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Abstract—Identification of operating systems in a local network
is an issue for both network management and security. Network
practitioners rely on some classifier tools, but those tools’ rules
are generated by an expert. Hence, existing approaches need to be
manually updated for each new operating system. In this paper,
we analyze the TCP/IP packet headers to automate operating
system classification. To this end, we measure the classification
performance of each protocol, and determine the unique features
between operating systems. We utilize a genetic algorithm to
determine the relevant packet header features. Then, we use
several machine learning algorithms to generate set of rules
that can differentiate operating systems. Overall, with IP, ICMP,
TCP, UDP, HTTP, DNS, SSL, SSH, and FTP, protocol header
information, on average, operating system classification can be
performed at a rate of 68.0%, 51.6%, 98.4%, 71.1%, 78.7%,
29.2%, 25.0%, 22.5%, and 14.0%, respectively. In general,
feature extraction with genetic algorithm further improves the
results, e.g. to an average of 99.1% for TCP.

Index Terms—OS Fingerprinting; Machine Learning; Genetic
Algorithm

I. INTRODUCTION

Especially with the Internet of Things, everything is getting

connected to the Internet. With a plateau of devices attached

to a network, management of the local networks is becoming

more challenging. As various operating systems run these

devices, identifying and patching vulnerable systems is crucial.

Network managers adopt multiple security mechanisms to

protect the network from malicious activities. An important

step in securing a network is to be aware of the devices that are

attached to the network. It is important to detect devices that

might be using old or insecure versions of operating systems

due to their vulnerabilities to remote attacks [14].

Operating system fingerprinting is the process of remotely

detecting the operating system of a target device. There are

two methods for performing operating system classification:

active and passive [8]. Active fingerprinting, actively probes

target devices and analyzes their responses. It is possible for

certain systems to respond in an unusual way upon certain

requests. Such scenarios can allow for active fingerprinting

tools to narrow down possibilities or even directly determine

the operating system of such systems. However, firewalls

could block probes and active fingerprinting might lead to

limited or no knowledge of target host. Passive fingerprinting,

passively sniffs packets from target devices and analyzes the

packet header information. As passive fingerprinting merely

depends on the information extracted from regular TCP/IP

packet headers, it is possible to perform operating system

classification even when a firewall exists. On the other hand,

passive fingerprinting might not be as accurate as active

fingerprinting as it could not observe distinct features. Passive

fingerprinting techniques can take advantage of less than one

third of the features that active fingerprinting tools such as

Nmap offers [14].

It can become very impractical for system administrators to

manage and monitor huge amount of hosts which might be

at different locations [13]. Therefore, operating system finger-

printing tools and techniques can ease network management

and security [19]. These tools might also be useful for collect-

ing statistical data on the operating systems that hosts within

a network use. Operating system fingerprinting, however, can

also be used for malicious purposes. It could come in handy for

intruders to know devices and their vulnerabilities in a target

network. When an intruder realizes presence of unpatched or

outdated operating systems, they could easily deploy known

malware to compromise those systems.

While current OS classification systems are expert based,

automated detection and configuration of networked systems

are valuable [2]. To this end machine learning approaches can

provide such automated system configuration with minimal or

no expert input [12].

In this paper, we analyze the performance of TCP/IP head-

ers in classifying operating systems with machine learning.

We perform single-packet operating system classification on

packets originating from host devices. We compare the clas-

sification results for several protocols at layer 3 (i.e., IP and

ICMP), layer 4 (i.e., TCP and UDP), and layer 5 (i.e., HTTP,

DNS, SSL, SSH, and FTP) using multiple machine learning

algorithms in order to determine the contribution they have in

classifying OSes.

