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Abstract�Data Analytics is widely used as a means of 
extracting useful information from available data. It is only 
natural that it is increasingly adapted for processing big data. The 
rapidly growing demand for big data analytics has several 
undesirable side-effects. Perhaps, the most significant of those 
relates to increased risks for data disclosure and privacy 
violations. Data anonymization can provide promising solutions 
for minimizing such risks. In this paper, we discuss some of the 
specific requirements of the anonymization process when dealing 
with big data. We show that in general, information loss is the 
result of avoidable generalization of similar or equivalent data. 
Using these analyses, we propose a novel framework for data 
anonymization, which expands the k-anonymity properties and 
concepts and takes the data class values and the sensitivity of data 
into account. As such, the proposed process can utilize a bottom-
up approach, in contrast to most other anonymization methods.  
The top-down approaches usually generalize all records, the 
equivalent and the non-equivalent ones. Ours is more methodical, 
as it avoids the generalization of the equivalent records. With the 
inclusion of sensitivity levels, we demonstrate that our framework 
can reduce the iteration steps and the time required to finalize the 
anonymization, and therefore enhance the overall efficiency of the 
process 
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I. INTRODUCTION 
It is hard to define big data precisely. The term big data has 

appeared in the literature since the world faced technical 
difficulties in storing, retrieving and analyzing the massive 
volumes of data. Big data is predominantly associated with data 
storage and data analytics processes [1]. Hardware 
developments, particularly memory and CPU technologies, 
have not been able to meet the processes that go with the 
massive growths in data volumes [2]. These necessitate the 
development of novel approaches and revamping of the 
methods that process big data [3]. Data analytics is among the 
prominent approaches in such operations. The significance of 
data analytics increases in direct proportions to the growing 
volume of data [4].  

Big data analytics, however, may result in greater security 
risks and user privacy invasions. To overcome these problems, 
data anonymization has been suggested and implemented [5]. 
The majority of anonymization approaches have been proposed 
for conventional data, and may not be suitable for big data 
processes. However, at least conceptually, the more scalable 
approaches can be adapted for use in big data environments. 

Two primary methods are used for conventional data privacy 
protection. These are perturbation techniques and methods for 
k-anonymity [6]. Many variations of these two approaches have 
been devised and reported. Some of their adaptations have also 
been developed for privacy preservation while dealing with big 
data. These have been mainly achieved by amending the 
conventional data methods, to make them fit the big data 
characteristics. However, these modifications do not fully 
satisfy the requirements arising in dealing with big data [7]. On 
the other hand, MapReduce is a parallel distributed process that 
has gained popularity in managing big data. Big data privacy 
preservation approaches that mimic the MapReduce structure 
are shown to produce promising results [8].  

Many users from various organizations may inquire access 
to big data analytics for different reasons. With a large number 
of users, it is reasonable to expect differing access privileges, 
for instance, due to the roles of the various users [9]. Current 
big data anonymization methods, however, do not provide for 
multiple levels of access privilege. Nevertheless, compared to 
conventional data, big data by nature is more prone to external 
attacks. So, it is beneficial to have anonymization methods that 
are capable of providing hierarchical access control levels, 
similar to those provided by Role-Based Access Control 
(RBAC), without significantly affecting the big data analytics 
performance. 

A widely cited anonymization method, utilized 
generalization and suppression of data to yield k-anonymity 
properties for the data [10]. The method is based on 
anonymization of quasi-identifiers (Q-ID), which can be used 
in the discovery of a group of attributes that in turn may identify 
other tuples in the database  [11]. The method tends to hide the 
sensitive values by ensuring the equivalency between records 
by at least k times [10].  One of the main reasons behind the 
large information loss in k-anonymity method was the single 
dimensional operation. The k-anonymity adheres one group for 
all data, which considerably reduces the gained information. 
This concern was resolved by proposing the top-down 
specialization method. The TDS is capable of endorsing the 
multi-dimensional operation. Eventually, the TDS method was 
proposed based on LKC method in a multi-dimensional 
operation [12]. Hence TDS is known by multi-dimensional 
TDS (MDTDS) [13] and [14]. All k-anonymity methods 
implement the grouping process as a major task of 
anonymization. Data is usually grouped into equivalent or 
similar records, known as compressions. MDTDS intensively 
compresses data to the top-most, by generalizing Q-ID 
attributes to the top-most values. This technique increases the 
information loss rate.  
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Another big data privacy method mutates between top-down 

