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Abstract

In this paper we present a method for rebuilding 
rainfall maps at high resolution (500 m × 500 m, 1 min). 
This method is based on the assimilation of opportunistic 
measurements of the attenuation that aff ects the signals 
coming from TV satellites in a model of spatiotemporal 
advection of rainfall fi elds. At the frequencies used (Ku 
band), the attenuation aff ecting the signals in the atmosphere 
is mainly due to rain. We set a sensor (fi eld analyzer) on the 
ground, and then measured the mean rainfall over the link. 
This method was applied to a simulated network of sensors. 
These simulated sensors were realistically set over the Paris 
area, on a zone assumed to be typical of an area with high 
socio-economic issues (fl ood prevention, water resources 
management). We compared the simulated rainfall maps 
with the maps rebuilt by our algorithm. We then showed 
the feasibility of our approach for measuring the rainfall 
in urban areas with high resolution.

1. Introduction

This paper presents a new method for retrieving rain 
maps (namely, two-dimensional fi elds of rainfall rates 

on the ground, in mm/h, at successive time steps) at fi ne 
spatiotemporal resolution (typically 500 m × 500 m and 
1 min). This method uses the measurement of the attenuation 
due to rain aff ecting electromagnetic waves emitted in the 
Ku band by geosynchronous TV satellites.

Traditionally, these rain maps are produced from 
rain-gauge records or weather-radar data, or from a 
combination of both types of measurements. However, both 
of these instruments have weaknesses. Rain gauges only 
provide point measurements. The very high spatiotemporal 

variability of rain implies having a very dense rain-gauge 
network to correctly estimate fi ne-scale rain maps (as 
well as the total amount of rain over an area, for instance, 
for hydrological purposes). The deployment of such a 
dense network implies signifi cant maintenance costs, so 
that there are now fewer and fewer rain gauges available 
[1]. Furthermore, radars are blocked by mountains (inter 
alia), and are very expensive to buy, to sustain, and to 
use. Mountainous areas as well as developing countries 
are consequently generally not covered by operational 
networks. The use of radars in hydrology also raises 
questions [2].

The use of the attenuation aff ecting microwave 
electromagnetic signals as a new way for measuring 
rain has received increasing attention in the scientifi c 
community for about 20 years. Most of the studies on this 
topic focused on the attenuation of telecommunications 
microwave signals [1, 3-6]. However, some of them 
already measured the attenuation of waves coming from 
geosynchronous TV satellites on the ground [7, 8]. By 
nature, all these measurements provide information about 
rainfall that is indirect and integrated in space. Firstly, it 
is indirect because we measure attenuations, and so we 
need a way (actually, a power law, see [7] and Section 2 
of this paper) to convert these attenuations into rain rates. 
Secondly, they are integrated because we measure the 
mean attenuation over an emitter/receiver pathway. These 
pathways are typically a few kilometers long, whether this 
is for the telecommunication links or the satellite/Earth 
links (the attenuation only occurs in rain, so the pathway 
is restricted to the segment from the base of the clouds 
or from the freezing level to the ground; see Section 2). 
Consequently, for retrieving rain maps at fi ne spatiotemporal 
resolution (around 1 km or below), we need to couple the 
raw measurements with a retrieval algorithm.
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The fi rst studies on this topic generally restricted 
the links to their center points, and have used kriging or 
tomography algorithms to retrieve rain maps [9]. In these 
algorithms, the measurements at successive time steps are 
regarded as independent (they do not use a propagation 
model to explicitly link the successive data). Several studies 
using very dense measuring networks (and/or data at low 
time sampling) also proceeded in this way (for instance, 
[1] produced rainfall maps over the entire Netherlands 
using telecommunications data and a kriging algorithm).

Reference [5] fi rst used the mathematical framework 
of data assimilation to post-process telecommunications 
measurements. Data assimilation roughly consists in using 
a propagation model (typically, a model that moves the 
rain fi elds according to the wind) to link the measurements 
recorded at successive time steps. The unknown of such a 
model is the rain map at a given initial time, 0t . We then 
look for the rain map at 0t  that once propagated by the 
model best explains the measurements (the attenuations) 
recorded over a time period. This approach allows working 
with less-dense networks. The good temporal sampling 
of the data is used (via the model) to increase the spatial 
resolution.

