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Abstract—Cloud Data Centers (CDC) are developing rapidly and 
will have a major impact on IT infrastructures in the future for 
reasons of their low ramp-up costs and service delivery/support 
capabilities for the users. In this paper CDCs with multi-service 
application classes are considered which are operated under an 
automatic server consolidation based on parallel hysteresis methods 
for server activations/deactivations which have been reported on our 
previous work. Each class is subjected to an individual SLA, e.g., for 
the average service delay for non-real-time services or for delay 
percentiles for services with strict response time constraints, and 
probabilities for service rejection (loss) or migration. The CDC is 
modeled by a multi-class server cluster (SC) system, each of them 
represented by a multi-server queuing system which is controlled by 
a Finite State machine (FSM) for each class of cloud services. The 
SC systems are analyzed exactly under Markovian assumptions to 
receive averages and percentiles of response times and probabilities 
of loss or migration. The method is novel as it minimizes the energy 
consumption for servers by an automatic server consolidation 
strategy while guaranteeing the negotiated SLAs. The method is 
based on a worst case boundary consideration for the delays of 
arriving service requests and can be useful to understand the 
parametric influences and to assess the energy saving gains for 
multi-tier CDCs. 

Keywords—Modeling; Cloud Data Centers; Virtualization; Server 
Consolidation; Service Level Agreements; Performance Analysis; 
Multi-Objective Optimization  

I. INTRODUCTION  
The availability of high-capacity Data Centers (DC) and the 

high-speed internet have a major effect on the IT infrastructures of 
enterprises as well as of cloud service providers. Major 
information-centric services are web-access, peer-to-peer file 
sharing, web-based business processes, storage and distribution of 
contents and multi-media communications. Data Centers are 
interconnected through the internet and form a “cloud” of 
resources delivering application services (“Software-as-a-
Service”, SaaS), providing an application interface (“Platform-as-
a-Service”, PaaS), or allowing for a user-configurable IT 
infrastructure (“Infrastructure-as-a-Service”, IaaS). These 

possibilities are attractive due to the low ramp-up capital 
expenditure (Capex), low operational costs (Opex), and scalability 
of applications for the users. Virtualization concepts allow for a 
flexible and economic use of the DC equipment to meet the main 
aims of energy reduction (“Greening”) and Service Level 
Agreements (SLA) between the user and the service provider. The 
analysis is based on modeling and mathematical performance 
evaluation as well as on computer simulations. 

These developments are reflected by enormous research and 
development activities in the recent years addressing architectural, 
operational, resource management, energy-reduction, 
performance, experimental tests, and economic aspects, see [1-5], 
reflected by numerous conferences as, e.g., the conference series 
E²DC  addressing energy-efficiency [6]. Studies on cloud DC 
performance are mostly based on experimental benchmarks or on 
simulations either by standard simulation tools or by specifically 
developed cloud simulation tool systems, see, e.g. [7,8]. 
Theoretical studies are based on modeling and performance 
evaluation using queuing theoretic approaches see [9-12]. An 
actual overview on these activities has been provided by a recent 
invited paper [13].    

In this paper; Cloud DCs (CDC) are modeled by stochastic 
service systems (also known as queuing systems) which represent 
the main computational resources (“servers”) and different service 
classes with class-specific SLAs for the evaluation of average or 
percentiles of response times, (delays between service request and 
service processing instants) as well as for blocking probabilities. 
The model is defined such that exact analytic performance 
evaluations are feasible under Markovian (i.e., memory-less) 
traffic assumptions, but can be extended to rather general cloud 
traffic models, scheduling strategies, and SLAs using stochastic 
event-by-event simulations. The specific and original features of 
the proposed method are the simultaneous aims of: 

1. Regarding prescribed SLAs for each service class 
based on averages or percentiles of service response 
times as well as for service losses/migrations. 
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2. Automatic power-saving server consolidation 
strategy based on parallel hystereses controlled by a 
Finite State Machine (FSM) whose concept was 
developed by the authors in previous contributions. 

We will focus primarily on processing IT resources as the 
main energy-consuming devices. Memory and I/O resources are 
less power-intensive; their influence can in principle be considered 
by a compute time-proportional factor derived from experiments. 
Multi-core processors are common features of modern processor 
architectures allowing for parallel computation of process tasks. 
Under the assumption that multi-cores are used for parallel 
processing of individual jobs only, our modeling covers this case 
through a novel method of task graph reduction by which a multi-
core can be modeled as a virtual single processor [14]. The current 
modeling approach allows for a rather quick estimation of the 
principal effects of energy-saving resource management by an 
automatic server consolidation under the objective of meeting 
prescribed SLAs. 