We tested the classification both with every non-null feature

extracted from the protocol and with features that were se-

lected by the genetic algorithm. Genetic algorithm allows the

ability to perform operating system classification of packets

with much less computational overhead without sacrificing

the classification performance considerably. After selecting

features that are helpful for classifying the packet, we use

different machine learning algorithms to detect the operating

system of the host devices. With the help of the genetic
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algorithm, we detected the features that contribute most to

the classification of operating systems at hand. Using genetic

algorithm and machine learning, we identify TCP/IP header

features that can guide operating system classification.

Our results in general are consistent with expert system

based operating system fingerprinting tools such as p0f, et-

tercap, and siphon [14]. While current tools that depend on

specific packet types such as SYN, ACK and SYN-ACK, our

classifier is able to detect operating systems of individual

packets regardless of the packet type. In this measurement

study, we performed operating system classification with all

types of packet observed from host devices.

The rest of the paper is organized as follows: Section II de-

scribes the related work. Section III explains the methodology

for machine learning of TCP/IP protocol headers. Section IV

shows the performance results of different protocols. Section V

concludes the paper.

II. RELATED WORK

Operating system fingerprinting techniques are often classi-

fied as active and passive approaches [8]. In active finger-

printing approach, the target device is directly probed and

depending on its response the operating system of the target

device can be detected. In passive fingerprinting approach, op-

erating system detection can only be performed by analyzing

sniffed packets from the target device. There are also hybrid

approaches that try to overcome the limitations of active and

passive approaches by combining both. For instance, Sinfp

uses signatures acquired from active fingerprinting to perform

passive fingerprinting [3].

A. Active fingerprinting

Veysset et al. performs temporal response analysis based

operating system detection [20]. Their system employs an

active fingerprinting approach to elicit the TCP SYN packet

responses which is then compared to the known signatures to

detect the operating system of the target system.

Similarly, Arkin performs active operating system classifi-

cation by analyzing the ICMP replies from target systems [1].

SYSNSCAN tries to determine the distinguishing infor-

mation among different TCP implementations of operating

systems to be able to determine the operating system of a

target system [19]. In addition to incorporating many of the

existing techniques, SYNSCAN also depends on features such

as congestion control algorithm, congestion window size, don’t

fragment bit, default MSS value, IP identification field, TTL

value, etc.

Greenwald et al. derive effective probe communications for

operating system detection by evaluating fingerprinting probes

in order to reduce the amount of packets to be exchanged with

the target system [9]. In active fingerprinting, multiple probes

to a target system might be needed to deduce the operating

system of the target device. It is possible that tools such as

IDS at the target network can detect these probes and prevent

responses to such probes. By minimizing the probes to a target

system, the authors try to evade such mechanisms.

Additionally, machine learning techniques have been

adopted for performing operating system classification [17].

Authors employ neural networks and statistical tools with

DCE-RPC endpoints and Nmap [4] signatures to improve de-

tection analysis. The proposed system consists of two modules

where one of them performs Windows operating system clas-

sification using DCE-RPC and the other one performs Linux-

based operating system classification using Nmap. Authors

have relied on features such as ACK flag responses: S, S++,

O; DF flag response (yes/no); response flag: ECN-Echo, URG,

ACK, PSH, RST, SYN, FIN; Options field and window size.

Finally, Nmap [4], SinFP and XProbe2 are among some of

the active fingerprinting tools that are publicly available.

B. Passive fingerprinting

Spitzner performs passive operating system classification on

pre-determined signatures such as, TTL, window size, DF and

TOS [18].

Lippmann et al. determines the accuracy of passive operat-

ing system classification based on TCP/IP packets along with

evaluating open-source tools for operating system classifica-

tion [14]. They also evaluate suitable classifier techniques to

increase to the classification performance.

Beverly developed a Naive Bayesian classifier for passive

fingerprinting [5]. The presented machine learning based ap-

proach is compared to rule-based inference tools such as p0f’s

signature database and HTTP UserAgent data in terms of its

classification performance.