specializations (TDS) and bottom-up generalization (BUG) in a 
hybrid fashion [15, 16]. The method calculates the value of K, 
where K is defined as workload balancing point if it satisfies the 
condition that the amount of computation of anonymization 
required by MRTDS is equal to that by MRBUG. The K value 
is calculated separately for each group of data set, so TDS 
operation is triggered when anonymity of k > K, while BUG 
operation is triggered when anonymity of k > K. However, the 
iteration technique of this method is quite similar to MDTDS. 
Also, finding the value K for each group of record consumes 
even more time. 

Any big data anonymization process is supposed to operate 
in a parallel distributed paradigm, which splits the large tasks 
into smaller subtasks and scopes. To achieve this, utilization of 
approaches similar to those implemented by the MapReduce 
slave servers may prove to be fruitful. In this fashion, each node 
spends very little time on each process, before transferring the 
rest of the job to another server. Task splitting is not 
implemented in MDTDS. Furthermore, MDTDS splits the large 
size of data into small chunks. This technique negatively affects 
the information gain, resulting in increased information loss. 

 
Sensitivity value is a real number that can be calculated from 

Q-ID probability and user ownership level. Sensitivity concept 
is related to hierarchical multi-level access control and 
anonymity process. It is essentially managing how much or to 
what extent the data attributes can be reorganized. The masking 
tool determines the level of anonymization in the reverse order. 
That is, the user with a higher access level will receive less 
reorganized data. The anonymity is provided through a number 
of iterations until the data reaches the desired k-anonymity 
conditions. As it will be shown, the sensitivity value can help in 
reducing the number of the required iterations, improving the 
overall anonymization process. The proposed anonymization 
approach benefits from utilization of sensitivity concepts.   

In this work, we propose a novel method to addresses the 
mentioned concerns for MDTDS. It is referred to as Multi-
Dimensional Sensitivity-Based Anonymity (MDSBA). It 
introduces a new technique of distributing the workload among 
the parallel MapReduce servers. The method is integrated with 
the Role-Based Access Control to provide hierarchical user 
access privileges. The proposed method, shortens the 
compression process through anonymizing groups from bottom 
up, eliminating the need for grouping of the equivalent records. 
Additionally, data is not split into small chunks. Rather, the data 
is distributed among many nodes, reducing its loss.  

The rest of this paper is structured as follows. The next part 
discusses the adaptation of anonymization methods for use in 
big data. Section II describes the requirements for 
anonymization methods that deal with big data. Section III 
describes general requirements for any proposed anonymization 
method. Our proposed anonymization approach, MDSBA, is 
explained in Section IV. We then briefly discuss the RBAC 
integration with the MDSBA method. The last section gives our 
concluding remarks and the suggested future works.  

II. ANONYMIZATION METHODS ADAPTED FOR BIG 
DATA 

MapReduce transaction method is different from the 
classical transaction procedure in analytics process. 
MapReduce divides data process into two main tasks; reading 
data from multi-repositories and aggregating results in a reduce 
output. This imposes a new method of disposition in privacy 
related operations. The anonymization process can be amended 
to fit the reading, shuffling and reducing of data, as per 
MapReduce environment.   

