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Abstract—Despite the numerous advantages of using Wireless
Sensor Networks (WSN) in precision farming, the lack of infras-
tructure in the remote farm locations as well as the constraints
of WSN devices have limited its role, to date. In this paper,
we present the design and implementation of our WSN based
prototype system for intelligent data collection in the context of
precision dairy farming. Due to the poor Internet connectivity
in a typical farm environment, we adopt the delay-tolerant
networking paradigm. However, the data collection capability
of our system is restricted by the memory constraints of the
constituent WSN devices. To address this issue, we propose the
use of Edge Mining, a novel fog computing technique, to compress
farming data within the WSN. Opposed to the conventional
data compression techniques, Edge Mining not only optimizes
memory usage of the sensor device, but also builds a foundation
for future real-time responsiveness of the prototype system. In
particular, we use L-SIP, one of the Edge Mining techniques
that provides real-time event-driven feedbacks while allowing
accurate reconstruction of the original sensor data, for our data
compression tasks. We evaluate the performance of L-SIP in
terms of Root Mean Square Error (RMSE) and memory gain
using R analysis.

I. INTRODUCTION

Over the last decade, the use of Wireless Sensor Networks

(WSN) in precision farming has been widely advocated in or-

der to improve the agricultural productivity and sustainability.

WSN facilitate collection of farm data, using battery-powered

sensors, which is, in turn, used for better monitoring and

understanding of the farm processes such as weather changes,

soil composition and dynamics, crop growth, and animal

health and mobility patterns. A review of WSN applications

in precision farming has been presented in [1]. In spite of the

numerous advantages, however, very few WSN based systems

have been put into practice, to date. This is primarily due to

the constrained nature of the WSN devices along with the lack

of infrastructure in a typically remote farm environment.

In this paper, we address some of the practical issues related

to the deployment of WSN in the context of precision dairy

farming. We present our WSN based prototype system for

data collection in a dairy farm. Due to the intermittent or no

Internet connectivity over the large area of farms, the data

collected using the in-field sensors cannot be transmitted to

the cloud storage in a timely manner. We, therefore, adopt the

delay-tolerant networking paradigm for our system to facilitate

reliable data transfer to the cloud. We discuss the design of

our sensor node, referred to as the collar device, that is used to

implement the delay-tolerant communication and is so-named

as it will be worn around the neck by dairy cows. The collar

device is tailored to ensure animal welfare and comprises of a

variety of sensors to monitor cow health, activity and location.

The device also acts as a mobile node that collects data from

the different in-field sensors (e.g. grass monitoring) as the

cow moves across the farm. All data is stored locally on the

collar device itself until the cow is in the vicinity of the cloud

gateway, presumably housed in a milking station, and offloads

data onto it.

Given the wide variety of data that must be gathered

periodically from the farm, a major challenge in implementing

the delay-tolerant framework is the storage constraint of the

collar device. Although sensor motes, today, feature a non-

volatile flash memory, it is limited in capacity and is usually

insufficient to store the large amounts of data that is gath-

ered during the day. This, in turn, limits the data collection

capability and the operational time of our prototype system.

For instance, we collected temperature, humidity, acceleration,

gyroscope, magnetometer and GPS (latitude, longitude and

timestamp) data at a frequency of 1Hz and stored it on

our collar device. The device could only gather data for a

maximum of 4.5 hours before overwriting the least recent

values in the flash. To address this limitation, we propose

data compression on collar devices. We evaluate the feasibility

of using Edge Mining, a novel fog computing approach, as

opposed to the traditional compression techniques for reducing

the memory requirements. Edge Mining algorithms are light-

weight in nature and reduce the amount of data, rather than the

size of each data entry, by storing only those values that cannot

be predicted accurately using the past readings. Additionally,

localised reduction of data builds the foundation for future

real-time responsiveness of our system. This is key to the

timely detection of critical events in precision farming. For

instance, mobility pattern of cows must be monitored and

analysed in real-time for virtual fence and feed management

applications in order to facilitate corrective measures, if nec-

essary, and redirect the cows in the desired way [2]. Moreover,

real-time monitoring and evaluation of cow health is important

for the early detection of diseases to alleviate the spread of

any infection and ensure animal welfare.

