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Abstract: A novel approach by introducing a statistical parameter to estimate the severity of incipient stator inter-turn short circuit 

(ITSC) faults in induction motors (IMs) is proposed. Determining the incipient ITSC fault and its severity is challenging for several 

reasons. The stator currents in the healthy and faulty cases are highly similar during the primary stage of the fault. Moreover, the 

conventional statistical parameters resulting from the analysis of fault signals do not consistently show a systematic variation with 

respect to the increase in fault intensity. The objective of this study is the early detection of incipient ITSC faults. Furthermore, it aims 

to determine the percentage of shorted turns in the faulty phase, which acts as an indicator for severe damage to the stator winding. 

Modeling of the motor in healthy and defective cases is performed using the Clarke Concordia transform. A discrete wavelet 

transform is applied to the motor currents using a Daubechies-8 wavelet. The statistical parameters L1 and L2 norms are computed for 

the detailed coefficients. These parameters are obtained under a variety of loads and defects to acquire the most accurate and 

generalized features related to the fault. Combining L1 and L2 norms creates a novel statistical parameter with notable characteristics 

to achieve the research aim. An artificial neural network-based back propagation algorithm is employed as a classifier to implement 

the classification process. The classifier output defines the percentage of defective turns with a high level of accuracy. The 

competency of the adopted methodology is validated via simulations and experiments. The results confirm the merits of the proposed 

method, with a classification test correctness of 95.29%. 
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List of symbols1 

F  Fundamental frequency 
p  Number of pole pairs 
S  Slip 
Vs  Voltage of the stator 
Rs  Stator resistance 
Is  Stator current 

sΨ   Stator flux 

Rr  Rotor resistance 
Ir  Rotor current 

rΨ   Rotor flux 
Ls  Stator inductance 
Msr  Mutual inductance 
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r  Rotor inductance 
iαs  Stator current on α-axis 
iβs  Stator current on β-axis 
φαr   Rotor flux on α-axis 
φβr  Rotor flux on β-axis 
Uαs  Stator voltage on α-axis 
Uβs  Stator voltage on β -axis 
σ   Leakage coefficient 
ωr  Rotor speed 
Ts  Time coefficient on α-axis 
Tr  Time coefficient on β-axis 
Te  Electromagnetic torque of IM 
fk  Friction coefficient 
J  Moment of inertia 
Tst  Friction torque of IM 

cθ   Localization parameter 
δ      Fault severity index 
Pn     Induction motor power 
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1  Introduction 

Induction motors (IMs) with capacities ranging from a 
few watts to megawatts are employed as leading 
movers, and they play an essential role in recent 
industries. Owing to their robustness, reliability, and 
low maintenance costs, IMs have received increasing 
attention in automotive, electrical vehicle traction, and 
power conversion systems [1-3]. Despite its favorable 
characteristics, the induction motor is subjected to 
mechanical and electrical faults that can be caused by 
prolonged operation, current and voltage imbalance, 
and harsh operating conditions. If the plant is 
temporarily shut down for a short period owing to an 
induction motor fault, it leads to massive economic 
waste in terms of human resources and raw materials. 
Therefore, with the increased use of IMs, the search 
for reliable diagnostic techniques has become a 
recurrent research task in the recent years. The 
required techniques aim to diagnose failure at an 
incipient level to avoid undesirable operating stops [4-6]. 
In addition, reliable online condition monitoring 
methods are highly significant for detecting faults 
during motor operations. These methods are 
considered necessary to avoid major breakdowns and 
fault progress, as well as to increase the life span of 
the motor [7-9].  

Stator inter-turn short circuit (ITSC) is a common 
defect in IMs and accounts for approximately 40% of 
machine faults. Generally, a few shorted turns do not 
have remarkable physical indications. However, this 
may cause immense insulation damage in a short 
period [10]. Early detection of this fault can minimize 
the subsequent damage to the adjacent turns and stator 
core, which would reduce the maintenance cost and 
motor stop time [11]. Moreover, normal condition 
monitoring systems are not sufficiently reliable to 
detect machine faults at a primary evolving level. 
Therefore, intelligent condition monitoring methods 
are highly recommended for the initial fault diagnosis 
and resilient operation of the machine [12]. 

An ITSC fault creates harmonic frequency 
components in the motor current. The magnitude and 
frequency of such harmonics change continuously 
with the load variations. It is a requisite to identify 

such faults at suitable frequency bands. Moreover, the 
selection of a convenient signal processing tool is 
crucial for effectively analyzing these bands. Fast 
Fourier transform (FFT), short-time Fourier transform 
(STFT), and power spectral density (PSD) have been 
proposed to extract features linked to the fault [13]. 
During a fault, the motor current signal is 
nonstationary in nature, which requires an advanced 
signal-processing tool for analysis. The discrete 
wavelet transform (DWT) is a preferable tool for 
dividing stationary and nonstationary signals into 
different time-frequency resolutions. DWT generates 
many coefficients for several decomposition levels [14]. 
The statistical parameters extracted from the DWT 
coefficients at each decomposition level play a 
decisive role in the fault diagnosis process. However, 
recent intelligent fault-diagnosing systems are integral 
for the detection of motor faults. Recently, special 
attention has been paid to employing artificial neural 
networks (ANNs) in the fault diagnosis field. The 
merits of using an ANN enable arbitrary mapping from 
inputs to outputs without any concern for the system 
dynamics, which may be complicated to model in 
several cases. In addition, the ANN architecture may 
be performed online with few computational burdens. 
Note that an ANN can detect faults and estimate their 
severity without the need to develop a mathematical 
model. Furthermore, it is highly robust under noisy 
inputs, and its ability to learn provides a significant 
advantage in diagnosis and classification processes [15]. 

