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Abstract: With the development of computer hardware and the growth of clinical database, tremendous progress has been made in 

the application of deep learning to electrocardiographic data, which provides new ideas for the ex vivo cardiac electrical mapping of 

atrial fibrillation (AF) substrates. The AF mechanism and current status of AF substrate research are first summarized. Then, the 

advantages and limitations of cardiac electrophysiological mapping techniques are analyzed. Finally, the application of deep learning 

to electrocardiogram (ECG) data is reviewed, the problems with the ex vivo intelligent labeling of an AF substrate and the possible 

solutions are discussed, an outlook on future development is provided. 
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1  Introduction1 

Atrial fibrillation (AF) is the most common persistent 

arrhythmia phenomenon, accounting for one-third of 

arrhythmia disorders, and is associated with stroke and 

heart failure [1]. According to the Framingham heart 

study, the prevalence of AF is approximately 25% in 

men and women aged 40 years and older, and the 

incidence of AF increases rapidly with age [2]. The risk 

of stroke is five times higher in those with AF 

compared to those without AF, and the one-year 

disability rate of stroke caused by AF is more than 

50% [3].  
AF ablation surgery is an important treatment for AF. 

It isolates the trigger and improves the atrial substrate, 
which requires three-dimensional (3D) atrial 
electro-anatomical information. Thus, 3D cardiac 
electrophysiological mapping is the first step in the 
current ablation procedures. The enhancement of 
cardiac electrophysiologic mapping technology has 
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become the key to shortening the duration and 
improving the success rate of AF catheter ablation 
procedures [4]. Ex vivo cardiac 3D electrical mapping 
technology is non-invasive and simple, and also allows 
the simultaneous recording of atrial electrical signals. 
The key to improving the accuracy of the mapping is 
the extraction of more precise characteristics of the AF 
substrate. 

In recent years, with the development of computer 
hardware and the growth of clinical databases, 
tremendous progress has been made in the application 
of deep learning to image recognition. When applied 
to clinical images, deep learning has even surpassed 
the accuracy of manually detecting cancer in cervical 
images [5]. Research on the processing of 
electrocardiogram (ECG) data using deep learning 
techniques has exploded [6] and has achieved 
comparable or even higher accuracy than traditional 
methods based on manually designed feature selection. 
For example, Avendi et al. [7] successfully segmented 
the left ventricle on a small magnetic resonance 
imaging (MRI) dataset of 45 patients using a 
combination of convolutional neural networks (CNNs), 
stacked encoders, and deformable models. Bai et al. [8] 
trained CNNs using a large MRI dataset provided by 
the UK Biobank database for ventricular assessment 
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and atrial segmentation and achieved an accuracy 
comparable to that of manual methods. Ex vivo 
cardiac electrical mapping for AF is used to 
simultaneously record ECG activity with more than 
200 electrodes, which requires the accurate 
identification of atrial electrical signals, and deep 
learning may be an effective tool [9]. 

This paper analyzes and reviews the development 
status of cardiac electrophysiological mapping 
technology based on the current status of AF 
mechanism and AF substrate research, summarizes the 
application of deep learning to ECG data, and 
discusses the problems with cardiac 
electrophysiological mapping and possible solutions 
for these. It also reviews the application of deep 
learning to extract AF substrate features, and provides 
an outlook on its application in AF ablation surgery 
and AF mechanism research. 

2  Current research on atrial fibrillation 

AF is characterized and defined by very rapid and 
uncoordinated atrial activity. Conceptually, the 
initiation and maintenance of AF are related to the 
trigger and AF substrate. The trigger is a rapidly firing 
lesion that serves as the initiator of the arrhythmia, and 
its maintenance generally requires the AF substrate, 
i.e., the electrophysiological, mechanical, and 
anatomical features of the atria that maintain AF. The 
mechanisms of AF induction and maintenance are 
complex and influenced by both the trigger and AF 
substrate [10]. The development of the substrate 
usually includes both electrical and structural elements 
of atrial remodeling [11]. The key conceptual 
framework for the induction and maintenance of AF is 
summarized in Fig. 1 [11]. 