In [3], authors implement Edge Mining using three instan-

tiations of the Spanish Inquisition Protocol (SIP): Linear SIP

(L-SIP), ClassAct and Bare Necessities (BN). SIP transforms

2016 IEEE 41st Conference on Local Computer Networks Workshops

© 2016, Kriti Bhargava. Under license to IEEE.

DOI 10.1109/LCNW.2016.9

137



raw data into an application-relevant state that is considered

significant only if the data value cannot be predicted using the

past estimates and an approximation model with the desired

accuracy [4]. Accordingly, we propose the implementation

of Edge Mining, using SIP, on the collar devices by storing

only those states where the approximation error in data value

exceeds a given threshold ε. We use the L-SIP algorithm

since it reduces data on the device while preserving sufficient

information to reconstruct the signal at the gateway, if needed.

The performance of L-SIP for data compression is primarily

governed by the user-specified ε values for each signal. A

higher value of ε allows larger approximations in the estimated

values, leading to higher values of memory gain as well

as the Root Mean Square Error (RMSE). We evaluate the

performance of L-SIP for the data collected using our collar

device based on the above two metrics. We study the changes

in quality of compression across different values of ε and

variations in the signal using R analysis. L-SIP provides a

significant memory gain of ∼70% for a given set of ε values in

our scenario. Implementation of L-SIP, thus, not only improves

data collection for delay-tolerant networking but also provides

real-time event-driven feedbacks.

The remainder of the paper is organized as follows. In sec-

tion II, we review some of the techniques for data compression

and sensor analytics. We discuss the implementation of our

testbed in section III. We evaluate the performance of L-SIP

for data compression in section IV followed by the conclusions

in section V.

II. RELATED WORK

In this section, we present some of the existing approaches

for data analysis in WSN. Since we are primarily concerned

with optimizing memory usage for sensor devices, we review

the proposed data compression algorithms for WSN along with

other sensor analytics and Edge Mining techniques that can be

used for localised data reduction.

A. Data Compression

Data compression techniques aim at storing data using the

minimum number of bits possible, without any significant

loss in information. An extensive survey on the compres-

sion techniques for WSN has been presented in [5]. While

distributed compression techniques such as Data Transform

Coding (DTC), Data Source Coding (DSC), and Compressive

Sensing (CS) are used in dense sensor networks, local com-

pression approaches such as Two-Modal Transmission (TMT)

scheme based on predictive coding, and Lightweight Temporal

Compression (LTC) scheme have been proposed for sparse

sensor networks. Another novel approach based on distributed

and adaptive signal processing has been proposed in [6]. The

approach exploits the existing correlations in sensor data by

adopting the principles of DSC and reaches a maximum energy

saving of 65%. While selecting the suitable compression

algorithm for a given application, the different techniques are

compared on the basis of their code size, net energy saving,

and compression performance i.e. the compression ratio vs the

information gain. Additionally, the accuracy of data required

and the nature of the WSN are considered. However, since

compression techniques only reduce the number of bits per

data value, they do not provide any insights into the data in

near real-time, thereby, introducing latency in event detection.

B. Sensor Analytics

Although several techniques have been implemented for

cloud-based data mining, the existing approaches cannot be

directly used for edge analytics owing to the computational

constraints of the sensor devices. Certain light-weight algo-

rithms have, therefore, been proposed to perform localized

data analysis in WSN applications. Data Fusion is one of

the most basic approach that performs data reduction in

WSN by merging the redundant data that emerges from the

neighbouring sensor nodes [7]. The study shows that Data

Fusion can be used to improve the sensing coverage and,

in turn, the monitoring of the field. However, Data Fusion

algorithms are signal specific and do not cater well to systems

with heterogeneous streams of data. Data reduction can also

be achieved through the implementation of Artificial Neural

Networks (ANN) on top of the existing hardware-software

platform of WSN [8]. These techniques improve the network

intelligence by performing classification, clustering and pre-

diction tasks on the sensor devices. However, the network

learning involved is compute-intensive and may significantly

reduce the battery lifetime of motes.

C. Edge Mining

Edge Mining is a novel fog computing approach that aims

at improving the energy efficiency of a device by reducing

the number of packet transmissions to a remote sink node.