Chen et al. analyze and identify series of TCP/IP header

features to examine the effectiveness of such features for

their contribution to operating system classification including

mobile devices [7]. Authors propose to utilize features such

as the stability of the clock frequency, presence of TCP

timestamp option, and the default set of TCP window size

scale.

Mavrakis develop a machine learning based system based

on TCP/IP headers and classifier based on decision-tree learn-

ing [15]. It is shown that the UserAgent data outperformed

p0f’s signature database. Since authors use p0f’s signatures,

the selected features are similar to that of p0f including MSS,

WS, and iTTL. They also consider features such as options

layout and IP version.

Different from operating system classification from TCP/IP

traffic analysis, Chang perform operating system classification

based on DNS logs [6]. Author used chi-squared test to extract

features from DNS logs to distinguish different OSes and used

the hamming distance for classification.

Finally, p0f, ettercap, SinFP, NetworkMiner, NetSleuth,

PacketFence, PRADS and Satori are among some of the

publicly available passive fingerprinting tools.

III. METHODOLOGY

In this paper, we measure the operating system classification

performance of TCP/IP protocol headers using machine learn-

ing. We use the genetic algorithm feature selection technique

for determining the relevant features from TCP/IP protocol
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headers. After determining the protocol features, we used

machine learning algorithms to populate a set of rules using

the full and selected set of features.

We initially collected the set of all features to be used for

performing operating system classification. We then eliminated

features which contained null values along with the ones that

were machine learning incompatible such as cookie value in

HTTP, domain name in DNS, etc. and the ones that were

machine dependent such as MAC address in DHCP, user agent

in HTTP, etc.

For the fitness function of the genetic algorithm, we em-

ployed the wrapper method of feature selection [11]. The

fitness function uses the trainer itself to determine the per-

formance of feature combinations generated by the genetic al-

gorithm. Wethen determined TCP/IP protocol header features

that led to the best operating system classification.

A. Data Initialization

We set up a local network consisting of 4 computers. Three

of these computers contain instances of Fedora 23, Xubuntu

14.04, Windows 7 and Windows 8 and the fourth computer

contains an instance of OSX El Capitan. We collected packets

from multiple devices to remove any possible bias that might

have existed while collecting packets from one instance of

the operating systems. Every instance of operating systems

on the machines that we collected packets from were freshly

installed. We did not use VirtualMachine in order to generate

as realistic scenarios as possible and used the Wireshark tool

to collect packets.

To generate HTTP protocol packets; we visited

the same websites on every operating system.

These websites were; http://www.google.com,

http://www.yahoo.com, http://www.unr.edu
and http://www.youtube.com. We also collected

approximately 20 minutes of YouTube video streaming.

To generate FTP protocol packets, we connected to

ftp://ftp.godaddy.com FTP server and uploaded

files to the server. To generate ICMP packets, we used the

traceroute application to connect to all 4 of the domain names

mentioned earlier. To generate SSH packets, we initiated

connections to a SSH server and transmitted files to the

server. The remaining protocols such as; IP, TCP, UDP, DNS

and SSL were observed among the collection of packets for

the protocols mentioned above.

The number of packets collected for each protocol are

provided in Table I. The number of packets among different

protocols differ as different protocols have different popularity

in real network flows. 5% of the dataset was dedicated to the

training of genetic algorithm’s fitness function and another

5% was dedicated to the testing of genetic algorithm. The

remaining 90% of the packets were split into 5 parts to perform

5-fold cross-validation test. 4 of the 5 parts of the packets were

used to train the system and the remaining one was used to test

it. This process was performed for every combination of these

parts of data and their average performances were recorded.