The determination of the ITSC fault and its severity 
has been previously investigated by using several 
methodologies. In Ref. [16], the authors employed 
generated approximation signals to estimate the ITSC 
fault intensity. These signals were obtained after 
analyzing the raw current signals using the DWT. 
However, the transient state was ignored during the 
study, which may have provided crucial information 
related to the fault. In Ref. [17], a continuous wavelet 
transform (CWT) was integrated with an ANN to 
detect ITSC faults. The CWT was utilized to extract 
relevant features from the measured current signal, and 
the ANN determined the motor conditions. In the 
aforementioned work, the input data feeding the ANN 
were critically small, which affected the accuracy of 
the results. An online stator ITSC fault diagnosis 
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method was studied in Ref. [18], using the statistical 
parameter estimation of the DWT coefficients for 
detecting faults at an early level. The methodology 
was performed on a variable-frequency drive that fed 
the motor in real time. A support vector machine 
(SVM) was employed as a classifier to detect faults. 
However, a small number of fault severities were used, 
and only three loads were used throughout the study. 
In the study presented in Ref. [4], the failure intensity 
index was estimated in the faulty phase of a 
permanent-magnet motor. This method is based on 
determining the resistance of healthy coils in the 
defective phase after exciting the machine using a DC 
current. The resistance value was employed as a 
feature of the ITSC fault and its severity. The 
methodology has some errors because of the fact that a 
short circuit was introduced through wiretaps which 
have some resistance; however, the algorithm assumed 
a zero-fault path resistance. The authors of Ref. [19] 
used the current signal in the time domain to detect the 
ITSC fault intensity. A neural estimator and 
multi-agent system (MAS) were employed to 
determine the fault severity. In Ref. [20], an ANN was 
chosen as a classifier to estimate ITSC fault severity 
after processing the amplitude of the motor current 
signal in the time domain. This study obtained the 
highest defect classification precision compared to the 
SVM and fussy logic (FL) techniques. The ITSC fault 
diagnosis methodology was discussed in Refs. [21-22] 
based on the discrete wavelet energy ratio. In this 
study, the classification task was performed using an 
ANN. In another dimension, the calculation of the 
energy obtained from DWT does not demonstrate a 
systematic variance with respect to the augmentation 
in the failure severity pertaining to the three phases. 
Furthermore, this random variation in the energy 
values complicates the ANN pattern, which requires 
more time to design, train, and test the network to 
acquire the desired outcomes. In Ref. [23], a pattern 
recognition method was presented to diagnose ITSC 
faults by measuring the mutual information among 
stator current signals. An ANN was used to extract the 
features and determine the motor condition. A 
non-invasive method based on infrared thermography 
was explained in Ref. [24] to detect the presence of an 
ITSC fault and estimate its intensity. During the start 

of the motor, the authors employed transient thermal 
monitoring to perform the diagnostic task. Accordingly, 
they proposed an algorithm for an automatic ITSC 
failure diagnosis based on infrared thermography 
images. The slope of the temperature trend line 
increases with an increase in fault severity. However, 
this work was performed under no-load conditions 
with only two fault conditions. Additionally, this 
methodology requires at least three minutes to 
estimate the fault intensity after running the motor. 
The works presented in Refs. [17-22] cannot estimate 
fault severity, which only specifies the motor condition 
as either healthy or faulty. Other studies such as 
Refs. [20, 24], the fault diagnosis correctness dropped 
significantly under a few shorted turns in the faulty 
winding, which adversely affected the overall 
classification accuracy. 

This study is substantially different from the 
recently published work [25]. A comprehensive 
comparison of the recent work [25] and the present 
work includes six aspects. First, to detect the faulty 
phase, the existing method [25] is based on the max 
norm values. However, the distinctive features of the 
L1 and L2 parameters were calculated and used in the 
current study. Second, for fault severity estimation, a 
mathematical equation approach was used in a 
previous work [25] without adopting any artificial 
intelligence technique. An artificial intelligence 
technique, i.e., ANN, was adopted in this study. Third, 
the work presented in Ref. [25] focused on calculating 
the number of faulty turns. In this study, the fault 
severity was obtained by determining the percentage 
of shorted turns. Fourth, the proposed method in this 
work presents an automated method to diagnose faults, 
compared to the work mentioned in Ref. [25] based on 
manually calculated mathematical equations. Fifth, to 
distinguish the defective phase, the L1 and L2 
parameters employed in this work demonstrate a 
significant deviation in the value considering the 
increase in the fault intensity (i.e., L1: 0-4 000). 
However, the existing study is based on max norm 
values, which only range from 185 to 230. Thus, these 
parameters (L1 and L2) provide clearer and more robust 
indicators of the faulty phase compared to Ref. [25]. 
Additionally, this clear deviation in the values 
provides better input to the classifier, which may 
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increase its performance and accuracy. Finally, to 
determine the fault severity in the faulty phase, the 
proposed approach exhibits a higher accuracy 
compared to that of Ref. [25]. 

The main contribution of this research is to propose 
a novel statistical parameter to detect incipient ITSC 
faults and to specify the percentage of shorted turns in 
the faulty phase. Furthermore, this study investigated 
the influence of load variations on fault identification 
and its intensity. The Clarke Concordia transformation 
was employed to model the IM for healthy and faulty 
cases. The DWT-based multi-resolution signal analysis 
method was used to analyze the motor currents using 
DB-8 up to the ninth level. The statistical parameters 
L1 and L2 norms were calculated under different 
loading conditions and fault severities. These norms 
are combined to constitute the suggested parameter, 
and their values are selected as relevant features 
associated with the fault. The aforementioned features 
are employed to feed the ANN classifier, which 
precisely determines the motor condition (either 
healthy or faulty) along with a specific fault intensity. 