For doing so, it performs localized data analysis through

implementation of light-weight data mining algorithms on the

sensor devices. Accordingly, in a delay-tolerant framework,

Edge Mining can be used to optimize the storage requirements

by reducing the number of readings that are stored on a

device as opposed to the number of bits per value as in case

of compression techniques. Furthermore, the localized data

mining facilitates real-time detection of events, thereby, im-

proving responsiveness of the system. Edge Mining has been

implemented using three different instantiations of general SIP

as shown in [3]. SIP encodes raw data into state estimates

that are considered significant/eventful only if the new data

value cannot be predicted using the past estimates and an

approximation model with a desired accuracy [4]. That is, a

state estimate must be stored only if the error in prediction

exceeds a user specified threshold ε. The three Edge Mining

techniques differ on the basis of encoding schemes used for

state estimation and are described in the context of our delay-

tolerant scenario as under.

1) Linear SIP (L-SIP): In L-SIP, the state vector is rep-

resented as point-in-time value and rate of change. A num-

ber of techniques such as Kalman Filter, Expoenentially

Weighted Moving Average (EWMA) and Normalised Least

Mean Squares (NLMS) can be used for state estimation. A
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change of state is considered eventful only if the difference

in the calculated point-in-time value and the estimated value

exceeds the threshold ε. L-SIP is data agnostic and provides

a significant reduction in the memory usage while storing

enough data to allow reconstruction of the signal, if required.

2) ClassAct: ClassAct is a decision tree based classification

technique. Given the application knowledge, the new state

estimates are represented as a probability distribution over a

set of activities that form the tree. The distribution is simplified

to index of the most likely activity and the state estimate is

stored only if the calculated index differs from the predicted

value. While the decision tree is built through network learning

at the sink node, classification of data can be performed using

only a few comparisons on the sensor devices. Although this

technique provides greater reduction of raw data compared to

L-SIP, it is a destructive approach since the original signal

cannot be reproduced in future.

3) Bare Necessities (BN): BN further reduces the memory

usage by storing only the summary of data over time. The state

vector is represented as a distribution over non-overlapping

bins. A new state is calculated by assigning the raw value

to a bin and updating the distribution for each bin. If the

distribution of any bin changes by more than a threshold, it is

considered eventful and the updated state is stored at the sensor

node. Unlike L-SIP, BN discards most of the raw data which,

in turn, affects the quality of future cloud-based analysis.

III. TESTBED IMPLEMENTATION

In this section, we present our WSN based prototype system

that is used for delay-tolerant data collection for precision

dairy farming. In a dairy farm environment, we envisage a

WSN comprising of three kinds of sensor nodes: in-field

sensor nodes, collar devices and gateway node as illustrated

in figure 1. The in-field sensors are static nodes that are

used to monitor farm conditions such as weather changes

Fig. 1. Delay-tolerant networking framework for precision dairy farming

and grass growth. The collar device is worn by dairy cows

and comprises of a number of sensors to monitor cow health

and mobility. Additionally, it acts as a mobile data carrier

that collects data from the in-field sensors as the cow moves

across the farm, stores it locally on the device, and brings

it back to the milking station that houses the cloud gateway.

Data from the collar device is transmitted to the gateway via

mote-to-mote communication and is further uploaded on the

cloud using Raspberry Pi connected to the gateway mote. The

raw data, thus, collected is used by farmers to gain further

insights into the farm conditions and take remedial actions,

if necessary. Moreover, this data can be used to identify

correlations between different farm processes and, in turn,

improve the overall productivity.

In this work, we implement a WSN testbed consisting of

the collar device and gateway node and consider the memory

collection capability of our system via data collection using

device sensors. We present the design of our collar device and

gateway node and address the challenges posed by the memory

constraints of the device. We also review the L-SIP algorithm

used for data compression.

A. Collar device

Collar device as shown in figure 2 forms the most integral

part of our prototype system. The primary component of

the collar device is the IEEE 802.15.4 compliant, low-power

CM5000 mote that is based on the design of TelosB motes

[9]. It consists of the MSP430F1611 processor and a CC2420

802.15.4, 2.4GHz wireless module for radio communication.

