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1. Introduction

In three-dimensional electromagnetic solvers, extreme 
values for electrical parameters typically lead to 

instability, inaccuracy, and/or inefficiency issues. Despite 
using the term “extreme,” such relatively large or 
small values of conductivity, permittivity, permeability, 
wavenumber, intrinsic impedance, and other electrical 
parameters are commonly observed in natural cases. 
Computational electromagnetic solvers adapt themselves 
to handle challenging cases by replacing exact models 
with approximate models, while minimizing the modeling 
error due to these transformations. For example, most 
metals with high conductivity values are assumed to be 
perfectly conducting, especially if the considered structure 
is comparable to the wavelength. This is very common for 
practical devices, such as antennas, metamaterials, filters, 
etc., at radio and microwave frequencies. In some cases – e.g., 
when the overall structure is small in terms of a wavelength 
– even a full-wave solver may not be required to analyze 
the underlying phenomena. Examples are circuit theory 
based on lumped elements and transmission-line modeling. 
On the other side, penetrable models are commonly used 
to represent dielectric and magnetic materials, when 
their electrical parameters (specifically, permittivity and 
permeability) have numerically “reasonable” values that 
facilitate their full-wave solutions without a fundamental 

issue. As the electrical parameters become extreme and 
other conditions (sizes, excitations, geometric properties) 
are satisfied, numerical approximations may again become 
useful, leading to the well-known implementations such 
as those based on impedance boundary conditions and 
physical optics. 

New structures and devices in the state-of-the-art 
technology often require very accurate simulations with 
extreme values for electromagnetic parameters. One well-
known regime involves the plasmonic behaviors of some 
metals at optical frequencies [1]. In the frequency domain, 
traditional solvers can be extended to accurately handle 
such exotic cases by employing complex permittivity values 
with negative real parts [2-13]. As the frequency drops, 
the real part of the permittivity is increasingly negative 
(becoming extreme), while it becomes unnecessary to 
enforce the plasmonic modeling (and hence to use extreme 
permittivity values) due to quickly decaying waves inside 
objects. Nevertheless, there is no obvious boundary 
between plasmonic modeling and perfectly conducting 
(limit) modeling and, more importantly, a suitable model 
at a given frequency may actually depend on the structure 
and the considered application [14]. Similar issues occur 
when dealing with detailed metallic structures, such 
as circuits when the skin effect cannot be ignored and 
metallic losses must be included (even if they are large) in 



44 The Radio Science Bulletin No 365 (June 2018)

their electromagnetic analysis [15]. In all these cases, we 
obviously need very reliable numerical solvers based on 
generalized formulations and algorithms that automatically 
converge into suitable forms for given conditions without 
externally enforcing risky approximations described above. 

However, what happens when extreme electrical 
parameters must be fully included in an electromagnetic 
analysis? In the context of the surface integral equations 
in the frequency domain, the wavenumber that contains 
medium parameters is used in the Green’s function, i.e., the 
kernel of the equations. The value of the wavenumber hence 
determines how fast the Green’s function decays and how 
much it is oscillatory. These properties should be considered 
together with the interaction distances that depend on the 
metric size of the structure under investigation. However, 
even when the wavenumber is well balanced with metric 
distances such that numerical issues do not arise from the 
Green’s function itself, absolute values of permittivity, 
permeability, and/or their ratio as the intrinsic impedance, 
may strongly affect the stability of solutions. This is 
because integral-equation (and similar) formulations are 
mostly designed (for example, numerically balanced) for 
reasonable values of these quantities [16]. 

In this issue of Solution Box, a set of frequency-
domain scattering problems involving spherical particles 
is presented. Neither the geometry nor the size in terms 
of wavelength is the challenge in these problems. Instead, 
some hypothetically extreme values for the permittivity 
are considered, such that numerical issues may arise 
in the conventional solvers. Sample solutions using a 
specialized integral-equation formulation are also presented 
as references for candidate solutions by using other 
implementations developed by the readers. As usual, we 
are looking for alternative solutions, which are probably 
more accurate, stable, and/or efficient than presented here. 
Please also consider sending your solutions for the earlier 
problems (SOLBOX-01 to SOLBOX-11) to present your 
work in this column. 

2. Problems

2.1 Problem SOLBOX-12 (by Hande İbili, 
Barışcan Karaosmanoğlu, and Özgür 

Ergül) 

The SOLBOX-12 problem includes scattering problems 
involving spherical particles of diameter 1.0 µm at 10 THz 
and 1 THz, i.e., when the diameter was 30λ  and 300λ
where λ  was the wavelength in vacuum. Each sphere 
was located at the origin (in vacuum) and illuminated 
by a plane wave (1 V/m) propagating in the z direction. 
For numerical solutions with surface integral equations, 
discretization was applied by using 50 nm triangles for 
10 THz and 30 nm triangles for 1 THz, leading to totals 
of 2720 and 7722 triangles, respectively. For the relative 

complex permittivity of the sphere in the frequency domain, 
the following hypothetical values were considered:

Positive real part: (20000+2i), (20000+200i), 
(20000+20000i), (2+20000i), (200+20000i)

Negative real part: (–20000+2i), (–20000+200i), 
(–20000+20000i), (–2+20000i), (–200+20000i)

As a remarkable example, the relative complex 
permittivity values for pure silver at 10 THz and 1 THz are 
approximately (–17000+20000i) and (–30000 340000i)+
, respectively, so that the values above were not simply 
academic trials. As the results of simulations, scattering 
characteristics (e.g., equivalent currents, near-zone fields, 
and/or far-zone fields) were required to be found. 