Some privacy preservation methods have been modified to 
fit the MapReduce framework and perform parallel data 
intensive computations on commodity computers [9]. 
Computation reads input data from a distributed file system, 
which splits the data into multiple chunks. Each chunk is 
assigned to a mapper which reads the data, performs some 
computation, and emits a list of key/value pairs. In the next 
phase, Reduce phases combine the values belonging to each 
distinct key according to some functions and write the result to 
an output file. The framework ensures fault-tolerant execution 
of mappers and reducers while scheduling them in parallel on 
any node in the system [8]. 

Since the MapReduce operations include; split, Map, shuffle 
and reduce, therefore, any practical security solution should 
take these transactions into consideration. Any tweaking in the 
available algorithms should consider the milestones of the 
scale-up efficiency and the data privacy [17]. A recently 
developed method in k-anonymity is Multi-Dimensional Top-
Down Specialization method MDTDS. The method is separated 
into two-phase steps, known by Two-Phase TDS or TPTDS 
[18]. In perturbation, Airavat is the most popular method [19]. 
Besides, PINQ and GUPT [20]. 

TPTDS was proposed during the early release of Hadoop. 
Currently, MapReduce can be easily implemented by using Pig 
Latin, Hive, or SPARK , which makes the MapReduce job 
easier. This concern recalls for an indirect method that can 
provide better-performed operations. Previously, Hadoop 
scripts can be implemented by programming languages only; 
such as Java. Currently, Java can be replaced by Pig Latin 
queries or Hive. However, Java use can be reduced to the 
minimal, and on need only. 

III. REQUIREMENTS OF ANONYMIZATION 
METHODS  

Some specifications should be considered in developing 
anonymization methods. Developers need to distinguish the 
disparity between big data and conventional data. Most 
anonymization methods were developed for more traditional 
data, with a limited size of data and a computation cost. With 
big data, anonymization process should be able to reduce the 
computation costs, prevent high information loss and increase 
security. The larger size of data may increase the number of 
users who wish to access data. Because of the variance in the 
level of user access; there is a need for discriminating 
anonymization level.  

Any big data anonymization developer should pay attention 
to the following specifications: 
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A. Equivalency Increase 

The equivalency increase is a general specification that must 
be considered on proposing any k-anonymity method for big 
data. In k-anonymity, the percentage of equivalent records 
proportioned extrusive with the increasing number of records. 
The rising number of records can help the least common 
attributes to gain the equivalency. This is true for most 
attributes. Few attributes are excluded, as a reason for their 
solitary nature like; emails, usernames, phone or fax numbers, 
and primary keys.        

Any Q-ID attribute can be presented by the probability of 
occurrences as; P(attr)=r/n, where any attribute attr can happen 
in r ways out of total number n. If we assume that each attribute 
allows r=1 of ways; then P (attr) =1/n. 

The probability is defined by using the following 
assumptions. A group of records, N, contains some D attributes. 
The attributes D include m quasi-identifiers (Q-ID) [21] and one 
sensitive attribute. For each sensitive value, the probability 
factor of Q-ID records in the domain D, is described as: 
 � ������	
 � �������
	�� 
 �� ��������
 �� � �������

 (1) 

Where P[Q_ID] is the probability for each Q-ID. 

There are correlations of�� � �
� ����	��
����� , where n denotes 

the maximum number of Q-IDs combinations in N. This means 
that any Q-ID record must be equivalent to one of the n 
combinations. If we assume that each value of the combinations 
appears only once; then we need at least n records to gain one-
time occurrence.  Also, we need k � n records to gain the k-
anonymity for each combination value. Referring to k-
anonymity, the equivalency q is defined as the total number of 
equivalent records q � k for each occurrence. For instance, if k 
=5, then each distinguished record must appear five times in N 
before gaining the k-anonymity. In the real data, the number of 
Q-IDs combinations appearances are usually less than n. Let us 
call the number of actual combinations appear is n� . Based on 
our assumption of one time appearance for each combination; 
we can calculate the minimum value of N as:  �
	� � � � �� �  (2) 
Where n�  denotes the number of actual combinations that appear 
in N, n�  � n 