The mote also comprises of an on-board SHT11 sensor to

collect temperature and humidity readings, and supports three

serial interfaces, namely UART, I2C and SPI, to connect with

external sensors. In order to facilitate mobility tracking for

cows, we connect a 10 degrees of freedom (DOF) Inertial

Measurement Unit (IMU) to the mote via the I2C interface

[10]. The IMU consists of three ICs, MPU6050, HMC5883L

and BMP180, for measuring 3-axis acceleration and 3-axis

orientation (gyroscope), 3-axis magnetic field, and barometric

pressure respectively. The IMU features a user-programmable

full scale range to ensure accurate tracking for both slow and

Fig. 2. Collar device comprising of CM5000 mote connected externally to a
10 DOF IMU and ublox NEO6 GPS receiver
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fast motion [11], [12]. Data, thus, obtained can be used for

feed management and detection of mobility-related diseases

such as lameness [13]. Further, we connect a ublox NEO-

6M Global Positioning System (GPS) receiver to our collar

device via the UART interface [14]. The GPS unit enables

context awareness for node localization in applications like

virtual fences [2]. In our scenario, we primarily use GPS data

to identify whether a cow is in the milking station or a dairy

farm. Accordingly, we extract the values for latitude, longitude

and time of position fix from the Geographic Position -

Latitude/Longitude (GPGLL) factor of the National Marine

Electronics Association (NMEA) stream.

Since we are in the development phase, the three compo-

nents have been temporarily connected using breadboard, and

jumpers and pin headers. The VCC of the external sensors

is connected to VCC of the CM5000 mote which is itself

powered using 2xAA batteries (3V). Although CM5000 is

both TinyOS and ContikiOS compatible, we use TinyOS

programming owing to its small footprint of 400 bytes [15] in

the program memory. The programs are installed on the device

using a USB interface and stored in a program memory of size

48KB. A 10KB RAM is available for storing the variable states

along with an additional flash memory of 1MB that is used to

store data. The non-volatile nature of the flash prevents loss of

data owing to device failures. To examine the data collection

capability of our device, and, in turn, the prototype system,

we have designed a TinyOS application that runs on the collar

devices for collection of temperature, humidity, acceleration,

orientation, compass and GPS data at a given frequency from

the device sensors. The gathered data is periodically pushed

to the flash memory in fixed size heaps, using log appends,

and stored locally for a specified period of time after which

the device tries association with the gateway to offload its

data. To establish connection with the gateway, the device

temporarily joins the 802.15.4 Personal Area Network (PAN)

of the gateway. Once the device is connected to the gateway,

it sends its data packets over the radio until the flash is empty.

Since we have implemented the IEEE 802.15.4 MAC and PHY

layers, care must be taken that the payload size of each packet

does not exceed the maximum transmission unit of 127 bytes.

Once all packets have been transmitted from the device, it

sends a disassociation request to the gateway requesting to

leave the PAN.

B. Cloud gateway

The gateway node comprises of a CM5000 mote connected

to Raspberry Pi (model B2) [16] via the USB interface as

shown in figure 3. A TinyOS application runs on the CM5000

mote for data collection from the collar devices. At any given

time, the gateway can connect to a predefined number of collar

devices that is decided on the basis of the expected amount

of data that must be transmitted by each device. If the node

is currently connected to the predefined maximum number of

collar devices, it does not confirm association and a random

back-off mechanism is activated on the collar device to retry

association. Otherwise, an acknowledgement is sent from the

Fig. 3. Cloud gateway consisting of a CM5000 mote connected to a Raspberry
Pi (model 2B)

CM5000 mote on the gateway to the device confirming its

association. The node then starts listening to its radio for any

incoming packets on the specified channel. These packets are

transferred to the Raspberry Pi using the underlying UART

interface. A JAVA application is built for Raspberry Pi, using

TinyOS tools, to collect and store the incoming data. The data

files, thus, generated are periodically pushed to Gitlab (cloud)

using a WiFi module as shown in figure 1.

C. Data compression using L-SIP

Whereas the delay-tolerant approach provides a solution

for transferring data from the sensor nodes in a remote

farm environment to the cloud, the memory resources of the

device pose a major constraint in its realization. Although we

implement log storage using the device flash, the available

memory is insufficient considering the vast amount of data

collected during the day. For instance, at a sampling frequency

of 1Hz, we could store the above mentioned values over a

period of 4.5 hours only before the log storage was overwritten

by the new values. Since we use GPS data to obtain only

a broad idea of a cow’s location, we reduce the sampling

frequency of the GPS data to once per 15 minutes. This not

only improves the data collection capability of our system but

also increases the lifetime of our device since the energy cost

for the ublox unit is quite significant compared to the other

ICs. At a sampling rate of 1 second for the remaining sensors,

this increased the operational time by two-fold. While reducing

the sensing frequency for the other sensors is a plausible

solution for reducing the data volume, it may cause loss of

information.

