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1. Introduction

Nanowires are popular components of nano-optical
systems because they can be useful in many related
applications [1], such as optical transmission [2-4], sub-
wavelength imaging [5, 6], and energy harvesting [7].
These structures are usually made of silver (Ag) or gold
(Au), which are active at optical frequencies with strong
plasmonic responses and which provide the favorable
characteristics of nanowires. For example, by using a
transmission line involving an arrangement of nanowires,
electromagnetic energy can be carried to distances long
with respect to wavelength. As the technology in this area
develops, nanowires with improved geometric properties [8]
—suchasregularity, cross-sectional preciseness, and surface
smoothness — become available, further expanding their
usage. Naturally, electromagnetic simulations of nanowires
[9-11], especially using their three-dimensional full-wave
models, are essential to studying and understanding
these important structures, as well as to designing them.
In this issue of Solution Box, an optimization problem
involving a nanowire transmission line to be improved by
acouplerispresented (SOLBOX-08). Specifically, a pair of
nanowires with a sharp 90° bend, which leads to significant
deteriorations in the power transmission capability due to
reflections and diffractions, is considered. The purpose was
to design an efficient coupler in a limited space around
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the corner, in order to improve the transmission as much
as possible. In the sample solution that is also considered
in this issue, cubic nanoparticles were used to reduce the
reflections and to improve the power transmission. Starting
froma full grid, the existence and absence of each nanocube
was decided based on an optimization via genetic algorithms
(GAs). The trials during the optimization were efficiently
performed by using the Multilevel Fast Multipole Algorithm
(MLFMA) [12, 13]. This has been designed for accurate
analysis of plasmonic objects [14-16] without resorting
to approximate and asymptotic techniques. Different
numerical solutions, analysis methods, and optimization
tools to design more efficient couplers, probably leading
to better transmission capabilities, are welcome. We are
also looking for alternative solutions to previous problems
(SOLBOX-01 to SOLBOX-07), which can be found in
earlier editions of this column. Please consider submitting
your contributions to Ozgur Ergul (ozergul@metu.edu.tr).

2. Problems

2.1 Problem SOLBOX-08
(by A. Altinoklu and O. Ergiil)

Figure 1 depicts the considered optical transmission
line involving two Ag nanowires, as well as a general view
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Figure 1. The optimization problem involving a
pair of nanowires that are used to transmit elec-
tromagnetic energy. The nanowires were excited
by a pair of Hertzian dipoles. There was a sharp
90° bend that reduced the transmission. A coupler
needed to be designed and located at the corner
such that the transmitted power was maximized
as much as possible on the optimization frame.

ofthe optimization setup. The total length of the transmission
line was 10 um, while there was a sharp 90° bend at the
middle (we note that the outer nanowire was slightly longer
than the inner nanowire). Each nanowire had a 0.1 pm X
0.1 umsquare cross section, while the distance between them
was also set to 0.1 pm. The excitation was a pair of Hertzian
dipoles (each with unit dipole moment), located at 0.2 pm
distance from the nanowires. If the coordinate system in
Figure 1 was considered (the transmission line was located
on the x-y plane, while the first half was aligned in the y
direction), the dipoles were oriented in the +x directions
to create a pattern with two peaks. The distance between
the dipoles was also 0.2 um. The frequency was selected
as 250 THz, at which the relative complex permittivity
(in the frequency domain) of Ag was approximately
—60.7546+14.3097 . The aim was to design an efficient
coupler at the corner location (without any change in the
nanowires and their positions), in order to improve the
power transmission. The transmission was measured on a
symmetrically located 1.3 um x 1.3 pm frame, which had
a distance of 0.1 pm from the output of the nanowires.
Either the maximum power or the mean power on this
frame could be maximized. The whole system, including
nanowires and the coupler to be designed, were assumed
to be in free space. In the reference solution given below,
the coupler was restricted to occupying an area of 1.3 pm
% 1.3 um (on the x-y plane), while it did not increase the
thickness of the system (0.1 pm in the z direction). A better
couplermay be defined as one that improves the transmission
while using the same size (1.3 um x 1.3 pm X% 0.1 pm) or
one that provides similar transmission properties while
being more compact.
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3. Solution to Problem
SOLBOX-08

3.1 Solution Summary

Solver type (e.g., noncommercial, commercial): Noncom-
mercial research-based code developed at CEMMETU,
Ankara, Turkey.

Solution core algorithm or method: Frequency-domain
Multilevel Fast Multipole Algorithm (MLFMA).

Programming language or environment (if applicable):
MATLAB + MEX

Computer properties and resources used:
2.5 GHz Intel Xeon E5-2680v3 processors (using 20 cores).