 

Fig. 1  Key concepts of AF induction and maintenance [11] 

2.1  Atrial fibrillation mechanism 

An ectopic lesion or excitation in the pulmonary vein 
(PV) and non-pulmonary vein region can produce a 
fast pulse and thus induce AF [12]. The trigger lesions 
predominantly occur in the PV, with 94% of AF trigger 
lesions located in the PV muscle sleeve [13].  

The mechanisms of AF maintenance are extremely 
diverse, but there are three main widely accepted 
mechanistic hypotheses. 

(1) Localized source excitation [14-15]: During AF 
triggering, some areas of abnormal excitation radiate 
high-frequency pulses in all directions, whereas the 
surrounding tissues cannot produce 1:1 conduction 
with the driving lesion because of the anisotropy 
and inhomogeneity of the conduction, which leads 
to AF. 

(2) Multiple sub-wave reentry hypothesis [16]: When 
AF occurs, multiple sub-waves generated by 
high-frequency spiral waves in the atria collide, fuse, 
and annihilate each other to form new waves. 

(3) Rotor theory [17-19]: In AF, there may be multiple 
spiral waves, but only one dominant reentry loop, 
which exists in the form of a rotor, and the dominant 
rotor and sub-rotors collide during propagation to form 
AF. 

Among these, localized source excitation is the 
theoretical basis of the dominant AF treatment 
technique, radiofrequency ablation, which is currently 
one of the main strategies for the surgical treatment of 
AF. 

2.2  Atrial fibrillation substrate 

In a narrow sense, the AF substrate refers clinically to 
lesions located in the atria that are associated with the 
development and maintenance of AF [20]. Generally, 
the low-voltage area (LVA) and complex fractionated 
atrial electrogram (CFAE) are the predominant AF 
substrate. 

Most studies define the cut-off value of the LVA of 
the left atrium (LA) as a bipolar voltage of 0.5 mV 
measured during sinus rhythm [21]. The LVA represents 
focal scarring of the atrial myocardium, and apoptosis 
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of cardiomyocytes, reflecting the heterogeneity of the 
intra-atrial structures. The CFAE is defined as an atrial 
intracardiac electrogram consisting of two or more 
transitions. In patients with AF combined with left 
atrial enlargement, the effective atrial expiration 
period becomes shorter, and the atrial wavelength is 
also shortened. To some extent, this affects the 
discrete and conduction velocity of atrial waves, 
which may be related to the presence of a wide 
range of CFAEs in the atria [22]. CFAE ablation in 
patients with persistent AF can improve the success 
rate of the ablation [23]. 

A wider definition of the AF substrate also includes 
the above-mentioned trigger lesions, which are 
subsequently referred to collectively as the AF 
substrate in this paper. The identification and 
localization of the AF substrate is an important step in 
understanding the mechanism of AF, which guides the 
development of surgical strategies and directly affects 

the duration and success rate of AF ablation. 

3  Current research on cardiac mapping 

From 1971, when Huang [24] combined the 
programmed electrical stimulation technique and 
intracavitary electrogram recording technique, the 
diagnosis of arrhythmia entered the era of cardiac 
electrophysiological detection from the era of 
electrocardiography. In 1976, Allessie proposed a 
10-electrode unipolar labeling system, which 
successfully acquired the atrial velocity re-entry signal 
and was another breakthrough in cardiac 
electrophysiology. In 1980, Boinean developed a 
72-electrode bipolar labeling system, which can use a 
computer to process and graph the ECG signal, and the 
accuracy and standardization of the labeling system 
has been further improved. The history of 
electrophysiological mapping technology is shown in 
Fig. 2. 

 

 

Fig. 2  History of the development of electrophysiological mapping technology 

3.1  Three-dimensional mapping system 

Currently, AF procedures are performed worldwide 
with 3D electrophysiological mapping systems. The 
most commonly used 3D mapping systems are the 
CARTO 3 (Biosense Webster) and EnSite Precision 
(Abbott) systems. 

The EnSite Precision system provides a high degree 
of automation, flexibility, and accuracy to aid in the 
diagnosis of various cardiac arrhythmias. The CARTO 
3 system is an advanced 3D cardiac mapping system 
that simultaneously acquires local anatomical 
locations and ECG signals. Cardiac mappings acquired 
with these systems are shown in Figs. 3 [25] and 4 [26], 
respectively. 