Therefore, we propose localized compression of raw data

on the collar devices in order to further optimize storage and

improve the operational time of our system. The technique

used should be data agnostic to accommodate the variety of

farm data and must preserve the meaning of the signals after

decompression. As mentioned before, we use Edge Mining

rather than the conventional techniques for data compression

since it not only reduces the data volume on the device

but also builds the foundation for event-driven feedbacks for

our prototype. While issues related to soil dynamics and

weather changes may be treated at a later instance without

any significant consequences, most processes related to grass
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Algorithm 1 Linear SIP for improved data collection

1: procedure :

2: Calculate new state

3: Using dEWMA filtering

4: vx,t ← αx∗zx,t+(1−αx)∗(vx,t′+rx,t′ ∗(t−t′))
5: rx,t ← βx ∗(vx,t−vx,t′)/(t−t′)+(1−βx)∗rx,t′

6: Estimate new state

7: Using linear extrapolation

8: v′x,t ←

[
1 (t− t′)
0 1

]
vx,t′

9: Eventful?

10: yes, if (|v′x,t − vx,t| > εx)
11: then, store (vx,t, rx,t, t)

management such as pest and disease attacks, and animal

health and mobility issues demand real-time responsiveness. A

real-time fog service based on Collaborative Edge Mining, an

extension of the Edge Mining approach, in WSN for detection

of Heat Stress in dairy cattle is presented by the authors

in [17]. We adopt the L-SIP algorithm over ClassAct and

Bare Necessities for data compression as it allows accurate

reconstruction of the signal in future.

L-SIP is the linear instantiation of the SIP and encodes raw

data as a state vector containing smoothed point-in-time value

(vx,t) and rate of change (rx,t) at time t where x is the variable

for which the state estimation is performed. We use the

double EWMA (dEWMA) technique for state estimation due

to its fast calculation and ease of implementation. dEWMA

exponentially reduces the dependency of the current state on

the past estimates by calculating the data value and rate of

change as weighted averages of the current raw data value

(zt) and past estimates as shown in algorithm 1. Here, t′ is

the time associated with the previously stored state estimate,

and αx and βx are the data and trend smoothing factors

respectively and range between 0 and 1. Once the new state

estimate is calculated by the device, the expected value at time

t is calculated through the linear extrapolation of the previous

state. If the difference in the calculated and predicted value is

less than the given threshold εx for the variable, the new state

is discarded by the device. Otherwise, the change is considered

eventful and the new state vector is stored in the memory along

with the corresponding timer value to allow future predictions.

Resource efficiency is, thus, improved by reducing the number

of state estimates stored. Moreover, the rate of change value

improves the accuracy of the decompressed signal and prevents

the propagation of error in case of packet loss past the

subsequent packet during the reconstruction phase.

IV. EVALUATION

To evaluate the performance of L-SIP for data compression

in our scenario, we gathered temperature, humidity and IMU

data at a sampling rate of 1 second, and GPS data once

per 15 minutes and stored it against the timer values for 5

hour intervals. While the application is proposed for farming

practices, the data for this study was collected by us (human

TABLE I
CONFIGURATIONS USED FOR EVALUATION

ε C1 C2 C3 C4 C5

εT 14*βT 28*βT 42*βT 56*βT 70*βT

εH 6*βH 12*βH 18*βH 24*βH 30*βH

εAccx 2*βAccx 4*βAccx 6*βAccx 8*βAccx 10*βAccx

εAccy 1*βAccy 2*βAccy 3*βAccy 4*βAccy 5*βAccy

εAccz 2*βAccz 4*βAccz 6*βAccz 8*βAccz 10*βAccz

εGyrox 3*βGyrox 4*βGyrox 5*βGyrox 6*βGyrox 7*βGyrox

εGyroy 0.2*βGyroy 0.4*βGyroy 0.6*βGyroy 0.8*βGyroy 1*βGyroy

εGyroz 0.1*βGyroz 0.2*βGyroz 0.3*βGyroz 0.4*βGyroz 0.5*βGyroz

measurements) both inside and outside our laboratory. The

data collection was repeated 8 times for different levels of

activity (sit and walk) across 5 days. Since there was not much

variation in the magnetometer and GPS readings, we base

our analysis on 8 signal streams: temperature (◦C), humidity

(%RH), x,y and z-axis acceleration (g), and normalized x,y,

and z-axis orientation/gyroscope (Least Significant Bit (LSB)).