2  Modeling the induction motor with ITSC 
fault 

Modeling the machine during an ITSC fault is tedious 
and challenging, particularly without using Park or Clarke 
transformations. In the healthy case, the stator and rotor 
equations of the IM are given by Eqs. (1)-(7) [26] 

 
d
ds s s sU R I
t
ψ= +  (1)  

 
d0
dr r rR I

t
ψ= +  (2) 

 s s s sr rL I M Iψ = +  (3) 
 r r r sr sL I M Iψ = +  (4) 

To minimize the number of model variables, the 
motor was represented using the Clarke-Concordia 
transformation. The general equation of the motor 
during normal operation is given by 
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The torque equation is given by 

 ( )e r s r s
r

PMT i i
L α β β αφ φ= −        (12) 

The expression of the rotor speed is given by 

 k
e st r

fPr T T
J P

ω ω⎛ ⎞∂ = − −⎜ ⎟
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       (13) 

For modeling the IM under an ITSC fault, two 
parameters were introduced to define this fault. 
① Localization parameter θc, which represents the 
angle between the defective phase and reference stator 
axis (Phase-A). Notably, θc can only take the values 0, 
2π/3, or 4π/3 according to defective phases A, B, or C, 
respectively [27]. ② The recognition factor , which is 
the ratio between the number of defective turns and 
the total number of turns in the healthy phase [26]. 

The shorted currents of the stator are given by 

 
2 d( )
3 dc

s
i sh Q r

R t
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The total currents of the stator are given by 

 
d( ) ( )
d

Y t Cx t D r
t
φαβ= +          (15) 

Different fault severities can be obtained by 
changing δ . The tested motor parameters used in this 
study are listed in Tab. 1. Throughout this work, 
Phase-C was selected as the faulty phase. For 
simulating the incipient fault, the number of the 
defective turns was taken as 1-90 turns, which is less 
than 20% of the total turns per phase. The simulation 
was conducted for 6 s. Three-phase currents were 
recorded in the healthy and faulty cases. These 
currents were considered under different loading 
conditions and several fault intensities. Fig. 1 displays 
the Simulink model of the machine. Fig. 2 illustrates 
part of the signal of the three-phase motor currents 
under full load in the time domain. 

Tab. 1  Parameters of the utilized machine 

Parameter Value 

Number of phases N 3 

Source voltage V/V 380 

Nominal current I/A 4.4 

Motor power Pn/W 2 600 

Number of poles P 4 

Stator resistance Rs/Ω 4.850  

Rotor resistance Rr/Ω 3.805 0 

Stator leakage inductance Ls/H 0.274 0 

Rotor leakage inductance Lr/H 0.274 0 

Mutual inductance M/H 0.258 0 

Moment of inertia J/(kg·m2) 0.031 0 

Friction factor fk 0 

Number of turns per stator phase ns 464 

Friction torque Tst/(N·m) 0.50 

 

 

Fig. 1  Simulink model of the machine 

 

Fig. 2  Three-phase motor currents, under full load (6.3 N·m), in the time domain with ten shorted turns in phase-C 

3  Discrete wavelet analysis of stator current 

Wavelet transform (WT) is an extension of the 

short-time Fourier transform (STFT). It analyzes the 
signals using time-frequency basis functions. A 
discrete wavelet transform, which utilizes discrete 
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translation and scaling factors, is obtained when the 
wavelets are discretely sampled. It samples the shifted 
and scaled parameters in which the higher-frequency 
sub-bands have finer time resolution and coarser 
frequency resolution compared to the lower-frequency 
sub-bands. 

The general equation of wavelet is given by [28] 

 
1( ) ( )t ut

ss
λ λ −

=           (16) 

where s and u denote the scale and translation factors, 
respectively. 

The DWT uses appropriate filters to divide the 
current signal into a number of frequency bands to 
obtain detailed coefficients (Dcf) and approximated 
ones (Acf).  

Hence, the approximated and detailed coefficients 
were obtained by dividing the motor current signal 
into a number of decomposition levels. The structural 
decomposition of the DWT for the two levels is 
depicted in Fig. 3. 

 

Fig. 3  Structural decomposition of DWT up to the second level 

3.1  Discrimination of mother wavelet 

The selection of the mother wavelet was the first step 
in implementing the analysis process. Multiple 
wavelet families have been proposed with different 
properties, such as (Haar, Sym2, Sym3, and Db7). 
Several studies have affirmed that the majority of 
wavelet families provide acceptable results. However, 
the Daubechies family is highly recommended for 
fault diagnosis. The efficacy of using Daubechies 
wavelets is based on the precise signal reconstruction. 
Moreover, using a high-order wavelet improves the 
analysis results, which yields satisfactory outcomes in 
the diagnosis operation [28-29]. These reasons form the 

basis for selecting Daubechies-8 as the mother wavelet 
in this study. 

3.2  Determination of the number of decomposition 
levels 

Specifying the number of decomposition levels 
directly depends on the low-frequency component of 
the signal. The number of decomposition levels is 
given by [30] 

 
log

integer( )
log 2

s

f

F
fN =          (17) 

Generally, two additional levels are added for better 
analysis. The modified equation is as follows 

 
log

integer( ) 2
log 2f

Fs
fN = +      (18) 

Generally, the higher the sampling rate, the higher 
the frequency that a system can record. 

In this study, the sampling frequency (Fs) was taken 
as Fs=10 000 Hz, and the frequency was f=50 Hz. 

