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Abstract: The high-frequency (HF) modeling of induction motors plays a key role in predicting the motor terminal overvoltage 

and conducted emissions in a motor drive system. In this study, a physics informed neural network-based HF modeling method, 

which has the merits of high accuracy, good versatility, and simple parameterization, is proposed. The proposed model of the 

induction motor consists of a three-phase equivalent circuit with eighteen circuit elements per phase to ensure model accuracy. The 

per phase circuit structure is symmetric concerning its phase-start and phase-end points. This symmetry enables the proposed 

model to be applicable for both star- and delta-connected induction motors without having to recalculate the circuit element values 

when changing the motor connection from star to delta and vice versa. Motor physics knowledge, namely per-phase impedances, 

are used in the artificial neural network to obtain the values of the circuit elements. The parameterization can be easily 

implemented within a few minutes using a common personal computer (PC). Case studies verify the effectiveness of the proposed 

HF modeling method.  
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1  Introduction  

Motor drive systems have been widely used in 
numerous applications to their excellent power 
conversion efficiencies. A typical motor drive system, 
composed of a drive feeding an induction motor 
through a cable, is shown in Fig. 1. Pulse-width 
modulation (PWM) pulses in the drive travel across 
the cable, causing wave propagation effects [1]. The 
mismatch between the cable characteristic impedance 
and motor input impedance generates successive 
voltage reflections, causing overvoltage ringing at the 
motor terminals [2]. The overvoltage can result in 
accelerated aging or even failure of the motor winding 
insulation [3]. Moreover, the fast switching of 
semiconductors in the drive leads to conducted 
emissions [4-5], such as the flow of the common-mode 
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(CM) and differential-mode (DM) currents between 
the drive and motor [6-7]. These conducted emissions 
may disturb nearby sensitive equipment by various 
means, such as crosstalk [8] and common-ground 
interference [9]. High-frequency (HF) modeling of the 
motor plays a vital role in predicting the motor 
terminal overvoltage and conducted emissions in a 
motor drive system [10]. Accurate predictions of these 
undesired HF phenomena provide valuable input for 
the optimal design of mitigation methods. 

 

Fig. 1  Typical motor drive system 

HF models of induction motors can be categorized 
into two main types: numerical models [11-14] and 
behavioral models [15-19]. The former are created by 
numerical methods such as finite element analysis 
(FEA), whereas the latter are developed based on the 
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motor impedance measurements and curve-fitting 
techniques. Because numerical models can be created 
in the initial design stage before the motor is 
fabricated, they are often used to early assess the 
impact of motor design decisions on undesired HF 
phenomena [14]. The prerequisite for building a 
numerical model is obtaining the motor geometry and 
material properties. However, in view of the motor 
complexity, it is difficult to obtain accurate details of 
the motor to establish a high-precision numerical 
model. Therefore, the accuracy of numerical models is 
often limited [20]. In contrast, although behavioral 
models are applicable only when accessing 
measurement data from a fabricated motor, they usually 
exhibit higher accuracies than numerical models [12]. 
Additionally, motor geometry and material properties 
are not required for behavioral modeling. Behavioral 
models [21-23] are often used to predict undesired HF 
phenomena (i.e., overvoltage and conducted emissions) so 
that mitigation measures (e.g., dv/dt filter [18] and 
electromagnetic interference filter [16]) can be optimally 
designed. In addition, they can also be used to evaluate the 
HF performance of different candidate motors in the 
construction stage of a motor drive system, realizing fast 
and appropriate motor selection. 

Behavioral models can be further divided into 
frequency-domain (FD) models [15-17], and 
circuit-based models [18-22]. FD models are 
non-circuit-based models that are typically represented 
using either directly measured motor impedance 
characteristics over the frequency range of interest or a 
frequency-dependent matrix fitted from the measured 
motor impedance characteristics. Circuit-based models 
use an equivalent circuit to fit the measured motor 
impedances. FD models are typically used for 
conducted emissions in the frequency domain. An 
inherent flaw of FD models is their unsuitability for 
time-domain applications. In contrast, circuit-based 
models allow both time- and frequency-domain 
analysis; therefore, they can be used not only to 
predict motor terminal overvoltage but also to predict 
conducted emissions in a motor drive system. 

Many circuit-based models have been proposed. 
Some of them are applicable to both star- and 
delta-connected induction motors [18-19, 21]. However, 
these models are often validated only up to 10 MHz. 

In addition, their circuit element values usually need to 
be recalculated when changing the motor connection 
from star to delta, and vice versa. Although there are 
some other models valid up to 30 MHz, they are 
often validated only for star-connected induction 
motors [20, 22]. Because high-precision models in a 
wider frequency range require more circuit elements, 
traditional parameterization based on analytical 
methods is difficult and complex [24]. Some studies 
have simplified the parametrization process using 
genetic algorithms [25] or the Monte Carlo 
algorithm [26]; however, they have only been validated 
with star-connected induction motors. 