The α value for all variables is set to 0.94 following the best-

fit approach. The β value for all datasets is calculated as the

expectation value of the variable and represents the average

of difference between any two consecutive readings. Since

quality of compression varies with ε values, we evaluate L-SIP

for different ε based on the following two metrics:

1) Root Mean Square Error (RMSE): Accuracy of the

reconstructed signal with respect to the original sig-

nal is an important factor in evaluating the quality of

compression. We calculate the RMSE for each variable

by calculating the difference between the estimated and

calculated data value at each instance. RMSE depends

on the ε value for each variable. A higher threshold

permits larger approximations in the estimated values,

leading to higher values of RMSE. An upper bound on

ε values must, therefore, be set to ensure that RMSE

is within acceptable bounds. Conversely, we fix upper

bounds on the RMSE values as shown below and

calculate the corresponding upper bounds for thresholds.

a) Temperature: 0.5◦C

b) Humidity: 0.5%RH

c) Acceleration: 0.1g that corresponds to a positional

inaccuracy of ∼1m

d) Normalized Gyroscope: 0.05LSB that corresponds

to an inaccuracy of approximately ∼5◦/s

2) Memory gain (%): Edge Mining compresses data by

storing only those state vectors where the data value

changes significantly compared to the previous state es-

timate. Accordingly, we create a data frame to store only

those instances where the difference between calculated

smoothed data value and the estimated value exceeds

ε. Each entry of the data frame requires 6 Bytes to

store the current data value along with the corresponding

timer and rate of change. Memory used in Byte units per
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variable is shown in eq. 1, where N ′ is the number of

instances for which the error in approximation exceeds

ε. Total memory gain (%) across all 8 signals and timer

values can then be calculated as shown below, where N

is the total number of readings collected.

MemUsed = N ′ · 6

MemTotal =
8∑

n=1

MemUsedn

MemGain =
(N · 9 · 2−MemTotal) · 100

N · 9 · 2

(1)

We calculate the RMSE and the memory gain for 5 different

configurations as shown in Table I. We assign ε as a multiple

of β value from the first dataset such that the largest ε for each

variable, as shown in C5, corresponds to the upper bounds in

the RMSE. The remaining ε are calculated as evenly spaced

values between 0 and the upper bounds (C5) in order to study

the compression quality at both comparatively small and large

thresholds. In figure 4, we illustrate the memory gain averaged

over the 8 iterations across the different configurations along

with the respective confidence intervals at a confidence level of

95%. A large ε permits larger approximations from the original

signal, resulting in fewer entries in the data frame and, in

turn, an increase in memory gain. For the given thresholds, we

achieve close to 47% reduction in the memory requirements

for smallest set of ε values. At higher thresholds, the memory

gain is as high as 70% and would considerably improve the

operational time of our system. Although we increase the ε

values in a fixed proportion, memory gain from C1 to C5 does

not increase by a fixed percentage. The different growth rate

of memory gain between C1 and C5 is attributed to the small

changes in actual ε values for some variables. For instance, the

increase in εAcci and εGyroi , where i can be x,y and z, values

between any two consecutive configurations is marginal for

most datasets and does not cause significant reduction in N ′

and, in turn, the memory gain. The average value of RMSE

over 8 iterations corresponding to the above memory gains

is shown in figure 5 for all data streams. We calculate the

confidence intervals at a level of 95%. As discussed above,

RMSE rises with an increase in the threshold value. However,

L-SIP ensures that RMSE stays within acceptable bounds by

storing the calculated data value each time the approximation

error crosses the threshold. Moreover, the rate of change value

prevents the indefinite propagation of reconstruction error due

to packet loss, thereby, ensuring small values of RMSE during

the decompression phase. Similar to memory gain, the RMSE

for each signal increases at different rates across different

configurations owing to the marginal changes in absolute

values of ε.