The study presented in this paper used attenuations 
measured from TV satellites emitting in the Ku band 
(around 12 GHz). It combined these data together with a 
four-dimensional-variational assimilation algorithm. This 
approach was applied to real rain case studies recorded 
in the department of Ardèche, in the southeast of France, 
during the HyMeX campaign (Hydrological Cycle in the 
Mediterranean Experiment, [10]). These results were 
published [11]. We then extended the approach – for now, 
only on simulated data – to a more-dense and realistic 
network of attenuation sensors simulating an urban area.

Section 2 of this paper gives more information 
about the measuring system and the retrieval algorithm. 
In Section 3 we then present the results obtained with this 
simulated network.

2. Methodology

2.1 Measuring Device

The Ku frequency band (around 12 GHz) is mainly 
attenuated in the atmosphere by liquid raindrops [7]. This 
attenuation consequently mainly occurs in rain (under the 
clouds or under the freezing level).

The idea is to set sensors on the ground in order to 
measure the attenuation of microwave signals coming 
from geosynchronous TV satellites. Figure 1 schematically 
represents this situation for one sensor. We can see that 
the recorded attenuation is integrated over Earth/satellite 
segments a few kilometers long. A precise description of 
the sensor and of the fi rst post-processing treatment applied 
to the very raw data (temporal averaging to get a 10 s 
sampling, with the algorithm able to distinguish the part 
of the attenuation due to rain from the (small) part due to 
clouds and other eff ects) was provided in [7]. We can just 
notice that these sensors can theoretically be connected to 
dedicated antennas or to personal antennas, already installed. 
We then consider in this study that our “raw” data are the 
attenuations (in decibels, dB) along these Earth/satellite 
links with a 10 s sampling. 

These attenuations are linked to the mean rainfall rate 
over the link (R, in mm/h) by the power law [7]

 bK aR , 

with a and b being two coeffi  cients that notably 
depend on frequency, polarization, and on the drop-size 
distribution (typically, at 12 GHz, a is around 0.024 and 
b around 1.1 to 1.2).

Figure 1. A description 
of the system that allows 
measuring the attenua-
tion of satellite signals 
and that was used in this 
study (“Ku link”).
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The purpose of this study was to retrieve rainfall maps 
by combining such measurements (recorded at successive 
time steps by several sensors) with a model able to simulate 
the propagation of the rain fi elds. Because we wanted to 
avoid the use of the power law during the execution of 
the data-assimilation algorithm, we worked with linear 
attenuations (in dB/km) during the entire process, and 
converted these linear attenuations into rain rates offl  ine, 
at the very end of the algorithm. We will nevertheless 
generally present visual results in terms of rainfall rates.

2.2 Retrieval Algorithm

The 4D-VAR data-assimilation algorithm (see, 
for instance, [12]) consists in coupling time-distributed 
observations with a numerical model able to propagate 
information through time, in order to retrieve values 
compatible both with the observations (then allowing to 
fuse them) and with the dynamics included in the model. 
Consequently, we fi rst have to defi ne a model (typically, 
the discretization of partial diff erential equations, PDEs) 
able to simulate the dynamics of the rainfall fi elds (or, 
similarly, of the attenuation fi elds).

2.2.1 Propagation Model

In this study, we used a simple advection model at 
constant speed. Let  , ,K t x y  be an attenuation fi eld at 
any time t and any point  ,x y  on a plane (we restrict the 
problem to a plane by assuming that the rain is homogeneous 
on the vertical columns). Let u and v be the advection 
speeds to the north and to the east. The partial diff erential 
equation driving the propagation of the of the attenuation 
fi eld is then

 K K Ku v
t x y

  
 

  
.

We can note that the assumptions made here are the same 
as in [11]. We also note that this model, which assumes 
that rain fi elds move without any distortion and assumes 
homogeneous and constant winds, will only be workable, 
for the spatial resolution considered here, over short 
time periods (typically, 30 min to 1 h, depending on the 
topography of the area studied). It could be possible to use 
a more-complex model (for instance, with non-constant 
winds), but we would need a dense network of attenuation 
sensors to estimate its parameters. Such a network was not 
available in our fi rst study [11], but could be considered 
for future developments. About the wind parameters (u 
and v), we showed in [11] that if two sensors are available 
and wisely set up, the wind parameters can be directly 
estimated from the time series of attenuations (using a 
cross-correlation technique). We then assume that these 
parameters are fully known. 

