg tU + = : This means that 

generator g is offline at the end of the time interval 

1[ 1, ]k kt t ++  and online at the beginning of the time 
interval 1 2[ 1, ]k kt t+ ++ . 
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Case (3) , 1
kg tU =  and , 1 1

kg tU + = : Generator g is 
online at the end of the time interval 1[ 1, ]k kt t ++  
and the beginning of the time interval 1 2[ 1, ]k kt t+ ++ . 

on
, ,

RU RD
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, ,
on on

, ,
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1 Otherwise
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Case (4) , 0
kg tU =  and , 1 0

kg tU + = : Generator g is 
offline at the end of the time interval 1[ 1, ]k kt t ++  
and the beginning of the time interval 1 2[ 1, ]k kt t+ ++ . 
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Note that the period of violation of the constraint for 
the generators is different. The longest period among 
all the generators is selected as the period for 
re-dispatch. 

 { },max
T

k g kg
a a

Ψ∈
=  (40) 

 { },max
T

k g kg
b b

Ψ∈
=  (41) 

Thus, the period that must be re-dispatched between 
two consecutive sub problems is [ ],k k k kt a t b− + , 
calculated using Eq. (32) with the time interval 
[ ],k k k kt a t b− + . The re-dispatch model is established 
using Eq. (33). 

4  Case study 

Numerical tests were conducted on a modified IEEE 
24-bus system in which one LTS, two wind farms, and 
two solar farms were introduced, to validate the 
effectiveness of the proposed method. All simulations 
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were run using GUROBI under YLMIP with a duality 
GAP of 0.1%. 

4.1  Case overview 

The IEEE 24-bus system comprised 16 thermal units 
and 38 transmission lines. The total capacity of the 
thermal power plants was 3 365 MW. The wind farms 
were connected to nodes 3 and 5 with a rated capacity 
of 500 MW. The solar farms were connected to nodes 
7 and 13 with a rated capacity of 1 000 MW. The LTS 
was connected to node 13. The rated capacity of the 
LTS was 500 MW/84 000 MW·h with a rated 
discharging hour of 168 h. The charging and 
discharging efficiencies of the LTS were 60% and 
90%, respectively. The rated capacity of the LTS 
accounted for approximately 16% of the renewable 
installed capacity, which is within a reasonable range 
for most Chinese provinces. The parameters regarding 
the load demands, generation profiles of renewable 
energy, and parameters of generators were obtained 
from Ref. [25].  

The four scenarios are as follows. The UC for an 
8 760 h chronological optimization problem was used 
to test the proposed method. The length of the time 
interval was 1 h and the length of the time horizon was 
1 year. The duration of each period of 1 day has 24 h. 
Thus, the annual optimization problem can be split 
into 365 sub problems. S1 was used as the benchmark 
for comparison with the proposed method. S2 was 
used to test the proposed method. S3 was used to study 
the impact of different rated discharging hours of the 
LTS on the solving efficiency. S4 was used to 
investigate the impact of the number of sub problems 
on the solving efficiency. 

S1: The original UC. 
S2: The original UC was solved using the proposed 

method. The original UC was split into 365 sub 
problems that could be solved in parallel.  

S3: The original UC was solved using the proposed 
method. The rated discharge hours were set to 6 h,  
24 h, and 168 h.  

S4: The original UC was solved using the proposed 
method. The length of the sub problem was set to    

2 days, 4 days, and 7 days. The length of the time 
horizon was 1 month. 

4.2  Effect of different solving scenarios 

Tab. 1 shows the computation times and objective 
function values for S1 and S2. The objective function 
value of the original UC problem was 5.54×107. The 
computation time was 46 543 s. Scenarios S2-ES and 
S2-NoES represent the original UC with and without 
LTS, respectively. The computation time in S2-ES 
decreased by 97.8% with a relative error of 3.3% 
compared with the original problem.  