In this study, a physics informed neural network- 
based HF modeling method is proposed. The proposed 
model of the induction motor consists of a three-phase 
equivalent circuit, which is an improved form of that 
reported in Ref. [21]. Compared with the circuit-based 
model in Ref. [21], more circuit elements were added 
to each phase to ensure model accuracy over a wider 
frequency range. Moreover, the per-phase circuit 
structure is revised to be symmetric with respect to its 
phase start and phase-end points. This symmetry 
enables the proposed model to be applicable to both 
star- and delta-connected induction motors without 
having to recalculate the circuit element values when 
changing the motor connection from star to delta and 
vice versa [24]. Motor physics knowledge, namely, 
per-phase impedances, are used in the artificial neural 
network to obtain the values of the circuit elements. 
The parametrization process can be easily 
implemented within a few minutes using a common 
personal computer (PC). 

It should be noted that a preliminary version of this 
work was recently presented at a conference [27]. It 
predicted the CM and DM impedances of a 
star-connected induction motor in the range of 100 
kHz to 10 MHz. The major improvements of this study 
over the conference paper [27] are as follows: first, 
more circuit elements have been added to each phase 
to ensure model accuracy in a wider range of 1 kHz- 
30 MHz; second, a symmetric per-phase circuit 
structure has been used to expand the model versatility, 
making it applicable for both star- and delta-connected 
induction motors without having to recalculate the 
circuit element values when changing the motor 
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connections; third, the loss function of the neural 
network has been improved to obtain better training 
results. The main contribution of this study is the 
proposal of a motor HF modeling method with the 
merits of high accuracy, good versatility, and simple 
parameterization simultaneously. 

The rest of this paper is organized as follows. 
Section 2 describes the motor HF modeling method 
based on a physics informed neural network. In 
Section 3, the effectiveness and advantages of the 
proposed HF modeling method are demonstrated using 
a 5.5 kW induction motor. Finally, Section 4 concludes 
the paper. 

2  Physics informed neural network-based 
HF modeling of induction motors 

2.1  Reference and proposed models 

As mentioned in Section 1, the proposed model is an 
improved form of the model reported in Ref. [21]. Fig. 
2 shows the per-phase equivalent circuit of the model 
in Ref. [21], which consists of ten circuit elements. Lc 
is the combined inductance of the stator leakage 
inductance in the first few turns of the slot and the 
inductance of the motor’s internal feed conductors to 
the stator winding. Cg1 and Cg2 are the equivalent 
phase-to-ground and neutral-to-ground parasitic 
capacitances, respectively. Rg1 and Rg2 are the 
equivalent copper skin and proximity-effect 
resistances. Ls is the stator-winding leakage inductance. 
Re denotes the HF eddy-current losses of the stator 
core. Elements Rt, Lt, and Ct are used to represent the 
stator winding interturn capacitance effect. For the 
three-phase equivalent circuit, it is constructed using 
three per-phase equivalent circuits in Fig. 2 based on a 
universal star-connected structure, which remains 
fixed for various motor connections. 

 

Fig. 2  Per phase equivalent circuit of the model in Ref. [21] 

Because of the limited number of circuit elements 
per phase, the model in Ref. [21] was validated up to 
only 10 MHz, which is insufficient for applications 
related to conducted emissions analysis because many 
electromagnetic compatibility (EMC) standards have 
mandatory requirements for emissions in a frequency 
range of up to 30 MHz. To expand the applicable 
frequency range of the model to 30 MHz, more circuit 
elements were added to each phase. In addition, the 
per-phase circuit structure is revised to be symmetric 
with respect to its phase-start and phase-end points. 
The per-phase symmetry property of the proposed 
model enables it to be applicable for both star and 
delta connections without having to recalculate the 
circuit element values when changing the motor 
connection from star to delta, and vice versa [24]. Fig. 3 
shows the per-phase equivalent circuit of the proposed 
model, whose additional circuit elements, in contrast 
with Fig. 2, are labeled with a prime symbol. 

 

Fig. 3  Per phase equivalent circuit of the proposed model 

2.2  Parameterization process 

To obtain the values of the circuit elements in Fig. 3, 
the motor per phase impedances, namely, the 
phase-start to phase-end impedance ( 1 2P PZ ), phase-start 
to ground impedance ( 1PGZ ), and phase-end to ground 
impedance ( 2P GZ ), are used in an artificial neural 
network.  