 In Section II the general model of a CDC is introduced. 
Section III addresses the parameterization of one Service Cluster 
(SC) of the CDC and its mathematical analysis shortly. In Section 
IV the multi-objective optimization of the model parameters is 
presented and applied to two case studies before the results are 
summarized with an outlook on work-in-progress in the 
concluding Section V. 

 

II. MODELING OF MULTI-CLASS CLOUD DATA CENTERS 
Modeling aims at an abstraction of a physical system, its 

functional operations, and its workload, and is, thus, a valid 
representation of that part of the real world under study. 

Figures 1 and 2 represent our approach to model the main 
structural and functional properties of a CDC and a SC, 
respectively. In Figure 1 the principal structure of a multi-class 
CDC is sketched consisting of: 

• The Hypervisor operating system, responsible for 
virtualization management providing an abstract 
view on the CDC as a cluster of server systems for 
processing of jobs ("Jobs" are also called Virtual 
Machines (VM) in connection with virtualized 
CDCs). Examples for Hypervisors are the Xen 
Hypervisor [15] or the VMware ESXi server [16]. 

• The Cluster Controller (CC), responsible for the 
mapping of the VMs to physical resources, i.e., 
servers and memory space, as well as for resource 
management functions as allocation of VMs to 
physical resources, load balancing, process 
migrations, power management, etc., under given 
load and SLA conditions. Typical Cluster Control 
equipment are the EMC2 Distributed Resource 
Scheduler (DRS) and Distributed Power 
Management (DPM) [2]. 

The DC model consists of an arbitrary number N of SCs 
represented as queuing models for specifically defined cloud 
service classes (groups), each represented by the number of servers 
�� , service request buffers �� , and a class-specific Finite State 
Machine ���� controller, i = 0,1,2,...,N. Jobs are assigned to their 
service class by the CC. The algorithm for server consolidation is 
implemented by the FSM.  Job arrivals are represented by a 
general stochastic arrival process �	�  with arrival rate 
�  jobs/s; 
the job execution times follow a general stochastic service process 
��� with service rate ��  = 1/
�, where 
� is the mean service time. 
The ����  receives the actual state variables (�� ,�� ), where �� 
denotes the number of currently activated process-executing 
servers and �� denotes the currently buffered jobs to be executed 
by the scheduling controller ���� through commands���. Buffered 
jobs are served in strict order of arrival (First-In, First-Out; FIFO). 

 
Figure 1. Multi-Class CDC Model 

 Figure 2 represents the function of the ���� expressed 
by a two-dimensional State Transition Diagram ���� for the 
class i - system states (��,��). (Note: For reasons of presentation 
simplicity, the index i has been suppressed in Figure 2 and the 
remaining part of this section). This novel STD [17-19] has 
been constructed using multiple parallel hystereses of width 
����  and steps ��  in order to reduce frequent server 
activations/deactivations by buffering service requests up to a 
threshold ���� before the next server becomes activated, while 
server deactivations take place only when no service request is 
waiting to become served, i.e., for  z = 0. The bold-faced 
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transitions within the STD indicate server activations and 
deactivations, respectively. 

 
Figure 2. State Transition Diagram with Multiple Parallel Hystereses 

 The STD is flexibly adaptable to specific properties: 

1. State-dependent  multiple  thresholds  to  avoid  
frequent oscillations between activations/ 
deactivations of resources to serve stochastically 
varying service requests and for an automatic self-
adaptation to highly volatile load 

2. Throttling of new server activations upon short bursts 
of arriving requests  by buffering of these requests up 
to a scalable upper threshold  

3. Serving of job requests with the maximum service 
rate of the activated servers to keep delays as small as 
possible. 

4. For � � ��and all states ��� �� met on arrival with�� �
��� � ! " , the average delay of an arriving job is 
bounded by  

 #$%&'%& � �( � �� � ) *+� (1) 

in case of negative exponentially distributed service 
times. 