The partial-diff erential-equation problem is well-
posed only if we also defi ne boundary and initial conditions. 
About the boundary conditions, we assume that no rain 
enters the considered area during the time period (the infl ow 
is zero). If we retrieve the initial condition  0, ,K x y , we 
would thus be able to estimate the attenuation fi eld at any 
time and location. This is the goal of the 4D-VAR data-
assimilation algorithm.

We fi nally note that we also have to discretize the 
partial diff erential equation for running it. To do so, we use an 
anti-diff usive scheme proposed by [13]. The discretization 
steps are 500 m and 1 s.

2.2.2 Data-Assimilation Algorithm

We have defi ned the dynamics governing the evolution 
of the attenuation fi elds, so we can now introduce the 
4D-VAR data-assimilation algorithm used to retrieve 
the initial attenuation fi eld,  0, ,K x y , which is the 
only unknown of the problem. An introduction to data 
assimilation was provided, for instance, in [12]. This 
algorithm roughly consists in minimizing a cost function, 
J, which sums two parts which estimate:

 The gap between the observations available and the 
initial (unknown) fi eld propagated through the model 
until the time steps corresponding to the observation 
records.

There are possibly other terms bringing information about 
a priori knowledge of the unknown fi eld (the gap between 
the unknown fi eld and a predefi ned fi eld, or more general 
information, for instance, regularization terms).

 In this study, we used the following cost function:

     2 20 0 0 n n n

n
   J K K m K y H K

0K  is the two-dimensional attenuation fi eld at 0t   
rewritten under a vector form. nK  is the attenuation 
fi eld at time nt  (also under a vector form). nK  is just the 
propagation of 0K  until nt  using the discretization of 
the advection model, called nM . nH  is the operator of 
observations that allows converting the linear attenuations 
at every grid point into attenuations integrated over the Ku 
Earth/satellite pathways. For a given Ku link, this operator 
is a linear combination of the linear attenuations in the grid 
points “crossed” by the link. The ny  are the observations at 
time nt  (the attenuations).  0m K  is the local average of 

0K  (calculated over the nine grid points directly connected 
to the considered point). Finally, the fi rst part of  0J K  
is a regularization term, while the second one is a term 
estimating the gap to the observations. For a more detailed 



The Radio Science Bulletin No 360 (March 2017) 83

description of this cost function, we can refer to [11]. For 
minimizing this cost function and so estimating 0K , we 
have to calculate its gradient. This calculation is made using 
the adjoint operators (transpose of the linear tangent) of 
the operator of observations, nH , and of the model, nM .

In order to facilitate all these developments, we 
used the YAO tool, developed at the LOCEAN laboratory 
(Laboratoire d’Océanographie et du Climat), and described, 
for instance, in [14]. This tool, written in C++, eases 
the development of 4D-VAR algorithms by writing their 
components (operator of observations, nonlinear model, 
etc.) under the form of basic components (analytic 
operations performed at every grid point and time step). 
These basic components are linked by a graph describing 
their connections (for the concept of a modular graph, see 
[14]). The minimization part of this process is done with 
the quasi-Newton m1qn3 algorithm developed in [15].

We now have defi ned the 4D-VAR algorithm that 
retrieves the attenuation map at the initial time, 0K . Using 
the model nM , we can deduce nK , the attenuation maps 
at every time. Using the power law linking rain rate and 
attenuation, we can estimate the rain maps at every time.

3. Results from Simulated Data for 
an Urban Area

This retrieval algorithm was successfully tested 
on real but sparse data (one ground receiver measuring 
the attenuation of the waves coming from four diff erent 
satellites). The goal of this paper is to evaluate the retrieval 

algorithm for a denser network of sensors, corresponding 
to a realistic urban-area situation. Because we did not have 
experimental data for such an area (it would imply the use 
of many sensors), we worked with simulated sensors and 
simulated rain maps. In this section, we fi rst introduce the 
method employed to simulate all the data needed, and we 
then present our results.

3.1 Method Employed to Generate 
the Simulated Data

To run a data-assimilation experiment on simulated 
data, we successively have to:

1.  Choose an area of interest.

2. Defi ne locations for the Ku sensors, in a realistic way.

3. Simulate “true” rain maps, which are the maps we will 
then try to retrieve with our assimilation algorithm.

4. Simulate a wind (advection speed determined by 
parameters u and v) to run the advection model.

5. Simulate observations. To do so, from the “true” 
rain maps, we will use the advection model and the 
operator of observations. These observations are the 
attenuations along the links defi ned at point 2, plus 
possible instrumental noise.