TABLE I
NUMBER OF PACKETS

Protocols GA train GA test Train Test Total

IP 4,711 4,711 339,280 84,820 433,522

ICMP 39 39 2,900 725 3,703

TCP 5,583 5,583 402,100 100,525 513,791

UDP 711 711 51,240 12,810 65,472

HTTP 308 308 22,320 5,580 28,516

DNS 561 561 40,580 10,145 51,847

SSL 201 201 14,660 3,665 18,727

SSH - - 60 15 75

FTP - - 100 25 125

For packet collection, packets containing certain protocol

were generated and collected within this local network. These

protocols include; HTTP, DNS, SSL, FTP, SSH, ICMP, UDP,

TCP and IP. For each protocol, feature selection and machine

learning classification was performed for two sets. One of

them is using every possible feature of the provided protocol

and the other one is using the genetic algorithm selected

features of this protocol. Also, for each test, features of the

provided protocols were collected and those features with only

null values have been eliminated since they do not contribute

anything to the classification.

SSH and FTP protocol packets seemed to have many

packets with similar headers and after removal of the du-

plicate packets there were not enough number of packets to

perform genetic algorithm. Therefore, we did not perform

genetic algorithm feature selection technique for SSH and

FTP protocols. We calculated the classification performances

of these protocols using all available features.

B. Feature Selection

In addition to testing operating system classification perfor-

mance with every feature determined from the protocols, we

tried to reduce the number of features to be considered. We use

genetic algorithm to determine subset of features that would

keep the classification performance high. Genetic algorithm

is the process of searching and testing the performance of

a solution among a space of solutions [16]. The idea is

based on the biological mechanisms of natural selection and

reproduction. Genetic algorithm uses an objective (or fitness)

function to evaluate every solution it finds. This process is

performed until a certain criteria is met. The criteria in our

case was the generation of 15 consecutive solutions which are

the same. The fitness function to evaluate the solutions is:

Fitness = 0.80×Accuracy +

0.15×
(
1− |SelectedFeatures| − 1

|AllFeatures| − 1

)
+

0.05×
(
1− |SelectedRules| − 1

|AllRules| − 1

)
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TABLE II
NUMBER OF SELECTED FEATURES

Protocol All J48 JRip Ridor PART DT RF NB MP

IP 23 5 6 4 6 4 9 3 5

ICMP 20 4 10 5 3 1 5 5 5

TCP 62 7 8 7 12 4 10 12 -

UDP 7 1 3 1 1 3 1 2 2

HTTP 17 3 5 1 7 1 2 3 7

DNS 34 1 8 1 5 5 12 3 2

SSL 31 1 10 4 4 3 2 7 11

SSH 18 - - - - - - - -

FTP 4 - - - - - - - -

where Accuracy represents the classification performance

with the provided machine learning algorithm.

Different weight values for accuracy, features and rules were

tested. Since we would like to perform classification with as

high classification performance as possible, we have set the

weight for accuracy to 80%. We also wanted to use as few

features as possible while trying to keep the performance high.

Therefore, we set the weight for the number of features to be

selected to 15%. Finally, we wanted to end up with as small

number of rules or exemplars at the end as possible, so we

set the weight for the number of rules to be extracted by the

classifier to 5%.

C. Rule Extraction

After determining the features to be used, we analyzed

different machine learning algorithms to perform operating

system classification. We used the WEKA tool [10] for clas-

sification. We utilized a set of algorithms in the WEKA tool,

namely; J48, JRip, Ridor, PART, DecisionTable, RandomFor-

est, NaiveBayes, and MultilayerPerceptron.

IV. EXPERIMENTAL RESULTS

In this section, we provide the classification performance

of different layer 3 (i.e., IP and ICMP), layer 4 (i.e., TCP

and UDP), and layer 5 (i.e., HTTP, DNS, SSL, SSH, and

FTP) protocols. We demonstrate classification performance

with all the extracted features from protocol header and with

features selected by the genetic algorithm. The fitness function

for the genetic algorithm tries to increase the classification

performance while trying to decrease the number of features

and number of rules. Table II shows the number of features

that originally existed in our dataset along with the number of

features that genetic algorithm selected for each protocol. As

seen in the table, genetic algorithm was able to decrease the

number of features immensely.