10 000log
50integer( ) 2 9

log 2
Nf = + =      (19) 

Tab. 2 presents the frequency bands of the 
decomposed signal, for 9 levels. 

Tab. 2  Frequency bands of the decomposed signal  Hz 

Level Approximations Details 

1 APPROAX1     0-2 500 D1   2 500-5 000 

2 APPROAX2     0-1 250 D2   1 250-2 500 

3 APPROAX3      0-625 D3    625-1 250 

4 APPROAX 4     0-312.5 D4    312.5-625 

5 APPROAX 5    0-156.25 D5   156.25-312.5 

6 APPROAX 6    0-78.125 D6   78.12-156.25 

7 APPROAX 7    0-39.062 D7   39.06-78.125 

8 APPROAX 8    0-19.531 D8   19.53-39.062 

9 APPROAX 9    0-9.765 5 D9   9.765-19.531 

  
3.3    Calculating the statistical parameters of 

wavelet coefficients 

Three stator currents were collected from the motor 
and sampled at a rate of 10 kHz. The DWT was 
employed to analyze these currents in the healthy 
and faulty cases (ITSC fault in Phase-C). Db-8 with 
nine decomposition levels was used for this purpose. 
Fig. 4 shows the details and approximation signals 
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(d9-d8-d7-d6-a9) for the healthy and faulty Phase-C 
under full load. It is worth noting from Fig. 4 that 
the detailed coefficients at level 7 (d7) have the 
greatest values compared to the other detailed and 

approximated coefficients. This is because d7 
contains a fundamental frequency of 50 Hz, as 
listed in Tab. 2, which demonstrates that d7 is found 
at the frequency margin 39-78.1 Hz. 

 

Fig. 4  Details and approximation signals (d9-d8-d7-d6-a9) for Phase-C, under full load (6.3 N·m) with tenshorted turns 

These values can result in significant deviations related 
to the fault. Therefore, these coefficients at the seventh 
level (d7) were considered for the fault diagnosis process. 
To determine the fault features, several statistical 
parameters are computed for the healthy and faulty cases, 
such as (L1 norm, L2 norm, standard deviation, mean, 
median, and range). This process was repeated for 17 cases 
of defective turns. The number of shorted turns ranges 
from 1-90 turns, which covers the incipient fault (less than 
20% of the total turns per phase). Furthermore, at each 
fault severity, the values of the statistical parameters were 
recorded under six loading conditions for the three phases. 
The loading conditions are: 0 N·m, 1.57 N·m, 3.15 N·m, 
4.72 N·m, 6.3 N·m, and 7.87 N·m, which correspond to 
(no-load, 25%, 50%, 75%, 100%, and 125%) of the 
nominal load, respectively. To select the statistical 
parameters as a signature of the fault, the variance in the 
values of the statistical parameters should demonstrate a 
systematic variation concerning the augmentation of the 
ITSC fault severity [18]. Subsequently, parameter values 
were employed to feed the ANN classifier. 

4  Proposed ITSC failure detection technique 

In this section, three-phase stator currents are acquired, 
discretized, and processed using the Daubechies-8 

wavelet up to the ninth level. The statistical parameters 
L1 and L2 norms were computed for the seventh-level 
coefficients. These norms are given by 

 1 7
1
| ( ) |

m

n
L D cf n

=

=∑            (20) 

 
2

2 7
1
| ( ) |

m

n
L D cf n

=

= ∑          (21) 

where, m represents the total number of coefficients in 
the seventh level. 

In other words, three-phase motor currents were 
acquired from the IM in a healthy case. The signals 
obtained were sampled at Fs=10 kHz. These signals 
were then analyzed using DWT with Db-8, which 
reached the ninth decomposition level. Subsequently, 
the statistical parameters L1 and L2 norms were only 
calculated for the seventh decomposition level, as 
mentioned earlier. This process was iterated for six 
loading conditions in the healthy case. Hence, for each 
load condition, three values for L1 and L2 were 
recorded for the three motor phases. Then, for the fault 
severity 1 shorted turn, the same procedure was 
repeated, and the results were recorded. Finally, by 
reaching the final fault severity of 90 shorted turns, the 
number of collected samples for each L1 and L2 norm 
becomes 324. These samples were arranged for phases 
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A, B, and C to be ready to feed the classifier. 
In the healthy case, the L1 norm values were equal 

for all three phases. However, during the fault, the 
defective Phase-C had the highest values compared to 
those of the other two healthy ones. The difference in 
the L1 value between the defective and healthy phases 
increases with an increasing ITSC fault severity. This 
is the same observation as for the L2 norm. 
Consequently, L1 and L2 norms are considered highly 
efficient statistical parameters for distinguishing the 
faulty phase and recognizing fault progress. 

To determine the percentage of shorted turns during 
an incipient fault, the ANN was trained using suitable 
training data. The training process was performed 
using L1 and L2 norms, in which their values were 
extracted for the three phases under various loading 
conditions and several fault severities. Additionally, 
combining L1 and L2 norms creates a new statistic, 
acquiring the properties of each L1 and L2 norms. 
Moreover, this novel parameter feeds the classifier and 
the classifier output specifies the machine status. 