3. Solution to Problem 
SOLBOX-12

3.1 Solution Summary

Solver type (e.g., noncommercial, commercial): 
Noncommercial research-based code developed at 
CEMMETU, Ankara, Turkey 

Solution core algorithm or method: Frequency-domain 
Method of Moments

Programming language or environment (if applicable): 
MATLAB + MEX 

Computer properties and used resources: 2.5 GHz Intel 
Xeon E5-2680v3 processors (using single core)

Total time required to produce the results shown Total time 
required to produce the results shown (categories: 1< sec, 

10< sec, 1< min, 10< min, 1< hour, 10< hours, 1< day, 
10< days, 10> days): 1< hour for each problem

3.2 Short Description of the 
Numerical Solutions

The scattering problems listed under SOLBOX-12 
were solved by using an iterative Method of Moments. 
The problems were formulated with a modified combined 
tangential formulation (MCTF) [17] that was known to 
be stable for large (and particularly negative) permittivity 
values. The MCTF was discretized by using the Rao-Wilton-
Glisson (RWG) functions. Electromagnetic interactions 
(matrix elements) were computed via Gaussian quadrature 
formulas combined with standard singularity-extraction 
methods. All solutions were performed by using the 
Generalized Minimal Residual (GMRES) method, while 
the target residual error was selected as 0.0001. 
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3.3 Results

Figure 1 presents the results for the scattering problems 
involving the spheres with positive real permittivity 
values. As an additional solution, we also considered the 
case of a perfectly electrically conducting (PEC) sphere. 
The electric field intensity (first row), the magnetic field 
intensity (second row), and the power density (third row) 

were plotted in the vicinities of the spheres on the cross-
sectional (x-y) plane. The dynamic ranges were [ 40,20]−
dBV/m, [ 80, 40]− = dBA/m, and [ 100, 20]− − dBW/sm, 
respectively (also for the other results). Despite that the 
outer intensity and density values were similar to each 
other for different cases (permittivity values), the internal 
quantities were quite different from each other. We also 
had the following observations:

Figure 1. The solutions of the scattering problems (SOLBOX-12) involving spheres with positive 
values for the real part of the relative permittivity (values are shown on the top) at 10 THz. The 
electric-field intensity (first row), the magnetic-field intensity (second row), and the power density 
(third row) were plotted in the vicinity of the spheres. 

Figure 2. The solutions of the scattering problems (SOLBOX-12) involving spheres with nega-
tive values for the real part of the relative permittivity (values shown on the top) at 10 THz. The 
electric-field intensity (first row), the magnetic-field intensity (second row), and the power density 
(third row) were plotted in the vicinity of the spheres. 
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For all cases, the electric-field intensity was relatively 
small inside the spheres. This was as opposed to the 
behaviors of the magnetic-field intensity and the power 
density, which were particularly large in the first two cases 
(20000+2i and 20000+200i). Here, “large” and “small” are 
defined by considering outer fields. 

In the first two cases, oscillatory behaviors were 
also observed in the intensity and density distributions, 
which seemed to be related to the relatively large values 
for the real part of the wavenumber. On the other side, for 
the last three cases, decaying characteristics were mainly 
observed due to the large values for the imaginary part of the 
wavenumber. Nevertheless, even for the relative permittivity 
of (200+20000i), a remarkable level of magnetic-field 
intensity was observed inside the sphere, showing that the 
PEC model was actually inaccurate, at least considering 
the near-zone characteristics. 

Figure 2 next presents the results when the real part 
of the permittivity was negative at 10 THz. We noted that 
negative real permittivity led to an increased imaginary part 
of the wavenumber, leading to a fast decay of fields, even 
more than did metallic losses. The magnetic-field intensity 
was more confined in the vicinity of the surfaces in first three 
cases, i.e., when the real part was –20000. Interestingly, 
despite the magnetic-field intensity significantly depending 
on the permittivity, the electric-field intensity was almost 
the same (and very small) for all cases, including the PEC 
case. In fact, the decay rate was the same for the electric-
field intensity and the magnetic-field intensity. However, 
very small intrinsic impedance values further suppressed 
the electric-field intensity, making it vanishingly zero in 

all cases. This also led to vanishingly small power-density 
values, making the penetrable particles behave like PEC. 

Figure 3 depicts the cases when the real permittivity 
took negative values while the frequency was 1 THz. 
Decreasing the frequency, the spheres became electrically 
smaller. Consequently, in the last two cases, there was not 
any visible decay in the magnetic-field intensity due to the 
very small electrical size of the spheres in comparison to the 
skin depth. Specifically, the particles became magnetically 
invisible. Some variation was still seen in the first three cases, 
since the magnetic-field intensity decayed very quickly 
with the distance for the given permittivity values in these 
cases. In all results, the electric-field intensity (and hence 
the power density) was again vanishingly zero inside the 
spheres due to the very small intrinsic impedance values. 
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