As illustrated in Fig. 4, the neural network consists 
of six layers: one input layer, four hidden layers, and 
one output layer. The input is a random constant (C). 
The output are the predicted values of the eighteen 
circuit elements per phase. The number of neurons in 
the four hidden layers are set as 50, 200, 200, and 50, 
respectively. The loss function (gL) per phase is 
defined as follows 
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Fig. 4  Physics informed neural network to obtain circuit elements per phase 
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where 1 2P PZ , 1PGZ , and 2P GZ  can be measured using 
a high-precision impedance analyzer in the frequency 
range of interest (i.e., 1 kHz-30 MHz). 

1 2

~

P PZ , 
1

~

PGZ , 
and 

2

~

P GZ  denote estimated values with the neural 
network. n is the number of frequency points in the 
frequency range of interest. 

As seen in Eqs. (1)-(9), the loss function (gL) for per 
phase training includes a magnitude loss ( )Lg Z  and 
a phase loss ( )Lg Z∠ . The magnitude loss 
components ( )1 2L P Pg Z , ( )1L PGg Z , and ( )2L P Gg Z  
are directly derived from their respective relative error 
between the estimated and measured values. The 
pointwise mean of log-cosh function is applied to 
equally consider the magnitude errors of all frequency 
points. On the other hand, the phase loss components 

( )1 2L P Pg Z∠ , ( )1L PGg Z∠ , and ( )2L P Gg Z∠  
incorporate the same shift ∆ (∆ > 90°) on the estimated 
and measured values before loss calculation. The 
phase shift is to avoid division by zero for a stable and 
smooth training process. By minimizing gL, the values 
of the circuit elements per phase can be determined. 
Finally, the three-phase equivalent circuit can be 
constructed based on the corresponding motor 
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connection (star or delta).  
Fig. 5 shows a flowchart of the parameterization 

process. It illustrates how the estimated impedances 
with the circuit elements generated by the neural 
network are compared with the corresponding 
measured impedances. The magnitude and phase 
errors between the estimated and measured 
impedances are calculated with Eqs. (4)-(9) to update 
the value of the loss function (gL). If the termination 
criteria are reached (i.e., stop condition), the set of 
values of the circuit elements are accepted to produce 
the optimized model; otherwise, the aforementioned 
steps are repeated. 

 

Fig. 5  Flowchart of parameterization process 

For proof of concept, a 5.5 kW induction motor 
(TEOC AEEBKB067R50FM) is selected as the case 
study. Since the rotor speed and stator current have no 
significant influence on the motor impedance 
characteristics in mid-to-high frequency range [10], 

1 2P PZ , 1PGZ , and 2P GZ  for all three phases are 
measured offline using a Keysight E4990A impedance 
analyzer in the range of 1 kHz-30 MHz. The number 
of frequency points n is set to 1186. The frequency 
points are logarithmically distributed from 1 kHz to 30 
MHz. An 8 core 2.40-GHz PC is used as the 
parameterization platform. The stop condition of 
parameterization is set that the mean absolute relative 
error of

1 2P PZ , 
1PGZ , and 

2P GZ  are reduced to 1.5 
dB, and the mean absolute error of 1 2P PZ∠ , 1PGZ∠ , 
and 2P GZ∠  are reduced to 9.0°. The parameterization 
time for all three phases is around 5 minutes. 

Fig. 6 shows the measured 1 2P PZ , 1PGZ , and 2P GZ  
and the estimated 

1 2

~

P PZ , 
1

~

PGZ , and 
2

~

P GZ  for phase A 

of the 5.5 kW induction motor in the range of 1 
kHz-30 MHz. Similarly, Figs. 7 and 8 show the 
measured and estimated results for phases B and C in 
the same frequency range, respectively. As observed, 
the estimated 

1 2

~

P PZ , 
1

~

PGZ , and 
2

~

P GZ  have 
demonstrated good agreement with the measured 

1 2P PZ , 1PGZ , and 2P GZ  in both their magnitudes and 
phases for all three phases of the induction motor over 
the range of 1 kHz-30 MHz. Tab. 1 lists the estimated 
values of the circuit elements for all three phases of 
the 5.5 kW induction motor. Thus, the motor 
three-phase equivalent circuit can be constructed based 
on these circuit elements and the corresponding motor 
connection (star or delta). 

 

Fig. 6  Measured 1 2PPZ , 1PGZ , and 2P GZ  and estimated  
1 2

~

P PZ , 

1

~

PGZ , and 
2

~

P GZ for phase A of the 5.5 kW induction motor 

 

Fig. 7  Measured 1 2PPZ , 1PGZ , and 2P GZ and estimated
1 2

~

P PZ , 

1

~

PGZ , and 
2

~

P GZ  for phase B of the 5.5 kW induction motor 
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Fig. 8  Measured 1 2P PZ , 1PGZ , and 2P GZ  and estimated 
1 2