5  Artificial neural network (ANN) classifier 
for ITSC fault 

An ANN is a computational pattern inspired by the 
nervous system of living creatures [23]. ANN 
introduces an informative processing system formed 
by connecting simple processing units called neurons. 
These neurons transfer input data using a specific 
function called the activation function. The 
connections between the neurons were characterized 
by weight values. These weights are updated during 
the training session [17]. The architecture of the 
multilayer ANN is illustrated in Fig. 5. The principal 
element of an ANN is the neuron, which can be 
represented as [20] 

 
1

( )
n

k m m
m

Z j X W b
=

= +∑          (22) 

 ( ) ( ( ))k kZ j k Z jφ=           (23) 

where n represents the number of input signals, X 
indicates the neuron input, W symbolizes the neuron 
weight, b denotes the bias, Zk(j) represents the 
weighted response, and φ (·) symbolizes the activation 
function of the neuron. 

 

Fig. 5  Architecture of multi-layer ANN 

The weights are modified by calculating the error 
signal. This error is given by 

 ( ) ( ) ( )k k kE j D j Y j= −          (24) 

where Dk(j) represents the desired output, and Yk(j) 
represents the actual output. 

Adding the produced errors through the neurons of 
the ANN may be expressed as 

 2

1
( ) 0.5 ( )

P

k
m

Etot j E j
=

= ∑           (25) 

where p denotes the number of neurons in the output 
layer. 

An ANN is known for its capability to learn 
autonomously and generalize nonlinear relationships 
between output and input variables. This advantage 
enables the network to find a solution for which other 
AI techniques fail. In this study, L1 and L2 parameters 
were acquired using the DWT at the seventh 
decomposition level. These parameters were obtained 
for the healthy case under six different loading 
conditions (no-load, 25%, 50%, 75%, 100%, and 
125%) of the full load for the three motor phases. 
Subsequently, this process was repeated for 17 
different fault severities, which belong to the range of 
(1-90) shorted turns. For each fault severity, the values 
of the aforementioned parameters were recorded for 
the three motor phases under the previously mentioned 
loading conditions. These values were then arranged to 
form the input data to feed the ANN classifier. Hence, 
for healthy and faulty situations, the network inputs 
are only L1 and L2, which were obtained from the 
three-phase motor: A, B, and C under six different 
loads. 

The training process was achieved by adjusting the 
weights of a specific learning rule [21]. The ANN was 
trained on a well-behaved system. Training continues 
as long as the network continues to improve the 
validation. The reference output is compared to the 
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actual output of the system to isolate the detected 
anomalies in the system output. The classification 
process involves the prediction of the class to which 
an element belongs. Following that, the ANN was 
tested using a test dataset to validate its performance 
in the implementation of the required task. A 
three-layer feed-forward neural network was chosen to 
diagnose the incipient ITSC fault and its severity. This 
network was selected as the ITSC fault diagnosis is a 
complicated nonlinear mapping problem because the 
inputs and outputs are variables without clear linear 

relationships. Following the acquisition of the data (L1 
and L2 values), 70% of the data were trained using 
ANN for 100 epochs. Therefore, the network 
parameters were trained. Subsequently, for the 
detection phase, 30% of the dataset, which is blinded 
data, is used to evaluate the network performance. 
This research aims to validate whether the IM is 
healthy or faulty, along with the estimation of the 
percentage of defective turns in the faulty phase using 
an ANN. A flowchart of the machine fault diagnosis 
process is depicted in Fig. 6. 

 

Fig. 6  Suggested stator inter-turn short circuit failure detection algorithm of IM 

6  Results and discussion 

A squirrel-cage star-connected three-phase IM was chosen 
to investigate the stator currents for healthy and faulty 
cases. This study focuses on detecting the stator ITSC 
fault and determining its severity at an early stage in real 
time. The robustness of a failure-detection methodology 
should be measured by diagnosing the fault and 
estimating its severity under the condition of the least 
defect intensity. Throughout this research, the failure 
location is considered in Phase-C. 

6.1  Simulation results 

The ITSC fault was simulated using the 
Clarks-Concordia transformation via Matlab/Simulink. 
To simulate the incipient fault, Phase-C turns are 
gradually shorted by (1, 3, 5, 7, 10, 13, 15, 17, 20, 23, 
25, 35, 45, 55, 65, 80, or 90) turns to obtain various 
fault intensities. Raw current signals were sampled at a 
frequency of 10 kHz. DWT was employed to analyze 

the signals using DB-8 at nine decomposition levels. 
The detailed coefficients at level 7 were discriminated, 
and the statistical parameters, L1 and L2 norms, were 
calculated from the coefficients for the three phases. 
The acquisition time was 6 minutes. The motor 
worked for 6 s, and then the data were obtained and 
analyzed for this duration of time. 

For the healthy case, the L1 norm values were equal 
for the three phases during all loading conditions. The 
differences in the L1 norm values between the 
defective phase and two healthy phases increase when 
the severity of the ITSC fault is increased. These 
deviations in values are visible even for the initial fault 
cases, and the L1 norm values for Phase-C are greater 
than those for Phases A and B. Similarly, the same 
observations were made for the L2 norm. Consequently, 
owing to the aforementioned reasons, it is affirmed 
that L1 and L2 norms are suitable to be distinctive 
features for the diagnosis process. However, other 
statistics, such as (median, mean, …), are ignored, as 



  

 

151 

Abdelelah Almounajjed et al.: Stator Fault Diagnosis of Induction Motor Based on Discrete Wavelet 

Analysis and Neural Network Technique 

discussed earlier. The validity of applying L1 and L2 to 
the diagnostic process is illustrated in Fig. 7. 
Distinguishing the defective phase was clear and was 
directly observed from the L1 and L2 values. Indeed, 
the faulty phase demonstrated the highest values 
among the other two phases. However, it is not 
possible to detect the fault intensity from previous 
values. Therefore, it is necessary to utilize suitable AI 
technology to implement the classification process. 