Tab. 1  Results of different scenarios 

Scenario Total computation 
time/s 

Objective function value/ 
(×107) 

S1 46 543 5.54 

S2-ES 1 020 5.72 

S2-NoES 510 7.10 

Fig. 3 shows the net load and renewable curtailment 
without LTS for S2-NoES. The renewable curtailment 
in Summer and Winter is lower than that in Spring and 
Autumn owing to the high load demand. Moreover, 
the objective function value of the system increased 
from 5.74×107 to 7.11×107. Fig. 4 shows the net load 
and curtailment with LTS for the S2-ES. The 
curtailment decreased by 75% compared with the 
S2-NoEs. These results indicate that the deployment of 
an LTS can support the integration of renewable 
energy by reducing curtailment. 

 

Fig. 3  Net load and curtailment without LTS 
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Fig. 4  Net load and curtailment with LTS 

The daily SOC curves for S1 and S2 are shown in 
Fig. 5. The trend of SOC in S2 was consistent with 
that in S1. This discrepancy is caused by errors in the 
transmission load constraints or solutions to the sub 
problems. Nevertheless, Fig. 4 indicates that the LTS 
optimization in S2 can reach a global optimum. The 
basic concept of operating an LTS is to charge 
renewable curtailment in spring and discharge it to 
supply power in summer.  

 

Fig. 5  Daily SOC curve of LTS 

Thus, for systems with a high penetration of VRE, 
the proposed method can not only reduce the 
computational burden drastically but also decrease 
renewable curtailment through seasonal energy shifts. 

4.3  Effect of discharging hours 

Tab. 2 shows the results of the UC with different rated 
discharging hours of LTS. The total computation time 
for all scenarios exhibited no significant increasing 
trend. As the rated discharge time increased, the 
renewable curtailment increased slightly, whereas the 
value of the objective function decreased. For example, 
when the rated discharging time of the LTS was set to 
168 h, the curtailment increased by 6.5%, and the total 
cost decreased by 5.1%, compared with the scenario 

with a rated discharging time of 6 h of LTS. The 
decrease in the total cost was due to the lack of 
consideration of the penalty cost in this research.  

Tab. 2  Results of LTS with different rated discharge times 

Scenario 
Total 

computation 
time/s 

Curtailment/ 
(×104 MW·h) 

Objective 
function value/

(×107) 

S3-6 h 974 8.80 6.05 

S3-24 h 872 9.01 5.93 

S3-168 h 1 020 9.41 5.74 

The normalization SOC curves for different rated 
discharging hours of LTS are shown in Fig. 6. Given 
the limited energy capacity, the shapes of the dispatch 
curves for storage durations of 6 h and 24 h had more 
intra-seasonal fluctuations than the corresponding 
dispatch curves for storage durations of 168 h. 

 

Fig. 6  SOC curves of LTS for different discharge times 

4.4  Effect of the number of sub problems 

Tab. 3 shows the results for different scenarios with 
different numbers of sub problems in one month. As 
the number of sub problems decreased, the relative 
error of the solution decreased. When the length of 
each time interval was one week, although the 
computation time increased from 121 s to 1 530 s, the 
relative error decreased from 4.6% to 1.0% compared 
with the scenario with a time interval of 1 day. Thus, a 
reasonable time interval must be selected for the sub 
problem to balance the trade-off between solving 
efficiency and errors.  

Tab. 3  Results of different numbers of sub problems in 
one month 

Algorithm Total computation 
time/s 

Objective function value/ 
(×106) 

S1 14 517 1.08 

S4-1 day 121 1.03 

S4-2 days 315 1.06 

S4-4 days 450 1.07 

S4-7 days 1 530 1.09 
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5  Conclusions 

UC with time-coupled constraints between consecutive 
faces presents a significant computational burden. A 
bi-level optimization approach is proposed to solve 
long-term UC with LTS based on time-horizon splitting. 
The upper-level model solves the UC without LTS using 
a time-horizon splitting approach to perform a 
chronological simulation of the power system. The 
lower-level model solves the price-arbitrage model of 
the LTS to optimize its yearly operation based on LMPs. 
The lower-level model is used to generate the SOC 
targets at the end of each sub problem. The upper-level 
model is then run again with the SOC targets of the LTS 
as constraints. Thus, the UC model with the LTS can 
optimize the hourly operation of the LTS while 
following the yearly dispatch shape defined by the 
price-arbitrage model. Case studies using a modified 
IEEE-24 system showed that the computation time can 
be significantly reduced by 97.8% using the proposed 
method. 
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