Other systems include the HeartFlow Analysis 
system, which applies deep learning AI algorithms to 
standard coronary CT angiography, the CardioNXT 
3D navigation system, which incorporates dynamic 
references, and Columbus, which is a domestic 3D 
mapping system. 

 

Fig. 3  Cardiac mapping with EnSite Precision system [25] 
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Fig. 4  Cardiac mapping with CARTO 3 system [26] 

3.2  Cardiac mapping technology 

Cardiac mapping technology has gradually been 
improved, mainly in the areas of endocardial mapping, 
epicardial mapping, optical mapping, and body surface 
mapping. 

Endocardial mapping records the endocardial 
excitation at each site through a multi-stage catheter, 
analyzes the sequence of excitations, precisely locates 
the origin of abnormal electrophysiological activity, 
and allows radiofrequency ablation to be performed 
based on the navigation system. Epicardial mapping is 
an important technique to study the 
electrophysiological mechanisms of AF. It covers the 
entire external surface of the heart with a high density 
of detection electrodes, simultaneously detecting and 
recording the electrical activity, and producing data 
analysis maps through a computerized signal 
processing system. Endocardial and epicardial 
mapping are both invasive examinations and cannot be 
used for the long-term and continuous measurement of 
atrial electrical signals. They have limitations such as 
multiple blind areas, poor measurement accuracy, and 
a lack of intra-chamber electrogram information. 

Optical mapping combines voltage-sensitive dyes 
with digital imaging techniques to convert the 
acquired optical signal into a data signal, along with 
signal processing to record the cellular membrane 
potential. Hansen et al. [27] observed rotors during AF 
with optical mapping, confirming that reentry is an 
important mechanism of AF maintenance. Zhao et 
al. [28] conducted high-resolution panoramic epicardial 
optical mapping of an explanted human atria 
combined with contrast-enhancement MRI images to 
analyze the cardiac wall thickness, myofiber 
orientations, and transmural fibrosis. The 3D human 

heart-specific atrial computer model that was 
constructed could be used to study the induction and 
maintenance mechanism of AF and guide ablation 
strategies. Optical mapping can only be conducted in 
explanted hearts because of the phototoxicity of the 
dye and mechanical motion of the heart. Therefore, it 
is limited to animal experiments. 

Body surface potential mapping is based on the 
different potential distributions formed on the surface 
of the human body by the electrical activity of 
cardiomyocytes. It is a non-invasive method to 
visually reflect the internal electrophysiological 
condition of the heart. The development of 
electrocardiographic imaging (ECGI) [29] has led to 
further improvements in the accuracy and 
synchronization of the ECG signal measured by body 
surface mapping. Ehrlich et al. [30] used the 
CardioInsight ECVUETM system, applied a 252 
electrode vest to a patient’s torso, and obtained 
high-resolution images of the heart and vest electrodes 
using chest computed tomography (CT) with the 
mapping system shown in Fig. 5 [30]. Ramanathan et al. [31] 
used a multi-electrode vest to record ECG signals at 224 
body sites and then reconstructed the potential, 
electrograms, and isochronous maps of the heart surface 
using geometric information obtained by CT and 
mathematical algorithms, the process of which is shown 
in Fig. 6 [31]. Although body surface mapping has 
limitations such as the reliance on CT to construct 
electro-anatomical maps, inability to guide ablation in real 
time (only preoperative labeling can be performed), and 
decrease in accuracy under far-field wave interference, it 
truly achieves non-invasive long-term continuous labeling 
of atrial electrical signals in patients with AF. Thus, it has 
received increasing attention from practitioners and has 
promise for clinical applications. 

 

Fig. 5  CardioInsight mapping system [30] 
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Fig. 6  Block diagram of the ECG imaging [31] 

4  Deep learning in ECG data analysis 

Cardiac electrical mapping techniques for AF are 
achieved by recognizing the typical pathological 
electrical activity of the AF substrate. Thus, the key to 
improving the mapping accuracy is a more accurate 
extraction of the characteristics of the AF substrate. 