 

Fig. 7  Variations in the norm values concerning the 
augmentation in ITSC severity under full load (6.3 N·m), for 

the three phases 

6.1.1  Case 1: Using L1 norm as an input vector for 
the classifier 

The major difficulties facing the proper use of the 
ANN include the selection of significant inputs and the 
choice of network parameters, which make its 
structure compact to ensure high accuracy. The 
granted properties presented through the L1 norm 
make this parameter highly efficient for feeding and 
training the classifier. The ANN was performed using 
Matlab software. This network has a topology with 
324 inputs. A single hidden layer consisted of five 
neurons with a sigmoid transfer function as the 
activation function. In addition, the network contained 
six neurons in the output layer with a linear transfer 
function as the activation function. For the training 
process, backpropagation was selected as the learning 
algorithm. All weights were initiated with random 

values, and the learning rate was 0.1. The 
configuration parameters used in the ANN are 
summarized in Tab. 3. 

Tab. 3  Configuration parameters utilized in  

the ANN classifier 

Parameter Value 

Number of inputs in case of L1 or L2 norm 324 
Number of inputs in case of combining L1 
or L2 norm 648 

Activation function of the hidden layer Sigmoid transfer 
function 

Activation function of the output layer Linear transfer function 

Neurons in the hidden layer 5 

Neurons in the output layer 6 

Number of epochs 100 

Learning rate 0.1 

Training algorithm Back-propagation 

(1) Training session. The training data are formed 
by a successive sequence of samples acquired from the 
motor under several fault severities and various 
loading conditions for the three phases. The training 
data are considered as 70% of the total data, divided 
into six groups. 

Group 1: Twelve samples for the healthy case under 
six different loads (no-load, 25%, 50%, 75%, 100%, 
and 125%) of the nominal load. 

Group 2: 63 samples representing the ITSC fault of (1, 
3, 5, 7 and 10) defective turns in Phase-C, corresponding 
to fault severity less than 2.5% of the total turns per phase, 
under six different loads (no-load, 25%, 50%, 75%, 
100% and 125%) of the nominal load. 

Group 3: 63 samples representing the ITSC fault of 
(13, 15, 17, 20 and 23) defective turns in Phase-C, 
corresponding to fault severity less than 5% of the 
total turns per phase, under six different loads (no-load, 
25%, 50%, 75%, 100% and 125%) of the nominal 
load. 

Group 4: 36 samples representing the ITSC fault of 
(25, 35 and 45) defective turns in Phase-C, 
corresponding to fault severity less than 10% of the 
total turns per phase, under six different loads (no-load, 
25%, 50%, 75%, 100% and 125%) of the nominal 
load. 

Group 5: 24 samples, representing the ITSC fault of 
(55 and 65) defective turns in Phase-C, corresponding 
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to fault severity less than 15% of the total turns per 
phase, under six different loads (no-load, 25%, 50%, 
75%, 100% and 125%) of the nominal load. 

Group 6: 24 samples, representing the ITSC fault of 
(80 and 90) defective turns in Phase-C, corresponding 
to fault severity less than 20% of the total turns per 
phase, under six different loads (no-load, 25%, 50%, 
75%, 100% and 125%) of the nominal load. 

(2) Testing session. In order to evaluate the network 
performance, the ANN must be tested with a data test 
set. It is critical to note that during this work, none of 
the data samples presented for validation or testing 
were utilized in the training process. The testing and 
validation data were taken as 102 samples, 
corresponding to 30% of the total data, as stated earlier. 
These samples were divided into six groups pertaining 
to the healthy condition and five different fault 
severity conditions. They were arranged as follows: 6 
samples in Group 1, 27 samples in Groups 2 and 3, 18 
samples in Group 4, and 12 samples in Groups 5 and 6. 
Fig. 8 presents the results of training, validation, 
testing, and overall accuracy of the classifier using 
L1-norm, which reached 91.76%. This percentage 
represents the classifier’s capability to specify the 
motor condition for the six cases. 

 

Fig. 8  Results of training, validation, testing, and overall 

accuracy of the classifier using L1 norm 

6.1.2  Case 2: Using L2 norm as an input vector for 
the classifier 

The same steps used in Case 1 were iterated here using 
the L2 norm values. Fig. 9 illustrates the results of training, 

validation, testing, and overall accuracy of the classifier 
using L2 norm, which reached 93.34%. 

 

Fig. 9  Results of training, validation, testing, and overall 

accuracy of the classifier using L2 norm 

6.1.3  Case 3: Using L1 and L2 norms together as an 
input vector for the classifier 

Combining L1 and L2 norms creates a novel statistic 
gathering the virtues of using both L1 and L2 norms. 
This process enabled us to obtain the benefit of 
utilizing double data, which may increase classifier 
precision. Moreover, employing additional features 
obtained from the IM provides a better representation 
of the motor work and makes the fault diagnosis 
process more generalized compared to previous cases. 
Consequently, the overall reliability of this procedure 
is higher than that of applying each norm 
independently. However, the combination process 
creates a greater challenge in arranging the input data 
to feed the classifier. 