The use of genetic algorithm for selecting features had

a very huge impact on the results that we generated. As

presented in Table II, the number of features that algorithms

used for classification of operating systems are much lower

than the initial number of features. It can be expected for

the classification performance to drop when the number of

features are immensely reduced, however, the genetic algo-

rithm is able to select the ones which are the most helpful in
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Fig. 1. IP Performance

terms of differentiating the operating systems. As shown in

following protocol evaluations, there are even cases where the

classification performance increases after applying the genetic

algorithm.

A. IP protocol headers

IP protocol is among the ones that provide acceptable

amount of uniqueness to the classification of operating systems

as seen in Figure 1. While the bars present the average of 5

evaluations, error bars present the min and max performance

of the algorithm. On average of all algorithms, we observe

68.0% performance when all features are considered, while

performance becomes 67.5%, on average, when subset of

features are utilized. At its best, it has 76.2% performance

of classification with the J48 algorithm.

Table III presents IP protocol features that were selected

by different machine learning algorithms. As seen in the

table, among the features extracted from the IP protocol

packets, the Checksum (checksum) feature seems to be the

most preferred feature by all of the algorithms for determining

the uniqueness of different operating systems. In general, the

checksum contains distinguishing information about packets

due to the fact that it contains a summary of protocol header.

TABLE III
SELECTED IP FEATURES

Features J48 JRip Ridor PART DT RF NB MP Σ

checksum � � � � � � � � 8

ttl � � � � � � � 7

id � � � � � � � 7

len � � � � � 5

proto � � � 3

opt.ra � � 2

dsfield.dscp � � 2

frag offset � � 2

dsfield.ecn � 1

flags.df � 1

opt.type � 1

hdr len � 1

opt.type.number � 1

checksum bad � 1

Σ (features) 5 6 4 6 4 9 3 5
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Fig. 2. ICMP Performance

Along with checksum, the ID and TTL features are among

the most selected features by the algorithms. IP ID is the

identification number of a packet and it is often incremented

for every packet sent from the operating system. As long as

its values do not overlap for packets from multiple operating

systems, it is expected for the feature selection algorithms to

detect the uniqueness of this feature. One of the reasons for

collecting packets from multiple devices was to eliminate such

biases, but it is difficult to completely eliminate them.

TTL is used to prevent infinite loops on the Internet where

every router decrements this value until it becomes 0 or

reaches its intended destination. As the second most common

differentiator, it seems operating systems prefer different ini-

tial values for this feature and hence TTL becomes useful

to classify operating systems based on IP protocol header

information.

The forth most important feature is the Total Length (len)

feature, which contains the number of 32-bit words in the

header. Also depending on the content’s uniqueness in every

packet, it is possible for this particular feature to be very

helpful in determining which operating system the packet

might have originated from.

Even though the number of features genetic algorithm

extracted for each algorithm differs, Ridor seems to perform

well with using just the 4 most popular features indicated

earlier. It was even able to outperform the RandomForest

algorithm using less than half of the features RandomForest

selected.

According to [14], TTL and Total Length are among the

features open-source tools use and we are able to observe

their importance in our evaluations as well. However, another

feature that was mentioned in this paper was the Don’t

Fragment bit, but it was only selected by a single algorithm

in our experiements.

B. ICMP protocol headers

ICMP is a protocol that does not contribute much to the

classification of operating systems as seen in Figure 2. On

average of all algorithms, we observe 51.6% performance

when all features are considered, while performance becomes

53.3%, on average, when subset of features are utilized. At
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Fig. 3. TCP Performance

its best, it has 58.8% performance of classification with the

PART algorithm on selected features.

Similar to the IP protocol, the most preferred feature by

the algorithms is checksum as seen in Table IV. However, the

results for DecisionTable algorithm shows us that, a perfor-

mance of 54.4% can be achieved with just the identification

feature. The identifier feature for an ICMP packet provides

unique classification, above average of all algorithms that have

additional features.