Equation 2 assumes that each record has an equal number of 
appearances to the other records, which concludes that q=Nmin. 
However, in the real data, this is not a typical case. Thus, some 
records appear less frequently than the others, which makes 
some records reach the equivalency, while others fail. However, 
Equation 2 describes only one scenario. Nevertheless, any 
situation should consider the variable n� . The probability value 
of variable n�  remains between the stability and increase, and it 
never decreases. In reality, the value of n�  usually increase, while 
the stability scenario is less probable. Besides, the equivalency 
q is proportioned extrusive with N, and can be described as q � 
N, so q � N. This can be presented by the increase percentage 
of equivalency Q = q / N.  

The positive relationship q � N can be proven 
experimentally. We have conducted three experiments by using 
the adult database from the UCI Machine Learning Repository 

[22]. The database describes the age of an adult, their 
occupation, marital status, education, sex, hours worked per 
week, race, native country, and salary. We assumed the salary 
attribute is the sensitive data, and we assigned three Q-ID 
attributes; age, education, and sex. The experiments are 
conducted using MatLab simulator [23], by choosing three 
groups of N records small, medium and large. 

During our experiments we assumed that � = 10, and the Q-
IDs probabilities are calculated as; P[age] = P [1-100] =0.01, 
P[education] = P [Y5-6, Y7-8, Y9, Y10, Y11, Y12, HS-grade, 
Some-college] = 0.125, P[sex] = P [Male, Female] = 0.5, and 
P[S] = P [<=50K , >50K] = 0.5. Hence, the maximum number 

of combinations is calculated as�� � �
� ����	��
����� � � !". 

In the first experiment; we started by N =10,000 records. 
The number of the actual appearing combinations in 10,000 
records was n�  = 1741, which presents around 50% of the 
probable appearances. The number of equivalent records is 
q=6272, which presents around Q=60% of the total number of 
records. 

In the second experiment, we increased the number of 
records N= 20,000. The number of actual appearing 
combinations n�  = 2196, which presents around 69% of the 
probable appearances. The number of equivalent records is 
q=14828, which presents around Q=75% of the total number of 
records.   

In the third experiment; we further increased the number of 
records N=32,561. The number of actual appearing 
combinations is n�  = 2498, which presents around 78% of the 
probable appearances. The number of equivalent records is 
q=26846, which presents around Q=82% of the total number of 
records.    

The three experiments showed an increase in both of the 
equivalency percentage Q and the actual appearing combination 
n� . Fig. 1 and Fig. 2 show both values increase for three different 
volumes of records. 

 

 
Fig. 1. Proportionality of equivalent records with increased 

record numbers  
. 
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Fig. 2. The effect of increasing the number of actual 

combinations with increased number of records 

B. The Information Gain 

Current anonymization methods are mostly adaptations of 
approaches that were designed for conventional data [7]. 
Therefore, the grouping process is the primary task for 
anonymization, which supports the masking operations [24]. As 
explained before, data equivalency increases extrusive with the 
data size increase, which concludes a larger group of equivalent 
records. As a result, this will end up with a massive information 
loss; if the equivalent records were not handled and anonymized 
properly. An example of the current anonymization processes 
is MDTDS [16], which starts by generalizing Q-IDs, then 
grouping them, and finally going through a specializing step. 
This technique provokes a large size of equivalent records and 
involves an inefficient use of anonymization process, which is 
can be avoided for equivalent data. 

The MDTDS is a popular anonymization method adapted in 
MapReduce. The method adapts k-anonymity and requires n 
times of iterations to find the best score on specialization rounds 
[18]. The iterations create n rounds between the Map and the 
Reduce. Since Map and Reduce may be connected through the 
network on separate computers; therefore, an unknown number 
of iteration times may create a high delay. Also, the iteration 
locks both servers till the end of the process, which will disturb 
the parallel computing principle. Also, the number of the Map 
and the Reduce computers is not always equal [25]. Most 
network structures increase the number of the Map servers on 
the account of the Reduce servers. This is because of a vast 
number of Map tasks in comparison with the Reduce tasks. 