These fi ve steps allowed simulating what could be 
measured by a real system for maps of diff erent sizes and 

Figure 2. The Ku links 
used for confi gurations 
1 to 4 in the area of 
interest.
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for diff erent network confi gurations. We then applied our 
retrieval algorithm to the simulated observations (created at 
point 4), and studied the ability of the algorithm to retrieve 
the rain maps (created at point 3) from these observations. 
Just before going through the results, we will give some 
details about these fi ve points.

1. The area studied was located in the Paris area, France. 
More specifi cally, it covered a part of the French 
department of Yvelines, on an area of approximately 
30 km × 30 km, centered over the city of Trappes 
(48.78N, 1.98E). This area is a densely populated 
area, but the spread of the population is not really 
homogeneous, with both urban communities and 
agricultural areas. We could therefore expect areas with 
dense Ku-sensor networks, and others with almost no 
sensors available. Moreover, there are diff erent socio-
economic impacts of rain in this area. First, the urban 
areas can be aff ected by fl oods caused by the river Seine. 
Second, water-resource management is important, for 
both the inhabitants’ needs and for agriculture.

2. We then had to defi ne locations for the Ku sensors. 
Figure 2 shows four confi gurations tested in this study. 
In any case, the Ku sensors were set up according to 
the population density on the considered grid point. All 
the links were also directed to real satellites available 
around Paris ([11] listed some of these satellites). We 
can also note that all the links pointed mainly to the 
south, because the satellites are geosynchronous, and 
so located above the equator. From one confi guration 
to another one, we changed the number of available 
sensors (17, 45, 79, and 122 for confi gurations 1 to 4). 
These confi gurations were thus realistic confi gurations, 
depending on the investments made in terms of number 
of installed sensors.

3. For the rainfall maps, we simulated the map at the 
initial time, 0t , and we then used the advection model 
to generate the other maps. To create this individual fi rst 
map, we used a method developed by [16] that allows 
simulating realistic two-dimensional rainfall maps. In 
this study, we worked with the map that is shown in 
Figure 3. On this map, it was raining over 37% of the 
grid points, with an average rain rate of 1.1 mm/h and 
a maximum of 38 mm/h.

4. Concerning the advection parameters, we supposed 
that the rain cells moved eastward at a speed of 10 m/s, 
realistic for the Paris area. We therefore had 0u   and 

10v  m/s.

5. All the needed parameters of the problem were now 
defi ned. We used the wind defi ned at point 4 in the 
advection model to move the rain rate of Figure 3 and 
to get the rain maps at any time. We then transformed 
these rain maps into linear attenuation maps (power law), 
and we used the operator of observations to simulate 
the attenuations along the diff erent links defi ned in 
Figure 2. We then possibly added instrumental noise to 
these data. We thus had observations ready to be used 
as input to the assimilation algorithm.

We can nevertheless note that in this procedure, we 
assumed that the numerical model of advection was perfect. 
We used the same advection model with the same parameters 
( 0u  , 10v  m/s) for both simulating the observations and 
for running the assimilation model from these observations. 
The results that follow therefore were representative of 
cases for which the model was “suffi  ciently” realistic. 
This question (what does “suffi  ciently” mean?) was 
already asked in our fi rst study on real data [11]. We then 
showed that we were able to treat four rain events over 
eight. This value nevertheless depends on the topography, 
meteorological conditions, and sensor network design, and 
needs to be carefully studied in any future real data study. 
An improvement of the model’s performance (by using 
non-constant winds) can also be considered.

We were now ready to run the assimilation model 
and to compare its output (the rain map at 0t ) with the 
true map of Figure 3.

3.2 Results

3.2.1 Non-Noisy Data: Results 
According to the Density of 

Sensors

First, we chose to not add instrumental noise to the 
simulated data. We also assumed that our observations were 

Table 1. The statistical errors produced by the assimilation algorithm compared 
to the true initial rain map for the experiments shown in Figure 4.