C. TCP protocol headers

TCP is the most distinguishing protocol header to accu-

rately classify operating systems as shown in Figure 3. Note

that, MultilayerPerceptron algorithm could not complete its

classification due to its considerably high complexity and the

large number of features and number of TCP packets. Hence,

it is omitted in TCP analysis. On average of all algorithms, we

observe 98.4% performance when all features are considered,

while performance becomes 99.1%, on average, when subset

of features are utilized. At its best, it has 99.9% performance

TABLE IV
SELECTED ICMP FEATURES

Features J48 JRip Ridor PART DT RF NB MP Σ

checksum � � � � � � � 7

type � � � � � 5

mpls.s � � � � 4

checksum bad � � � 3

ext.class � � 2

ext.ctype � � 2

ext.length � � 2

ext.res � � 2

ext.version � � 2

ident � � 2

ext � 1

ext.checksum � 1

mpls.label � 1

seq � 1

code � 1

mpls.ttl � 1

mpls.exp � 1

Σ (features) 4 10 5 3 1 5 5 5
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of classification with the PART, Ridor, Jrip, and J48 algorithms

with both all features and selected features. Overall, we realize

that TCP is a good differentiator of operating systems as it is

a complex protocol with various features that are implemented

differently by operating systems.

Although the number of features used by certain algo-

rithms can reach up to 12 as seen in Table V, there are

algorithms which were still able to classify at a very close

performance rate with much less features. For example, the

DecisionTable algorithm was able to perform classification at

a rate of 99.4% using only 4 features which is just 0.5%

less than the PART algorithm, which used 12 features. The

four features extracted by the genetic algorithm using the

DecisionTable algorithm are; source or destination Port (port),

analysis.out of order, analysis.retransmission, and copy on

fragmentation (options.type.copy).

According to [14], Window size (WS), TCP Max Seg-

ment Size Option* (MSS), TCP Window Scaling Option

Flag* (WSO), TCP Selective Acknowledgments Options Flag*

(SOK), TCP NOP Option Flag* (NOP) and TCP Timestamp

TABLE V
SELECTED TCP FEATURES

Features J48 JRip Ridor PART DT RF NB Σ

stream � � � � � 5

options.timestamp.tsval � � � � 4

window size scalefactor � � � � 4

port � � � � 3

srcport � � � 3

analysis.duplicate ack frame � � 2

analysis.duplicate ack num � � 2

analysis.out of order � � 2

analysis.rto frame � � 2

flags � � 2

flags.reset � � 2

option kind � � 2

nxtseq � � 2

flags.push � 1

option len � 1

options.wscale.multiplier � 1

options.wscale.shift � 1

pdu.size � 1

ack � 1

segment.count � 1

seq � 1

dstport � 1

flags.cwr � 1

options.type.copy � 1

analysis.retransmission � 1

window size value � 1

options.sack perm � 1

analysis.zero window � 1

analysis.bytes in flight � 1

options.timestamp.tsecr � 1

options.sack.count � 1

checksum good � 1

analysis.duplicate ack � 1

options.sack le � 1

reassembled.length � 1

options.sack re � 1

hdr len � 1

Σ (features) 7 8 7 12 4 10 12
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Fig. 4. UDP Performance

Option Flag* (TS) are among the features open-source tools

use. In our experiements, however, Window size was se-

lected by only the PART algorithm and TCP Max Segment

Size Option was not selected by any of the algorithms.

As for the TCP Window Scaling Option Flag, similar to

what the tools use, four of the algorithms extracted the

(window size scalefactor) feature. As opposed to TCP Se-

lective Acknowledgments Options Flag alone, our genetic

algorithm implementation selected (options.sack.count), (op-

tions.sack le), (options.sack perm) and (options.sack re) fea-

tures. These features were also selected by single algorithms

individually. Four of utilized machine learning algorithms

selected the (options.timestamp.tsval) feature and this feature

has an important impact on our results as well.