Any big data anonymization method is supposed to split the 
large tasks into small limited functions. This is essential to 
utilize the MapReduce slave servers. Hence, each node spends 
less time on each process, and before transferring the rest of the 
job to another server. Splitting tasks method is not implemented 
in MDTDS. Besides, MDTDS splits the large size of data into 
small chunks. This technique negatively affects the information 
gain, increasing the information loss. 

Eventually, grouping data based on equivalency is an 
acceptable procedure if it was handled correctly on data 
masking. This evolves a better masking method by skipping the 
equivalent records, and applying masking on semi or non-
equivalent data only.  

C. The Parallel Distributed Environment and Multilevel 
Access 

A parallel distributed environment handles big data. The 
multi-task processes should be considered in any 
anonymization method used for big data. This can be 
implemented by splitting tasks into sub-tasks, and distributing 
them among multi-computers to cope with the massive data 
volume [26].  

In non-distributed environments, data must be divided into 
small chunks. This technique is essential in a limited hardware 
resources environment, with a single computation point. In this 
case, dividing data will prevent hardware overwhelming by a 
large size of data. In big data environment, splitting data into 
small chunks will negatively affect the information gain. This 
is inasmuch the previous equivalency increase, which is 
described in subsection A. For instance, a data chunk of 10,000 
records will be extensively anonymized more than a data chunk 
of 30,000 records, which leads to a higher information loss. This 
is because of the lower equivalency in the lower number of 
records.  

However, parallel distributed environments have a limited 
size of handling data on each time retrieval, such as in Hadoop 
Map/Reduce. This size of data retrieved can be pre-configured 
on Hadoop File System (HDFS). A trade-off between the 
maximum size and information gain should be studied carefully 
to determine the best fit size. Hence, we will further investigate 
this concern in our future works.  

A large number of users may require a robust access control 
method for proper management of the variety of the user 
privileges [9]. The access control method can be granularly 
integrated with the distributed environment to manage multiple 
levels of access without affecting the analytics performance.    

IV. MULTI-DIMENSIONAL SENSITIVITY-BASED 
ANONYMIZATION METHOD (MDSBA) 

Multi-Dimensional Sensitivity-Based Anonymization 
(MDSBA) method is developed to resolve three main issues. 
These are user access disparity, implementing Role-Based 
Access Control (RBAC) in MapReduce environment, and 
proposing an anonymization method with a subtle performance 
in MapReduce. MDSBA adapts a multi-dimension technique 
for performing a high level of computation for MapReduce. 

The MDSBA method mandates to define the privacy method 
and masking pattern for each access level. Data owners 
determine a subset of attributes as Q-ID, and a sensitive 
attribute S, then, the level of sensitivity is determined by 
MDSBA equations. MDSBA process is operated within RBAC 
environment. The Sensitivity Level of the attribute S is denoted 
by �, and the ownership level of a user is indicated by k�  = k-i, 
where i= {k-1, …,1} and k�  < k. A lower ownership level k�  
implies a higher sensitivity factor, denoted by �.   

Data is split horizontally rather than vertically. The division 
is based on attributes values rather than using a small chunk of 
data records. Data is split into four different groups with two 
levels, which enables a better multi-task approach in 
MapReduce. Moreover, data is categorized into three distinct 
categories, namely into equivalent, semi-equivalent, and non-
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equivalent. Equivalent data is defined as the number of similar 
records that is higher than or equal to the ��  value in k-
anonymity. Equivalent data cannot be anonymized, while 
anonymization is applied on semi and non-equivalent only. 