The same procedures used in Case 1 were repeated; 
however, the dataset was different. The total data were 
[(6×6)+(6×17×6)]=648 samples. The training dataset 
consisted of 456 samples. The validation and testing 
data comprised 192 samples. Fig. 10 illustrates the 
results of training, validation, testing, and overall 
accuracy of the classifier using (L1+L2) norm, which 
reached 95.29%. This percentage represents the 
classifier’s capability to specify the motor conditions 
for the six cases. The obtained percentage confirms the 
merit of employing this new norm to feed the classifier 
with exceptional accuracy. 
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Fig. 10  Results of training, validation, testing, and overall 

accuracy of the classifier using (L1+L2) norm 

6.2  Experimental results 

In this subsection, an experimental procedure is 
described to validate the applicability and efficacy of 
the proposed methodology. The hardware tests were 
implemented using the hardware setup depicted in Fig. 
11 [30]. The figure shows a motor with suitable loading 
arrangements that were employed to analyze the 
healthy/defective condition of the IM. The stator of the 
motor contained six coils with 464 turns per phase. To 
mimic an ITSC fault, several failures were artificially 
induced in the winding. Phase-C is considered the 
faulty phase, which was taken earlier for Simulink. 
The machine winding was modified and specially 
wound by adding 17 tappings on the stator coils of 
Phase C such that the number of defective turns is (1, 
3, 5, 7, 10, 13, 15, 17, 20, 23, 25, 35, 45, 55, 65, 80 or 
90) turns. The taps are connected to the 1st, 3rd, 5th, 7th, 
10th, 13th, 15th, 17th, 20th, 23th, 25th, 35th, 45th, 55th, 65th, 
80th or 90th turns. Such a modification process enables 
an ITSC fault with various numbers of turns in the 
faulty phase, as depicted in Fig. 12. The motor 
currents for the three phases were continuously 
acquired, monitored, and recorded using a 
LANGLOIS data acquisition system, which was 
composed of three devices: MECAWATT, 
WATTELEC, and PCWATT. The MECAWATT device 
is a display unit that shows three mechanical values of 
torque, speed, and power, with measurements 
performed on a rotating induction motor using a torque 
sensor and a tach generator. Moreover, the 
WATTELEC equipment includes a digital multimeter 
with floating inputs that simultaneously display three 3 

electric values: voltage, current, and power. Hence, in 
the hardware experimental procedure, a data 
acquisition system was used to capture data from the 
motor at a rate of 10 kHz. Additionally, an RS 232 
USB converter was used to connect the PCWATT 
device to a computer. The purpose of using PCWATT 
is to record and display mechanical and electrical 
quantities from a machine on a screen. Subsequently, 
the data were analyzed using DWT with the same 
steps utilized in Simulink. In addition, 648 samples 
were acquired from the three motor phases during the 
healthy and faulty situations under six loads for both 
L1 and L2 norms. Fig. 13 illustrates the steps adopted 
for the data acquisition process in the hardware 
experimental procedure. 

 

Fig. 11  Experimental setup of the IM with stator ITSC fault 

 

Fig. 12  Rewinding process for the motor winding and testing 
the tappings, done on the stator coils of Phase-C 

 

Fig. 13  Steps adopted of the data acquisition process in the 
hardware procedure 

To impair the noise signal, the motor currents were 
filtered through a low-pass filter with a cutoff 
frequency of 10 kHz. Similar to the simulation, for 
each fault severity, six different loading conditions 
were applied on the motor to enhance the outcome 
accuracy. The L1 and L2 norms were computed from 
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the experiments and fed to the ANN classifier to 
validate the motor condition. From the experimental 
results, the L1 and L2 norm values followed the same 
trend obtained from the simulation. The norm values 
for the defective phase were greater than those for the 
other two phases. Moreover, the difference in the 
values between the faulty and healthy phases also 
increased as the fault progressed. 

During the fault, faulty currents flow unsteadily 
through the three phases. The defective phase had the 
highest current. The norm values were acquired after 
analyzing the faulty currents using the DWT. Hence, 
the random variations in the motor currents during the 
fault cause differences in the norm values of the 
healthy phases A and B. 

However, a small deviation in the L1 and L2 norm 
values is noted between the simulation and 
experiments owing to the noise signals. Fig. 14 
presents a comparison of the results obtained from the 
simulation and experiments. 

 

Fig. 14  Comparison between the obtained results from simulation 

and experiment on Phase-C, under full load (6.3 N·m)  

Following the acquisition of the norm values, 648 

samples were arranged and fed to the classifier using 
the same steps used in the simulation. The classifier 
performance pertaining to its ability to validate the 
motor status, either healthy or faulty, with a specific 
fault severity, is listed in Tab. 4. Furthermore, Tab. 4 
summarizes the results acquired in this research using 
a different number of neurons in the hidden layer. As 
listed in Tab. 4, the classifier test accuracy was 
increased by adding more neurons to the network. 

In this sense, the classification precision was 
reduced when using five neurons in the hidden layer, 
compared with ten and seven neurons. However, 
owing to the relatively limited number of utilized 
samples, it is important to make the network as simple 
as possible. A suitable solution is to minimize the 
number of neurons in the hidden layer to address the 
purpose of handling problem of overfitting. In other 
words, the limited number of elements in the training 
set, in addition to the large number of parameters to be 
adjusted, can cause an overfitting problem. It 
adversely affects the reliability of the network and its 
outcomes. More specifically, without resolving the 
overfitting problem, the results obtained are meaningless. 
For this reason, a neural network with five neurons in the 
hidden layer was selected in this work to implement the 
classification task. However, the accuracy when utilizing 
five neurons is still decent and affirms the classifier’s 
ability to perform satisfactorily in the diagnosis process. 

From Tab. 4, it is worth noting that the classifier 
efficiency is uncompromised with respect to the 
variance in the norm values between the simulation 
and the experiment. Based on the previous outcomes 
obtained from the simulation and experiments for the 
three cases, it can be concluded that the proposed 
method provides excellent results in the diagnosis and 
classification process. However, the third case that 
combines (L1 and L2) norms provides the highest test 
accuracy compared to using each L1 or L2 norm 
separately. The combination process presents a novel 
statistical parameter with improved efficiency and 
accuracy in the fault diagnosis process.  