Deep learning methods focus on learning the 

internal structure of the data. With the progressive 
research on the use of deep learning techniques for 
diagnosing atrial electrophysiology and the 
development of image recognition techniques, the 
automatic learning of features and classification models 
based on deep learning has become a research hotspot [32]. 
The current applications of deep learning in ECG data 
analysis mainly include AF detection, atrial segmentation, 
and in vivo AF labeling map analysis. Deep learning may 
be an effective tool for the ex vivo cardiac electrical 
mapping of AF, but its application in this field has not 
previously been reported. 

4.1  Deep learning in atrial fibrillation detection 

The theoretical basis of the intelligent AF detection 
algorithm is the absence of P-waves and absolute 
irregularity of the RR interval [33] in the AF rhythm 
ECG compared to the sinus rhythm ECG. 

The most commonly used deep learning models mainly 
include the convolutional deep neural network (DNN), 
convolutional neural network (CNN), residual neural 
network (ResNet), support vector machines (SVM), 
recurrent neural network (RNN), densely connected 
convolutional recurrent neural network (DBRNN), 
bidirectional long-short term memory network (BLSTM), 
visual geometric group network (VGGNet), generative 
adversarial network (GAN), and bidirectional RNN with 
dilated CNN (BRDC). Tab. 1 summarizes the relevant 
information of some AF detection algorithms. 

Tab. 1  Summary of research information related to AF detection algorithms 

Authors Database Feature engineering Model 
Sensitivity 

(%) 
Specificity 

(%) 
Accuracy

(%) 

Hannun et al. [34] 91 232 single-lead ECGs from 53 549 
patients —a DNN 86.10 94.10 — 

Bao et al. [35] Physinet/Cin C Challenges 2017 Database Butterworth bandpass filters CNN-BLSTM — — 86.00 

Zhao et al. [36] MIT-BIH AF Database Series of f-waves instead of 
normal P-waves ResNet 99.26 99.42 99.47 

Wen et al. [37] 
Database of physiological signals 

collected from 37 subjects by non-contact 
sensors 

Wavelet transform and root 
mean square (RMS) filter SVM 96.80 — 94.50 

Dang et al. [38] MIT-BIH AF Database RR interval and heartbeat 
sequence CNN-BLSTM 99.93 97.03 96.59 

Deng et al. [39] MIT-BIH AF Database Time-domain features of ECG 
sequences, one-hot label CNN 99.07 97.05 98.03 

Limam et al. [40] Physinet/Cin C Challenges 2017 Database R-peak position in the signal 
and heart rate CRNN-SVM 72.30 98.70 — 

Liu et al. [41] Physinet/Cin C Challenges 2017 Database Short-term Fourier transform 
(STFT), Bayesian optimization CNN-LSTM 84.00 91.00 90.00 

Islam et al. [42] Physinet/Cin C Challenges 2017 Database 
Chebyshev type II filter, 

Pan-Tompkins normalization 
technique 

GAN-BRDC 99.90 — 99.90 

Note: a Unpublished. 
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Deep learning algorithms have shown excellent 
detection performance in AF detection. However, some 
studies have not fully escaped the limitations of feature 
extraction. For example, although Liu et al. [41] used a 
CNN as a classifier in their study, the short-time Fourier 
transform (STFT) and Bayesian optimization were still 
required to process ECG signals. 

4.2  Deep learning in atrial segmentation 

Gadolinium-enhanced magnetic resonance imaging 

(GE-MRI) has been widely used to study the extent of 
atrial fibrosis [43]. Recent studies suggest that the 
fingerprints of the atrial structure may be the key to 
studying the mechanisms of AF [27, 44]. 

Intelligent algorithms for fully automated atrial 
segmentation of the left atrium (LA) facilitate the 
accurate reconstruction and visualization of the atrial 
structures for clinical use. Some of the deep learning 
algorithms from the 2018 Atrial Segmentation 
Challenge are summarized in Tab. 2. 