D. UDP protocol headers

UDP protocol yielded different performances with different

machine learning algorithms as shown in Figure 4. On average

of all algorithms, we observe 71.1% performance when all

features are considered, while performance becomes 68.3%,

on average, when subset of features are utilized. At its best, it

has 80.0% performance of classification with the J48 algorithm

while several algorithms have very similar results.

Overall, there are only four UDP features utilized by the

algorithms as shown in Table VI yet these features allow

classification at a rate of around 80%. The checksum feature is

selected by every algorithm. As indicated earlier, this is likely

due to the fact that the checksum contains a summary of the

entire packet. Even though other features were also selected

by certain algorithms, the results for J48 shows that even

the checksum alone can perform classification performance

TABLE VI
SELECTED UDP FEATURES

Features J48 JRip Ridor PART DT RF NB MP Σ

checksum � � � � � � � � 8

srcport � � � 3

port � � 2

dstport � 1

Σ (features) 1 3 1 1 3 1 2 2
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Fig. 5. HTTP Performance

similar to other algorithms that used additional features.

E. HTTP protocol headers

HTTP protocol yielded different good performance with

most of the machine learning algorithms as shown in Figure 5.

On average of all algorithms, we observe 78.7% performance

when all features are considered, while performance becomes

78.0%, on average, when subset of features are utilized. At

its best, it has 87.7% performance of classification with the

RandomForest algorithm with subset of features.

For the HTTP protocol, as seen in Table VII,

(prev request in) feature is selected for the majority of

algorithms. This feature is the previous request in frame and

is represented as a frame number. There are a few other

features that were selected by most of the algorithms, namely;

(accept encoding), (cache control) and (request.method).

F. DNS protocol headers

Among the protocols analyzed in this study, DNS was

unsuccessful in correctly classifying operating system of the

individual packets as seen in Figure 6. On average of all algo-

rithms, we observe 29.2% performance when all features are

considered, while performance becomes 30.0%, on average,

when subset of features are utilized. At its best, it has 30.9%

performance of classification with the J48 algorithm.

TABLE VII
SELECTED HTTP FEATURES

Features J48 JRip Ridor PART DT RF NB MP Σ

prev request in � � � � � � � 7

accept encoding � � � � � 5

cache control � � � � 4

request.method � � � 3

response � � 2

content length � 1

connection � 1

content length header � 1

accept � 1

content type � 1

notification � 1

prev response in � 1

request � 1

Σ (features) 3 5 1 7 1 2 3 7
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Fig. 6. DNS Performance

The features preferred by genetic algorithm for the DNS

protocol, as seen in Table VIII, seem to be distributed among

different machine learning algorithms. This inconsistent be-

havior is reflected on the poor classification results in Figure 6

as well. Genetic algorithm was not able to find very distin-

guishing features and therefore for each algorithm, selected

features do not necessarily have a pattern. J48 and Ridor

algorithms reached average performances by using only a

single feature which is the (flags.truncated) and (flags.rcode)

fields, respectively. Hence, while DNS header is not promising

enough to be used by itself, certain features of the header can

be used to determine the operating system of packets.

G. SSL protocol headers

On average, SSL protocol classification results were even

lower than the DNS protocol as shown in Figure 7. On average

of all algorithms, we observe 25.0% performance when all

features are considered, while performance becomes 25.3%, on

TABLE VIII
SELECTED DNS FEATURES

Features J48 JRip Ridor PART DT RF NB MP Σ

soa.retry interval � � � � 4

count.answers � � � 3

resp.cache flush � � � 3

soa.serial number � � � 3

flags.checkdisable � � 2

resp.len � � 2

flags.truncated � � 2

flags.conflict � � 2

flags.recdesired � � 2

qry.type � � 2

count.auth rr � 1

flags � 1

flags.authoritative � 1

resp.class � 1

soa.expire limit � 1

flags.opcode � 1

flags.recavail � 1

flags.authenticated � 1

resp.ttl � 1

flags.rcode � 1

qry.class � 1

soa.refresh interval � 1

Σ (features) 1 8 1 5 5 12 3 2
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Fig. 7. SSL Performance

average, when subset of features are utilized. At its best, it has

28.5% performance of classification with the J48 algorithm.