Tab. 4  Classifier accuracy for different numbers of neurons in hidden layer 

Parameter 
10 neurons in hidden layer  7 neurons in hidden layer  5 neurons in hidden layer  

Simulink 
accuracy(%) 

Experiment 
accuracy(%) 

Simulink 
accuracy(%) 

Experiment 
accuracy(%) 

Simulink 
accuracy(%) 

Experiment 
accuracy(%) 

L1 97.88 97.47 95.7 95.82 91.76 91.2 

L2 98.52 97.78 95.9 96.21 93.34 93.15 

L1+L2 99.15 98.81 97.58 96.89 95.29 94.85 
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7  Comparison with previous papers 

Compared to previous works [4, 17-24] pertaining to 
ITSC fault diagnosis and estimation of its severity, this 
study presents several significant aspects that should 
be highlighted. 

First, this study is based on statistical parameters that 
exhibit systematic variation with respect to the increase in 
fault severity, which significantly affects the performance 
of the ANN classifier. More specifically, this systematic 
variation in the norm values simplifies the ANN 
architecture and increases its efficiency compared to 
previous works, such as Refs. [21-22]. 

In addition, in the presented work, the ITSC fault 
diagnosis and the determination of its intensity are 
performed online, which enables the capture of any 
abrupt fault during motor operation. Online condition 
monitoring refers to the employment of measurement 
software and hardware to continuously check status of 
the machine, with the end target of minimizing 
machine damage, increasing efficiency, and reducing 
downtime. However, the study presented in Ref. [4] is 
implemented offline. 

Furthermore, it is worth noting that this study 
demonstrates a high capacity to detect highly incipient 
faults. These early faults show higher difficulty in 
differentiating between healthy and faulty cases. 
However, the studies reported in Refs. [19-20] gave a 
lower accuracy in detecting such faults. 

Furthermore, it is crucial to point out that this 
methodology demonstrates a type of complexity 
pertaining to the employment of several steps. These 
steps include the acquisition of suitable data to 

determine fault severity, which is considered the most 
challenging task in this process. Hence, the complexity 
of the process primarily arises from the acquisition of 
an appropriate dataset under various situations to 
arrange the data to feed the classifier, which finally 
determines the motor status. 

Finally, this study was performed under several loading 
conditions as well as various fault severities. This 
approach makes the results more generalizable, ascertains 
the ability of the method to work in several operating 
situations, and affirms the success of the methodology. 
However, some studies, such as those in Refs. [17-18, 24] 
was performed under specific and limited conditions. Tab. 
5 summarizes the comparison between the proposed work 
and previously reported studies. 

As summarized in Tab. 5, it is clear that the wavelet 
transform is currently used as a signal-processing tool 
to handle the raw signals obtained from the motor. 
However, the DWT exhibits a greater improvement in 
this task compared to the continuous version of the 
wavelet transform (CWT). DWT can derive crucial 
features linked to the fault, which can then be 
employed as input vectors to feed various classifiers. 
In addition, an ANN is utilized to classify the motor 
condition as either healthy or faulty, as well as to 
determine the fault severity, as listed in Refs. [17, 20] 
and this study. Furthermore, a limited number of 
studies only performed the validation process using 
both Simulink and the experiment. The Simulink 
results in this study closely match the experimental 
results, which affirms the practicality of the proposed 
methodology. In addition, the matching results give 

Tab. 5  Comparison summary of several works reporting stator ITSC failure diagnosis 

Literature Method Classifier Load 
variation 

Fault 
severity 

estimation 

Validation via 
simulink (S) or 
experiment (E) 

Accuracy of 
fault severity 
estimation(%) 

Ref. [17] CWT ANN Yes No E — 

Ref. [18] DWT SVM Yes No S+E — 

Ref. [4] D-axis resistance estimation — No Yes E — 

Ref. [19] Current analysis-Time domain ANN, MAS Yes Yes E — 

Ref. [20] Current analysis-Time domain ANN-SVM 
Fuzzy logic No Yes E 85.79 

Ref. [25] (Wavelet analysis-Max index) 
+Mathematical equations — Yes Yes S+E 93.9 

Ref. [21] DWT ANN Yes No E — 

Ref. [23] Delayed-mutual information ANN Yes Yes E 93 

Ref. [24] Infrared thermography — No Yes E — 

Ref. [22] DWT ANN Yes No S — 
Presented 

work DWT ANN Yes Yes S+E 95.09 
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confidence that the method is almost free of errors 
pertaining to the simulation or experimental procedure. 
Moreover, as summarized in Tab. 5, the estimation of the 
fault severity was performed only for limited works. This 
particular article demonstrates a higher percentage of the 
estimation process compared to previously published 
studies [20, 23, 30]. 

 
8  Conclusions 

The detection and classification of the initial ITSC 
fault was performed on an induction motor. The 
proposed approach can classify the condition of the 
machine into six categories under different loading 
conditions and fault severities. 

DWT with DB-8 was employed to analyze the raw 
signals. The combination of the statistical parameters 
L1 and L2 norms of the seventh detailed coefficient is 
considered as an accurate feature matching to the fault. 
The fault classification method developed in this study 
is critically qualified for classifying incipient stator 
ITSC failure using the ANN classifier. 

Finally, the early detection and precise classification 
of the initial ITSC fault and its intensity using this 
methodology was completed successfully, with a 
higher level of accuracy reaching 95.29%. 

Besides the scope of this work, the utilized 
methodology can be generalized to diagnose other 
faults in the motor, such as a broken rotor bar fault. 
Moreover, future work can be conducted to diagnose 
the presence of ITSC in more than one phase. 
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