The semi-equivalent is defined by at least two Q-ID values 
equivalency. The semi-equivalent is a middle case between 
fully and none equivalent data. The semi-equivalent records are 
generated by grouping two equivalent Q-ID records or more. 
The non-equivalent records are grouped with one Q-ID only. 
The equivalent and semi-equivalent groups are collated in one 
domain called Similar Group or SG, while the non-equivalent 
groups are joint in another domain called Non-similar Group or 
NG. The domains structure is specifically proposed for the 
MapReduce structure. Therefore, it divides the anonymization 
into multi jobs including; reading, filtering, grouping, and 
filtering data again, to create SG and NG domains. The 
MDSBA jobs are shown in Fig. 3. The master server divides the 
user query into the multiple task process, and each task is 
divided into multi-tasks. Tasks are conducted on data nodes 
slave servers. The slave servers are configured to be either Map 
or reduce. In MDSBA, data is not split into small chunks. 
Instead, the split occurs at the HDFS level. Hence, the retrieved 
data size is pre-configured in HDFS. 

MDSBA can reduce the information loss by using two 
techniques; skipping the masking process on equivalent 
records, and distinguishing between semi and non-equivalent 
records on applying masking process. The masking of non-
equivalent records induces extra penalty on anonymization. 
This penalty is necessary to generalize the diverted values in an 
interval or a taxonomy tree. 

MDSBA is reliable and can be implemented by using Pig 
Latin, Hive, Spark, Java or any other scripting languages, or 
even a combination of them. The method is proposed to mimic 
the MapReduce environment, where a master server controls 
the slave nodes or (workers). 

The master server may run the map processing on one node, 
and the key/pair value is emitted to another node. The master 
server creates a job, and each job contains three main tasks; 
map, shuffle and reduce. Users trigger the task by using a script, 
which contains queries, and each query may contain one or 
more tasks. The job tracker creates a job and divides tasks 
between nodes. Since each node is directly connected to the data 
or file repository; then each data node reads part of the file/data.  
As mentioned before, the data node reads a limited size of the 
data, and this can be determined by the HDFS accommodation 
size. 

The prominent aim of our method is creating two levels of 
grouping. As shown in Fig. 3, the first grouping level depicts 
the number of sensitive values and divides tuples based on the 
sensitive value in domains G. For instance, three domains of 
G0, G1, and G2 are created for three different sensitive values. 
This grouping process is usually conducting in Map servers.  
The second grouping level depicts the number of equivalent 
records and separates G tuples into SG or NG domains. The 
separation is carried out in the Reduce processes.  

 
 

Fig. 3. MDSBA grouping method 
 
Each domain of G is divided into three categories, 

equivalent, semi-equivalent, and non-equivalent. Both of 
equivalent and semi-equivalent groups are combined in the 
domain SG, while the non-equivalent groups are combined in 
domain NG. The definition of equivalency mandates a complete 
Q-ID similarity between records. The semi-equivalency 
mandates a minimum of two Q-ID similarities between records. 
Finally, anonymization process is applied on each domain 
separately, and the output of each process is merged into one 
output file. 

The value of sensitivity factor � can be calculated by finding 
the probability of the minimum and the maximum probability 
values in a quantity of m Q-IDs. Hence, the maximum 
probability value among Q-IDs is defined as: #
$% � &'()�*����+,- �*���� ,��*����.,/�(3) 
 
By recalling Equation (1); the minimum probability is defined 
as the product of all Q-IDs probabilities, or: #
	� � � ������	
�	��   (4) 

Based on Equations (3) and (4); the value of � can be found 
between �min and �max, as in Equation (5): 

#� � #
	� 0 *� 1 23, 45�6785��9: ;  (5) 

Where � denotes the sensitivity factor, and �� 	
��
���	���	
ownership level. 