Entire Map Rainy Areas Dry Areas

RMSE 
(mm/h)

Bias 
(mm/h 

)

RMSE 
(mm/h)

Bias 
(mm/h)

RMSE

(  
mm/h)

Bias 
(mm/h)

Confi g. 1 0.88 –0.09 1.95 –0.75 0.16 +1.16
Confi g. 2 0.82 –0.10 1.71 –0.24 0.18 +0.18
Confi g. 3 0.40 +0.01 0.99 –0.98 0.07 +0.07
Confi g. 4 0.37 –0.01 0.93 –0.11 0.10 +0.10
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sampled at 10 s (as were the real data in [11]). We then tested 
our algorithm’s performance on the four confi gurations 
shown in Figure 2, from the sparsest (confi guration 1, 
Figure 2a) to the densest (confi guration 4, Figure 2d). 

Figure 4 shows the initial true rain map (a) and the 
four maps retrieved by our algorithm (b to e) for each of 
these confi gurations. Table 1 gives several statistical results 
concerning the errors that our algorithm implied in terms 
of bias and RMSE (root mean square error) compared to 
the true map. In Table 1, we also distinguished the areas 
of the true rain map that were dry from the rainy areas.

Several results could be deduced from these visual 
and numerical results:

• We noted that only confi gurations 3 and 4 were able to 
correctly retrieve the three main rain cells that appeared 
on the true map (Figure 4). Both confi gurations 1 and 2 
missed the southern rain cell. This was not an unexpected 
result, because during its eastward advection, this cell 
only crossed areas with a very low density of population. 
These areas were consequently not covered (or very 
sparsely covered) by Ku sensors (Figure 2).

• In any case, the total amount of water that fell over the 
area was very well retrieved (biases in the third column 
of Table 1). This was especially true for confi gurations 
3 and 4, when the sensors gave a very good coverage 
of the entire area. Again, we noted that the bias was 
slightly negative for confi gurations 1 and 2 because a 
part of the rain could not be seen by any sensor.

• The root mean square error decreased when we 
added links (from confi guration 1 to confi guration 4). 
Nevertheless, it remained quite strong from 0.4 mm/h 
up to 0.8 mm/h for an average rain rate of 1.1 mm/h. 
However, this could be produced by noise (oscillations) 
on the initial map as a result of the assimilation 
algorithm. These oscillations would then be quickly 

smoothed during the advection (numerical diff usion 
phenomenon), and so they would not add an important 
cost in the assimilation cost function. We could again 
calculate these root mean square errors using the rain 
maps at any time, instead of only for the initial case. 
However, the regularization term of the cost function 
was specifi cally added in order to limit this eff ect, so 
we kept the values calculated from the initial rain maps 
as an indicator.

• We can note overall (and especially for confi gurations 
3 and 4) that the features (intensity, size, and location) 
of the true rain maps were very well reproduced by the 
assimilation-retrieval algorithm.

• Finally, we noted (Table 1) that this algorithm tended 
to underestimate the rain in rainy areas, and to slightly 
overestimate the rain in dry areas (we retrieved rain in 
areas where it did not rain). This is due to the fact that 
our retrieved maps were smoother than the true map.

In summary, the assimilation algorithm was able to 
retrieve the true map’s features only if there were enough 
sensors to cover the entire area considered (we retrieved 
only what was seen). We could nevertheless note that the 
areas in which the rain rates were poorly retrieved in this 
study corresponded to sparsely populated areas. 

3.2.2 Results on Noisy 
Observations and Impact of the 
Time Sampling of Observations

We then studied two phenomena that could decrease 
the performance of the retrieval algorithm. The fi rst was 
instrumental noise. The second was the time sampling of 
the observations. To this end, we added to our simulated 
observations noise of 0.5 dB, which corresponded to the 
typical noise aff ecting the sensor used in [7, 11]. We then 
performed assimilation experiments with successive time 
samplings of 10 s (the same as in the previous paragraph), 
1 min, and 5 min. In all these tests, we used confi guration 3 
for the sensor network. This confi guration allowed covering 
all the area studied with as few sensors as possible.

For these experiments, Figure 5 and Table 2 show 
the same results as the previous Figure 4 and Table 1 (rain 
maps, biases, root mean square error).