~

P PZ , 

1

~

PGZ , and 
2

~

P GZ for phase C of the 5.5 kW induction motor 

Tab. 1  Estimated values of circuit elements for all three 

phases of the 5.5 kW induction motor 

Element A B C Element A B C 

Lc/µH 0.28 0.25 0.30 cL′ /µH 0.31 0.33 0.20

Cg1/pF 426 568 691 Cg2/pF 631 631 601

Rg1/Ω 6.52 6.77 7.84 Rg2/Ω 5.38 5.98 12.5

Re/kΩ 1.82 1.86 8.71 eR′ /kΩ 1.80 1.98 14.2

Ls/mH 20.5 18.1 15.3 sL′ /mH 16.0 15.5 12.4

Rt/kΩ 43.2 42.6 2.93 tR′ /kΩ 37.8 42.8 2.30

Lt/mH 10.3 41.6 0.94 tL′ /mH 11.1 40.7 0.34

Ct/pF 2.75 2.55 3.98 tC′ /pF 2.76 2.54 3.29

gR′ /Ω 50.8 58.4 201 gC′ /nF 4.92 4.84 3.83

3  Experimental validation 

For the experimental validation, the same 5.5 kW 
induction motor is selected as the case study. To verify 
the accuracy of the constructed circuit model for 
predicting the motor CM and DM impedances under 
both star and delta connections (ZCM-Y, ZDM-Y, ZCM-Δ, 
ZDM-Δ), the actual measurement results are used as 
references for comparison. Fig. 9 shows the 
configuration for measuring ZCM-Y, ZDM-Y, ZCM-Δ and 
ZDM-Δ using a Keysight E4990A impedance analyzer. 

Based on the obtained values of the circuit elements 
for all three phases listed in Tab. 1, Fig. 10 shows the 
simulated ZCM-Y and ZDM-Y in the range of 1 kHz-30 
MHz. Similarly, Fig. 11 shows the simulated ZCM-Δ and ZDM-Δ values in the same frequency range. The 
measured results are shown in the same figures for 
comparison. As observed, both the magnitude and 

phase of the simulated ZCM-Y, ZDM-Y, ZCM-Δ and ZDM-Δ 
are in good agreement with the measured results over 
the range of 1 kHz-30 MHz. To quantify this 
agreement, using the measured results as references, 
Tab. 2 lists the mean absolute relative error (MARE) 
of |ZCM-Y|, |ZDM-Y|, |ZCM-Δ| and |ZDM-Δ|, as well as the mean 
absolute error (MAE) of ∠ZCM-Y, ∠ZDM-Y, ∠ZCM-Δ 
and ∠ZDM-Δ. 

 

Fig. 9  Configuration for measuring motor impedances 

 

Fig. 10  Measured and simulated ZCM-Y and ZDM-Y of  

the 5.5 kW induction motor 

 

Fig. 11  Measured and simulated ZCM-Δ and ZDM-Δ of the 

5.5 kW induction motor 

As presented in Tab. 2, the maximum MARE and 
MAE are 2.8 dB and 13.9°, respectively. With Figs. 
10 and 11, as well as Tab. 2, the high accuracy of the 
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proposed HF modeling method for predicting the 
motor CM and DM impedances over the range of 
1 kHz-30 MHz is validated. In addition, its good 
versatility that is applicable to both star- and 
delta-connected induction motors without having to 
recalculate the circuit element values when changing 
the motor connections is also demonstrated. 

Tab. 2  Errors of the simulation results 

Magnitude MARE/dB Phase MAE/(°) 

|ZCM-Y| 2.4 ∠ZCM-Y 12.5 

|ZDM-Y| 2.3 ∠ZDM-Y 13.9 

|ZCM-Δ| 2.8 ∠ZCM-Δ 11.4 

|ZDM-Δ| 1.8 ∠ZDM-Δ 13.5 

4  Conclusions 

This study proposed a physics informed neural 
network-based HF modeling method for induction 
motors with the advantages of high accuracy, good 
versatility, and simple parameterization. The proposed 
model consists of eighteen circuit elements per phase 
with a symmetric structure, which is applicable to both 
star- and delta-connected induction motors. In addition, 
it does not need to recalculate the circuit element 
values when changing the motor connections. Three 
per-phase impedances (phase-start to phase-end, 
phase-start to ground, and phase-end to ground) are 
used in the artificial neural network to obtain the 
values of the circuit elements in each phase. The 
parameterization could be easily implemented within a 
few minutes using a common PC. Using a 5.5 kW 
induction motor as the case study, the experimental 
results have demonstrated the effectiveness of the 
proposed HF modeling method, as well as its good 
accuracy for predicting motor CM and DM 
impedances under both star and delta connections in 
the range of 1 kHz-30 MHz, which promises an 
accurate prediction of the overvoltage and conducted 
emissions. The proposed modeling method is not only 
applicable to induction motors but also to other types 
of motors, such as permanent magnet synchronous 
motors and brushless DC motors.  
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