Further, we analyse the changes in the quality of compres-

sion with changes in the distribution of values, i.e. the change

in variation in raw signal. We study the compression for the

first dataset with respect to 3 variables: temperature, x-axis

acceleration and normalized x-axis gyroscope using ε values

from C3. Figures 6a, 6b and 6c show the reconstructed signal
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Fig. 5. RMSE for all signals averaged over 8 iterations for different configurations
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Fig. 6. Estimated signals superimposed onto the original signals along with the cumulative memory gain and RMSE for ε values from C3

superimposed on the original signal over the 5 hour period. As

is evident, L-SIP reconstructs an accurate signal while giving

an overall memory gain around 60-65% (figure 4). Next, we

calculate the cumulative gain in memory corresponding to each

variable. We assume that our system stores the timer and data

values for only one variable at a time and calculate the memory

used from start to time t in 10-minute windows. The individual

memory gains calculated for temperature, acceleration and

gyroscope data are as high as 95%, 98% and 99% respectively

as shown in figures 6d, 6e and 6f. While the value increases

for small variations with the time elapsed, a drop in memory

gain is observed corresponding to the larger fluctuations owing

to the more frequent entries in data frames. The drop in value

is more visible for accelerometer compared to gyroscope, and

is very slight in case of temperature. This is because the value

of εT is much larger compared to εAccx and εGyrox and,

therefore, accommodates larger approximations in the signal

with minor changes in the value of N ′. We also calculate the

average values of RMSE over 10-minute windows for the 5

hour period in order to understand the changes in error with

different variations in the signal. While RMSE is stable for

small changes in the data value, a drop in RMSE coincides

with the drop in memory gain. This is because the more

frequent entries in the data frame accurately capture the nature

of variation, thereby, avoiding large approximation errors. The

average RMSE in the three signals remains below the allowed

maximum at all times.

As shown above, L-SIP gives a significant increase in mem-

ory gain with relatively small values of RMSE for different

configurations of ε and different variations in the signal. The

key challenge is to balance the trade-off between the memory

gain and RMSE while meeting the application requirements

and attaining reasonable information gain. Although, we use

the same multiples of β for all iterations, the ε values for the

same configurations differ between datasets due to change in

β values in each iteration. As a result, the maximum RMSE

obtained for variables is much less than the allowed maximum

in some cases. Since ε values are user-programmable, the

compression results can be improved by changing the ε be-

tween different iterations, depending on the user requirements,

through cloud-based network learning. Further reduction in

storage requirements can be achieved through compression of

the key samples that are stored on the device after mining.
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V. CONCLUSIONS

In this paper, we have addressed some practical issues

concerning the implementation of WSN technology in the

context of precision dairy farming. We present the design of

our prototype system and collar device that is used for data

collection in dairy farms. Due to the remote location of a typi-

cal farm, we implement the delay-tolerant framework for data

communication where data is stored on the collar device itself

until the cow is in vicinity of the cloud gateway. However,

the data collection capability of our application is limited due

to the memory constraints of the constituent devices. This, in

turn, reduces the operational time of our WSN system. To ad-

dress this issue, we propose the implementation of light-weight

Edge Mining algorithms on our collar device to perform

localized data compression. Edge Mining algorithms convert

the raw data into state vectors and reduce memory usage by

storing only those instances that cannot be predicted from the

past estimates using a given approximation model. Compared

to the traditional compression techniques, Edge Mining not

only optimizes the storage requirements but also provides a

foundation for future real-time responsiveness of the system.

This is of utmost importance for detecting critical issues such

as those related to animal health and mobility. We use the

L-SIP algorithm over other Edge Mining techniques since L-

SIP preserves sufficient information on the sensor device to

allow reconstruction of original signal at the gateway. The

performance of L-SIP for data compression is evaluated with

respect to 8 signals namely temperature, humidity, x,y,z-axis

acceleration, and x,y,z-axis gyroscope on the basis of RMSE

and memory gain, using R analysis. With an upper bound on ε

values corresponding to RMSE of 0.5◦C, 0.5%RH, 0.1g and

5◦/s for temperature, humidity, acceleration and orientation

respectively, L-SIP provides an overall memory gain of ∼70%.

This, in turn, would lead to a significant improvement in the

operational time of our prototype system. Since the quality

of compression varies with the user-programmable ε value,

the information gain using L-SIP can be further improved,

depending on the application requirements, using feedbacks

from cloud-based network learning. The compression perfor-

mance also changes with change in variation of the signal.

Even though larger fluctuations in signal result in an increase

in the number of readings that must be stored on the device,

the cumulative memory gain calculated for individual variables

was above 95% for most part of the experiment with RMSE

below the allowed maximum at all times.
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