We noted (Figure 5b compared to Figure 4d and 
Table 2) that if we added noise to the observations, it also 
added noise to the assimilation outputs. This nevertheless 
did not aff ect the good overall retrieval of the features of 
the true map (for instance, we still retrieved the main rain-
cell locations very well). This did not aff ect the overall 
bias ( 0.05 mm/h with noise, 0.01 mm/h without noise). 
However, when we added noise, this tended to produce very 
localized and strong fake rain areas, possibly far from the 
real rain cells. During the assimilation process, the initial 

Figure 3. The simulated rain map considered as the 
true rain map in this study.
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rain map is advected by the numerical model before being 
compared to the observations in the cost function. The 
numerical model immediately (meaning, in a few time 
steps) smoothes the strong rain gradients appearing on the 
initial map. Finally, these localized strong gradients will 
be almost transparent, both in the cost function and in the 
bias statements.

Now, when we decreased the time sampling 
(Figures 5c, 5d, and the two last lines of Table 2), we could 
see that the performance of the algorithm signifi cantly 
decreased. For instance, the root mean square errors were 
quite strong (1.52 mm/h for a 5 min time sampling). We 
also remark that several fake strong rain retrievals (Figure 
5d) occurred.

Figure 4. (a) The initial true rain map. (b)-(e) The initial rain maps produced by the assimilation 
algorithm, for observations with a sampling of 10 s and the four confi gurations shown in Figure 2.
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To conclude, we noted that 0.5 dB noise in the 
observations was not troublesome for the algorithm 
retrievals. The statistical results were almost the same (for 
instance, we still got low biases). The initial retrieved rain 
map was noisier, but this noise was very quickly smoothed 
during the advection process by the model (numerical 
diff usion). We rather noted that we needed a time sampling 
better than 1 min (ideally, 10 s if it is possible). If it 
was 1 min or worse, the quality of the retrievals largely 
decreased. This was not an unexpected result: one of the 

main principles of this technique is to use the good time 
sampling of the measurements to produce (via the model) 
maps with high spatial resolution. If we do not have this 
good time sampling, the algorithm fails. These simulations 
have shown the ability of the method to produce rain maps 
with very good spatiotemporal resolution. As the sensors 
used are not expensive, they could be deployed in areas that 
are not already covered by traditional rain measurement 
systems (rain gauges, radars), or in areas subject to strong 
rain impacts (for fl ash fl ood prevention, for instance).

Figure 5. (a) The true initial rain map. (b)-(d) The initial rain maps produced by the assimilation for 
noisy observations for confi guration 3 of Figure 2, with time samplings from 10 s to 5 min for the 
observations.

Table 2. The statistical errors produced by the assimilation algorithm compared 
to the true initial rain map for the experiments shown in Figure 5.

Entire Map Rainy Areas Dry Areas
RMSE 
(mm/h)

Bias 
(mm/h)

RMSE 
(mm/h)

Bias 
(mm/h)

RMSE 
(mm/h)

Bias 
(mm/h)

Sampling 10 s 0.84 +0.05 2.19 –0.04 0.24 –0.07
Sampling 1 min 1.03 +0.18 2.17 –0.18 0.39 +0.39
Sampling 5 min 1.52 +0.46 2.99 +0.07 0.69 +0.66
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4. Conclusions

In this paper, we have introduced a new technique for 
retrieving rainfall maps at high spatiotemporal resolution. 
This method uses measurements of the attenuation aff ecting 
microwaves from TV satellites during their crossing of the 
atmosphere. These attenuation measurements – related by a 
power law to the mean rainfall rates over the Earth-satellite links 
and made by sensors located on the ground – are combined in 
a data-assimilation algorithm by a simple advection numerical 
model to propagate the rain fi elds through time. This technique 
allows retrieving the rainfall map at an initial time step that once 
propagated by the model is able to explain the observations 
recorded at diff erent times. 

This method was already successfully tested on real 
data sets recorded over a small area [11]. These encouraging 
results convinced us to go through larger areas, covered by 
many sensors.

In this paper, we showed results for simulated data on a 
realistic urban area. We proved the ability of our algorithm to 
deal with many sensors, and so to successfully retrieve rain 
maps over a quite larger area (30 km × 30 km). We have shown 
that this algorithm is able to deal with realistic instrumental 
noise, but that it needs observations with a very good time 
sampling (less than 1 min) to be run. 

The next step in these developments consists in deploying 
a real system in an urban area, in order to validate the approach 
on real data over a city. The envisaged prototype would use 20 
to 25 sensors and would be deployed over a medium-sized town, 
ideally subject to intense fl ash-fl ood events. This prototype 
experiment could be a fi rst step before deploying this system 
in areas where no other classical and costly system is available.
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