Equation (6) collates both terms of � and � to conclude the 
sensitivity equation �. The sensitivity of an object degrades 
with the data age. The aging factor � affects the sensitivity 
reversely. The older the objects, the less sensitive they are 
considered to be. In other words, two factors determine the 
sensitivity level, the ownership level �, and the aging factor �.  < � => 0 �?=  (6) @ABCB�<�DEFGHEI�HJE�IEFIKHKLKHM�NELEN- �'FD�O�DEFGHEI�HJE�'PKFP�Q'RHGS 

Equation 6 is used with the NG and SG domains. The 
equation establishes the sensitivity level for objects based on 
the user access level. The masking process tends to find a close 
similar or smaller than the sensitivity value. For instance, if 
�=0.5; then any value falls between 0-0.5 is accepted. However, 
finding the closer value to � is more appropriate. The aging 
factor creates a perturbation for the sensitivity value, and this 
manifests when the object is older than the obsolescence value, 
as explained in the next section.  
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Recalling Equations 6, the aging factor � creates a 

perturbation for the sensitivity value. The aging value manifests 
the object age in comparison with the obsolescence value Ø. 
The object age � is reversal with the sensitivity, whereas the 
older objects carry less sensitive information. The object aging 
calculation is mutable. Thus, two separate terms are expressed 
for the age y<Ø, and y� Ø, as described in Equation 7.  The 
aging participation percentage in sensitivity is pre-determined 
by the data owners, and donated by �. The participation 
percentage � is constant when y< Ø, and linearly degrades when 
y� Ø.  

T � UV W X 1Y � Z
V [ X 1Y � Z � +\! � *] 1 VX,^���������������*_, `ABCB��T� [ +���- Xa�b- X [ +�-+ c ��Y� c  ++d��������������������������������������������� 

Data owners may set � to 0% if their data objects do not 
mutate with the time factor.   

   Three masking operations are applied in anonymization 
process, suppression, taxonomy tree or cut, and interval. The 
sensitivity values are calculated by Equation 6. The following 
examples illustrate the three masking operations with 
sensitivity values reflect. Let an object with three Q-ID 
attributes. The data owner intends to anonymize the data with 
k=20.  Let the obsolescence value Ø=10, the aging participation 
�=70%, and object age y=13 years. The attributes values are 
students IQ test and described in Table 1. 

Based on the given attributes, we can calculate the 
sensitivity level � for the ownership value k� =10. 
Recalling Equations (3-5) to find out the sensitivity factor �, 
the values of �max=max (0.01, 0.005, 0.125) =0.125. While the 
minimum value of �min=0.01 × 0.005 × 0.125 = 6.25 × 10-6. The 
value of � as per Equation 6 is �= 0.063. 
Recalling Equation 7, the aging sensitivity �=-0.7 × 0.063 × 0.9 
× (2-12/10) =-0.032 
Now we can calculate both sensitive level for NG and SG 
domains. � = 0.063 - 0.032 = 0.031. 

TABLE 1. THE THREE Q-IDS AND PROBABILITY 

Q-id Q-id type Probability 

Q-id0 Interval IQ_value=[50-

150] 

P(Q-ID0)=1/(150-

50)=0.01 

Q-id1 Taxonomy tree 

Student_Country_Level1 = 

{German, French, Chinese, 

Kenyan, American…} 

Student_Ancestry-

Level2={Caucasian, Asian, 

Middle Eastern, African, 

Red Indian…} 

Q-id_level-3= {human} 

P(Q-ID1-

L2)=1/150=0.007 

P(Q-ID1-

L3)=1/200=0.005 

 

Q-id2 Suppression 

Student_Grade={A+, A, A-, 

B+, B, B-, C+, C, C-, D+, D, 

D-, F}. 

P(Q-ID2)=0.077 

 

In SG anonymization, out of the three Q-IDs, only one will 
be anonymized, while the two Q-IDs must be equivalent. The 
anonymized Q-ID is chosen based on the highest equivalency 
frequency. For instance, if three grouping trials are conducted 
by using the pair of (Q-ID0, Q-ID1), (Q-ID0, Q-ID2), and (Q-
ID1, Q-ID2), and the pair of (Q-ID1, Q-ID2) was the highest 
equivalency frequency; then Q-ID0 will be anonymized. 
Consider that Q-ID0 should be anonymized. Based on the above 
equations, the accepted interval can be between 33 to 100. The 
interval of 33 is the most appropriate range since P[Q-ID0] = 
1/0.031 � 33. Hence, the IQ value can be anonymized by using 
the following intervals [50 – 83[, [83 – 116[, and [116 – 150]. 