Total time required to produce the results shown (categories:
<1sec, <10 sec, <1 min, <10 min, <1 hour, <10 hours,
<lday, <10 days, > 10 days):

<10 hours (per problem):

3.2 Short Description of the
Numerical Solutions

The optimization problem SOLBOX-08 was solved
by using in-house implementations of genetic algorithms
(GAs) and the MLFMA in the frequency domain. The
plasmonic problems using the given relative permittivity
value —60.7546+14.3097 were formulated with the
electric-magnetic-current combined-field integral equation
(JMCFIE) [17, 18], and discretized with the Rao-Wilton-
Glisson functions [19]. The number of unknowns was
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Figure 2. A solution to the optimization problem de-
fined in SOLBOX-08. An in-house implementation
of GAs was used to optimize the maximum power
density on the optimization frame.
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Figure 3. A solution of SOLBOX-08. A coupler that consisted of Ag nanocubes was
designed to improve the power transmission through the sharp bend.

approximately 13,000 (for the full structure, i.e., the
nanowires and the coupler). The coupler was designed by
using 90 nm % 90 nm x 90 nm Ag nanocubes ina 1.3 pm
x 1.3 um region around the corner. Specifically, a grid of
13 x 13 elements (with a distance of 10 nm between each
consecutive particle) was considered, leading to a total of
139 nanocubes in the full grid (omitting those overlapping
with the nanowires). By representing each nanocube with
a binary digit, each GA individual had a chromosome
of 139 bits. For the optimization detailed below, the GA
implementation was employed on a pool of 40 individuals
for 200 generations. The optimization was hence completed
by performing 8000 MLFMA simulations, omitting the
identical individuals/trials that could be skipped based
on a lookup table. In order to improve the convergence
of the optimization, several new GA operations, such as
success-based mutations and family elitism [20], were
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applied. In addition, the MLFMA was integrated into the
GA implementation via dynamic accuracy control [21] in
order to reduce the computational load. Finally, the iterative
solutions via the MLFMA were performed by using an
inner-outer scheme, where an approximate MLFMA was
effectively used as a preconditioner [22].

3.3 Results

Figure 2 presents the optimization history for the
setup described above. The fitness function was selected
as the maximum power density on the optimization frame
(1.3 pm x 1.3pum). It could be observed that the fitness
value was dramatically increased, from 7.11 W/ms (first
generation) to 17.22 W/ms (last generation). The curve with
respect to the number of generations also demonstrated
good convergence characteristics with a smooth saturation.
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Figure 4. The electric-field intensity, magnetic-field intensity, and power density for the transmis-
sion line involving nanowires (SOLBOX-08). Improved transmission due to the designed coupler
(see Figure 3) was visible as reduced diffraction at the corner and as increased intensity/density

values at the output.
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Figure 5. The electric-field intensity, magnetic-field intensity, and power density for the transmis-
sion line involving nanowires (SOLBOX-08). The zoomed plots show the intensity and density
values in the coupler region (see Figure 3). The results without (top row) and with (bottom row)

the coupler are compared.

Nevertheless, heuristic optimizations do not guarantee a
global convergence, and the result (the coupler design)
presented in this solution may not be the ultimate structure.

Figure 3 depicts the designed coupler, where the
nanocubes are shown in addition to the nanowires. As
illustrated in the zoomed plot, 70 out of 139 nanocubes
were kept, to obtain approximately 17.22 W/ms mean
power density. In comparison to the no-coupler case
(with 6.70 W/ms maximum power density on the same
frame), this corresponded to a 2.57-times enhancement.
The enhancement in the mean power density was more
significant (nearly ninetimes), i.e., from 0.50 W/ms (before
optimization) to 4.48 W/ms (after optimization).

Figure 4 presents the electric-field intensity (V/m),
magnetic-field intensity (A/m), and power density (W/

Electric Field Intensity

Magnetic Field Intensity

ms), all with 30 dB dynamic range in the transverse plane.
The improvement by the coupler was clearly visible in
these plots. For example, investigating the power-density
distribution, we observed that the diffracted waves in the
corner region were reduced when the coupler was used. In
addition, following the corner region, the power density
along the nanowire surfaces in the second (horizontal) part
of the transmission line seemed to be stronger when the
coupler was used. Finally, the increased power density at
the output of the nanowire system using the coupler was
clearly seen. Similar observations could be made for the
electric-field intensity and the magnetic-field intensity.
Figure 5 presents zoomed plots where the intensity and
density valuesare plotted further around the corner. We also
observed thereduced diffractionand improved transmission
in these plots. Finally, in Figure 6, we considered the
intensity and density distributions on the output frames.
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Figure 6. The electric-field intensity, magnetic-field intensity, and power density for the transmission
line involving nanowires (SOLBOX-08). The intensity and density distributions were investigated
on the output frame with and without the designed coupler (see Figure 3).
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The positive effect of the coupler was clearly visible as
significantly increased values at the output.
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