 
Tab. 2  Summary of the deep learning algorithm used in the 2018 atrial segmentation challenge 

Authors Summary DCa Model Advantages/Limitations 

Xia et al. [44] 2 networks (LA localization, LA segmentation), dice loss 93.2 2×3D U-Net 
Good class imbalance management with best 

performance/high computational cost 

Bian et al. [45] ResNet101, dilated convolutional layers, pyramidal pooling, 
online hard example mining 

92.6 
2D Pyramid 

Network 
Multi-scale representation/overfitting may be 

augmented by competitive training 

Vesal et al. [46] U-Net, dilated convolution, dice loss, cross-entropy loss 92.6 3D U-Net 
Class imbalance management, cross-entropy 

loss/information loss of center cropping 

Li et al. [47] 2 networks (3D U-Net for detection, HAANet for LA 
segmentation), dice loss 

92.3 
3D U-Net, 
HAANetb 

Class imbalance management/Hierarchical 
mechanism for small gains 

Puybareau et al. [48] RGB 2D color images, VGG, multinomial loss function 92.3 VGG-Net 
Short training time, pseudo-spatial 

representation/not multi-view or 3D view 

Chen et al. [49] Cross-entropy loss and sigmoid loss 92.1 2D U-Net 
Short training time (2D), novel data 

augmentation 

Jia et al. [50] 2 networks (LA localization, LA segmentation), contour loss 90.7 3D U-Net Contour loss/high computational cost 

Liu et al. [51] 2 networks (U-Net and FCN for LA segmentation, dice loss 90.3 2D U-Net, FCN Short training time (2D)/native U-Net 

Borra et al. [52] Ostu algorithm, adding LA and PV segmentation, dice loss 89.8 3D U-Net Ostu algorithm/high computational cost 

Note: a Dice coefficient; b Hierarchical aggregation network. 
 
The dual cascade U-Net model proposed by Xia et 

al. [44] achieved the highest performance in the 
challenge. Its entire framework consisted of two 
networks, the first network roughly located the atrial 
center based on a low-resolution down-sampled 
version of the input and divided a fixed-size region 
covering the atrial cavity, ignoring other irrelevant 
pixels to reduce the memory consumption. Then, the 
second network precisely segmented the atrial cavity 
from the cropped subregion obtained in the previous 
step. The algorithm was simple and clean, proving that 
classical networks such as U-Net are still very 
competitive in the field of image segmentation. 
Moreover, the results of the above algorithm showed 
that for 3D medical images, if the anisotropy 
differences in the three dimensions are not very large, 
a 3D input is better than a 2D input. 

4.3  Deep learning in labeling map analysis 

Recent studies have applied deep learning to in vivo 
AF 3D labeling map analysis. McGillivray et al. [53] 
used machine learning for a single-cell model of AF to 
localize local re-entrant drivers based on directly 
recorded ECGs. Zolotarev et al. [54] trained a deep 
learning model that could effectively classify the ECG 
image features of re-entrant drivers measured in vivo 
with an accuracy of 80%-90%, depending on the size 
of the multi-electrode mapping array. Alhusseini et 
al. [55] trained a CNN model with an accuracy of 95% 
for re-entrant driver detection. Ríos-Muñoz et al. [56] 
automatically identified rotors in an endocardial 
electrogram (EGM) using a CRNN with an accuracy 
of 80.04%. Liao et al. [57] applied a deep learning 
model to an original EGM signal and detected the 
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focal source as a potential ablation target with 
sensitivity, specificity, and accuracy values of 90%, 
81.9%, and 82.5%, respectively. As shown, deep 
learning has decent performance in in vivo labeling 
map analysis, and its accuracy depends on the 
resolution of the labeling map and precision of the 
labeling electrodes. 

5  Discussion of application problems 

5.1  ECG signal noise artifact reduction 

Acquiring atrial electrophysiological activity through 
ex vivo measurements and reducing the interference 
during measurements are central to improving the 
recognition of AF substrate dynamics. There are many 
sources of interference in an ECG signal, which are 
mainly divided into four categories: power frequency 
interference, baseline drift, electromyogram (EMG) 
interference, and motion artifacts. Noise artifacts 
during ECG signal measurement can greatly affect the 
quality of the measured signal and even make it 
impossible to assess cardiac activity. The typical 
frequencies and amplitudes of noise artifacts are 
shown in Tab. 3. 