If the Q-ID1 must be anonymized, then either P (Q-ID1-L2) 
or P(Q-ID1-L3) can be used for anonymization. Both levels 
probabilities are smaller than the sensitivity level. However, Q-
ID2 cannot be chosen for anonymization, since suppressing the 
student grade will be a higher probability than the sensitivity 
level. 

V. RBAC INTEGRATION 
The MDSBA integrates Role-Base Access Control method. 

This method is commonly used in big data for authorizing users. 
RBAC roles can be embedded in any assertion method such as; 
Security Assertion Markup Language (SAML) [27]. The idea is 
mapping roles between the service provider (SP), which stores 
the data in the cloud, and the federation service (FS). The FS 
withholds the authentication and authorization for users. The FS 
is authorized by the data owner and contains information about 
users who wish to participate in data analytics. Users sign an 
agreement with the data owners about the maximum level of 
data access. The access level is assigned to each data object, by 
determining the minimum ownership level k� =k-x, where�eaf, 
and x= 1, 2…, k-1.  

RBAC is a fine-grained level used for controlling user 
access to tasks that would normally be restricted to root role. 
RBAC is an alternative solution for superuser group that 
contains root and other administrator roles in UNIX. Superuser 
members are permitted to conduct almost all tasks including, 
creating and killing processes, reading and writing to any file, 
running all programs and assigning privileges. In MDSBA, 
there is a need for some superuser privileges, but not all, to run 
certain tasks. RBAC is used in our framework for several 
reasons; including user authorization, managing the 
MapReduce environment and Hadoop files, and protecting user 
processes from any malicious attacks. 

Users are authenticated before accessing the SP. The FS 
dispatches the user ownership number through SAML. This 
transfer occurs with an XML file, which contains, the user id, 
the ownership level, the organization id, the database schema 
id, and other essential variables. SP reads the insert from the 
XML file and creates a new user. The user id is deployed as a 
username, and a random password is created. Besides, the new 
username is added to the Analyst>Ownership level-k role. The 
username is created only once, and can be used on each time the 
user logs in. Each data owner has own RBAC roles and sub-
roles. We only briefly described the RBAC mapping. Further 
experiments will be conducted in our future wok.  
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VI. CONCLUSIONS 

The increased monitoring, processing and storage 
capabilities have lead to an explosive growth of big data. 
However, this is of value only when, for instance, through big 
data analytics, useful information can be securely extracted. 
This work presents some of the requirements of the 
anonymization process for implementation in the big data 
context to address part of the relevant privacy concerns. This is 
done through analysis of the contemporary anonymization 
approaches and identifying some of the reasons for their 
inefficiencies and potentials for high information loss. In 
particular, we show how the k-anonymity processes can be 
made more efficient by taking into account the increased 
proportion of equivalent records as a result of a high number of 
records in big data environments. This is the basis of a novel 
anonymization framework, MDSBA, reported in this paper. In 
this framework, the anonymization starts from the bottom going 
up through the records. It is done in this fashion as the top-down 
approaches generalize all of the records. These processes need 
to loop continuously through the records. In each loop, the 
information gain or loss and other parameters should be 
calculated for each attribute, even for equivalent records. Our 
proposed method uses data sensitivity in its anonymization 
process and does not generalize the equivalent records, making 
it more methodical and more efficient. It is suitable for 
operation in parallel distributed environments and is compatible 
with the MapReduce model. Our future works will expand our 
experiments to more complex settings and will establish a clear 
process for integration of RBAC with MDSBA. 
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