Feature selection among different algorithms are also scat-

tered around and there does not exist consistency among

algorithms for the features as shown in Table IX. Only Cipher

Suites Length (handshake.cipher suites length) is used by

half of the algorithms for classification while Server Name

length (handshake.extensions server name len) gives close to

the average performance by itself under the J48 algorithm.

H. SSH protocol headers

SSH is the second least successful in classification of the

operating systems from packet header as shown in Figure 8.

On average of all algorithms, we were able to correctly identify

the operating system of 22.5% of SSH packets. This could be

due to the fact that most of the packets’ header information

were identical which yielded very few unique packets to train

the machine learning algorithms. We did not select features

with genetic algorithm due to insufficient amount of packets

remaining.

TABLE IX
SELECTED SSL FEATURES

Features J48 JRip Ridor PART DT RF NB MP Σ

handshake.cipher suites length � � � � 4

handshake.extensions server name len � � � 3

handshake.session id length � � � 3

handshake.ciphersuite � � � 3

handshake.extension.len � � � 3

change cipher spec � � 2

handshake.length � � 2

record � � 2

handshake � � 2

handshake.extension.type � � 2

handshake.extensions elliptic curves � � 2

record.version � � 2

record.content type � � 2

record.length � � 2

alert message.desc � 1

alert message.level � 1

handshake.extensions elliptic curves length � 1

handshake.type � 1

handshake.ciphersuites � 1

handshake.extensions ec point format � 1

handshake.extensions ec point formats length � 1

handshake.extensions length � 1

Σ (features) 1 10 4 4 3 2 7 11
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Fig. 8. SSH Performance
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Fig. 9. FTP Performance

I. FTP protocol headers

FTP is the worst protocol header for classification of the

operating systems from packet header as shown in Figure 9.

On average of all algorithms, we were able to correctly identify

the operating system of 14.0% of FTP packets. Similar to

SSH, we did not select features with genetic algorithm due to

insufficient amount of packets remaining.

V. CONCLUSION

In this paper, we presented the contribution level of popular

protocols to classify the operating system of hosts from which

the packets originated. We also presented how well certain ma-

chine learning algorithms performed for the operating system

classification from TCP/IP protocol headers. By using genetic

algorithm to select most distinguishing features, we demon-

strated the amount of contribution that the selected features

have in affecting the classification performance while reducing

computation overhead in classifying OSes. Since classification

was performed individually on the packets, results obtained

are not bound to restrictions such as classification of certain

packet types only (e.g. SYN packets in TCP). Overall, with IP,

ICMP, TCP, UDP, HTTP, DNS, SSL, SSH, and FTP, protocol

header information, on average, operating systems of 68.0%,

51.6%, 98.4%, 71.1%, 78.7%, 29.2%, 25.0%, 22.5%, and

14.0%, respectively, packets were correctly classified. Among
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analyzed protocols, TCP provided the best overall performance

with all algorithms that completed analysis of TCP headers

and we obtained close to perfect classification with all but

one algorithm.
For future work, we would like to perform tests to see

how well packets can be classified across different layers of

TCP/IP protocol. For instance, one can analyze DNS, UDP,

and IP headers of a DNS packet to see whether performance

gains can be achieved. After performing layer-based tests, we

would like to determine the features that can be used across the

entire TCP/IP protocol which then would allow us to introduce

a system for classifying operating systems of packets which

would know exactly which features to check and provide as

high classification performance as possible. We also would

like to test the classification performance of background traffic

and user generated network traffic. Finally, we plan to include

mobile devices and other versions of the operating system

families in the future.
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