Tab. 3  Typical frequencies and amplitudes of  

noise artifacts 

Noise artifact Frequency/Hz Amplitude ratio(%)

Power frequency 
interference 

50 50-200 

Baseline drift 0.05-2 15 

EMG interference 5-1 000 10 

Motion artifact 1-10 100-500 

Power frequency interference is generated by the 
electromagnetic field formed by conventional AC 
currents of 50-60 Hz. Infinite impulse response (IIR) 
filters, finite impulse response (FIR) filters, and their 
variants such as high-Q comb filters are commonly 
used to remove power frequency interference from 
ECG signals [58]. 

Baseline drift is low-frequency noise caused mainly 
by breathing, body movements, scars on the skin, 
depletion of the electrode conducting gel, or poor 
contact between the electrodes and skin due to 
sweating. Baseline drift is usually removed using 
high-pass filters, band-pass filters, digital filters (IIR, 

FIR), adaptive filters, blind source separation 
(BSS) [59], and wavelet transforms. 

Electromyographic interference is electrical activity 
generated by skeletal muscles and is sensitive to 
frequencies similar to the signal to be measured, 
making it difficult to avoid signal contamination 
during ECG recording. Dynamic filters [60] and 
threshold-based wavelet transforms [61] are usually 
used to suppress or remove EMG interference on the 
basis of maintaining the original geometric 
characteristics of the ECG signal. 

Compared to the other three noise artifacts, motion 
artifacts have larger variability in their waveform 
characteristics and cannot be filtered out using simple 
low-pass, high-pass, and other band filters. Some 
researchers [62] have proposed a solution to 
discriminate the type of motion based on acceleration 
signals and eliminate noise in the time period of the 
motion artifacts, which can effectively improve the 
quality of ECG signals. 

5.2  Other problems 

At present, an ex vivo cardiac mapping system seems 
to be effective for cardiac mapping in patients with a 
short history (within 1 year) of paroxysmal AF, but its 
application in other challenging cases, such as patients 
with a long history of persistent AF and patients with 
short AF cycles, remains to be explored. The 
validation of ex vivo labeling results using the in vivo 
electrical labeling techniques that are currently applied 
in a clinical setting, and a comparison of the two 
images to analyze the correlation between the signals, 
are the keys to optimizing the deep learning model and 
improving the accuracy of AF substrate labeling, 
which is also an urgent problem in the current research 
on the ex vivo labeling of AF. 

In addition, because of the individual variability of 
ECG signals, the apparently anonymous ECG data 
may be a threat to the personal privacy of users [63]. 
The privacy and security issues with the database are 
also aspects that need to be improved, such as by the 
use of differentiated privacy protection schemes [64]. 

6  Conclusions 

AF ablation surgery is the most effective treatment for 
AF rhythm, but there are currently problems with the 
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long duration of the procedure and its low success rate, 
which could be overcome by ex vivo 
electrophysiological labeling technology. Cardiac 3D 
electrophysiological labeling is the basis of AF 
ablation surgery and currently the first step in such 
surgery. Although the key technology is well 
established, it still has some limitations.  

(1) Invasive catheter operation of the mapping 
electrode increases the total procedure time (average 
mapping time is approximately 40 minutes), X-ray 
exposure, and procedural complications. 

(2) The operation of the mapping electrode requires 
experience in catheterization. 

(3) The limited density of electro-anatomical 
information obtained by point-by-point mapping 
results in incomplete information collection and 
affects the surgical strategy. 

With the progressive research on the diagnosis of 
atrial electrophysiological diseases using deep learning 
technology and the combination of big data mining 
and computer model optimization, the ability to 
automatically diagnose cardiac diseases and 
intelligently label the AF substrate will continue to 
improve. 

This paper summarized the development 
mechanism of AF and the electrophysiological 
characteristics of typical AF substrates such as the 
trigger, low-voltage area, and complex fractionated 
atrial electrogram. In addition, the advantages and 
limitations of cardiac electrophysiological mapping 
techniques were discussed. A comprehensive review of 
the current status of domestic and international 
research in the fields of ECG-based AF detection, 
MRI-based atrial segmentation, and in vivo AF 3D 
mapping analysis was presented, and the key problems 
that need to be explored in the future were 
summarized. Further research on ex vivo cardiac 
labeling technology and algorithms for the intelligent 
detection of the AF substrate, along with their 
application, will promote the improvement and 
development of AF ablation surgery and research on 
the AF mechanism and other related subjects. 
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