Feature (4) is specifically remarkable with respect to service 
level agreements based on average delays of tasks. The worst-
case average delay occurs when a new task arrives at a state 
,�� ���� ! "-; as all arriving jobs are served from the queue in 
strict order of arrival (FIFO), the new job has to wait for 
exactly  ���� server terminations to start its service. In 
Section III we will extend this mean-value bound to a refined 
SLA, as well as the percentile of the response time which is 
particularly relevant for real-time-sensitive applications. 

Notes: 

• If the new job arrives at x = 0, its waiting time is 0; if 
it arrives at state�,�� ����-, an immediate activation 
of an idle server occurs and the job waits on average 
no longer than ����� ) 
+�� . "� . In other words; 
successively arriving jobs cannot be served prior to 
the considered job (because of FIFO), but may affect 
new server activations which increase the service rate 
and, therefore, decrease the average waiting time, 
respectively. Equation (1) can be extended with 
respect to generally distributed service times of 
type��/  (see Section III of this paper). 

• The STD has been extended in order to include finite 
server activation overheads for server booting (“Cold 
stand-by” mode) or server sleep modes with lower 
power consumption and lower activation times (“Hot 
stand-by” mode) as well as to Dynamic Voltage and 
Frequency Scaling (DVFS) by state dependent 
service rates modeling the dynamically controlled 
server speeds [19]. In this paper this extension is not 
applied, which is in principle possible. 

In this paper we will study the CDC under the assumption that 
the N service classes are served independently of each other; this 
means that the number of actually assigned servers �� for class i 
tasks are predefined by the Cluster Controller and do not support 
each other in case of server bottlenecks, i.e., this is a solution with 
Static Load Balancing, i.e., the CC configures the assignment of 
servers to server clusters  for a longer operating phase acc. to a 
management policy based on fixed SLAs for an economically 
planned target load level. 

Alternatively, the CDC could also be organized by application 
of Dynamic Load Balancing methods, i.e., arriving jobs can be 
assigned individually to a specific server cluster either to avoid a 
job blocking ("loss") if the local buffer is already full, or based on 
the shortest response time at another server group, i.e.,  by co-
operation between the server groups through job migrations to 
another (currently under loaded) server cluster  either at the arrival 
instant prior to processing, or even during processing ("Life 
Migration").   This can be achieved through various co-operation 
principles: 

(1)  By mutual overflows (strategy "Local Server System 
First" (LSSF) through an overflow in case of buffer blocking), 
or 
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(2) On the basis of response times ("Shortest Response Time 
First", (SRTF)), where the job migration requires an additional 
overhead for buffer relocation, process transfer, possible 
delays through waiting phases and scheduling. 

The two strategies LSSF and SRTF for Dynamic Load Balancing 
are analyzed exactly in a forthcoming paper [20]. 

 

III. MODEL CONFIGURATION AND ANALYSIS 
In this section the model parameters will be configured first 

according to the required SLAs. After the model configuration, the 
model is analyzed exactly under Markovian traffic assumptions. 

A. Model Configuration 
As outlined before, applications are classified with respect to 

different service classes, such as individual tenants, user groups or 
services of individual types, traffic loads, or SLAs whose service 
demands are defined by means of the VM concept. For the 
execution, VMs are assigned to physical resources which execute 
the VM service tasks.  

For class 0  service the CC provides the main configuration 
parameters��� ,��������1�� xi =1, 2,…,��� . The performance of the 
model will be studied for class i for the traffic parameters 

�� and ��� . The hysteresis width parameters ���1�� have to be 
derived from the ��2�  requirements. In this paper we will 
distinguish only between two main service characteristics: 

Case 1: Non-real-time services (NRT) 
Case 2: Real-time services (RT) 

Case 1: Non-Real-Time Services (NRT)  
 
For NRT services the SLA can be expressed by the average 

response (or waiting) time 34�5�for a delayed task request. The 
worst-case mean delay 6$�4�'��4� � �( is suffered by an arriving 
i-job meeting state (xi, ���1�-1) and when no further successive 
tasks arrive during its waiting time, which may cause another 
server activation and thus, a service speedup. 

The mean delay is subjected under these assumptions to  

#$%&'%& � �( 7 �� 8� ) *9+�9 � 34�5 (2) 

from which follows 

�� 8� 7 :;<<=��9 ) 34�5+*9�         (3a) 

� 8 7 �� 8� �! ��� 8>?�      �0� 7 �"� @� A��    (3b) 

B9 7 ��C8�, and  �� 8� 7 �         (3c) 
 
Note that if the bound 34�5+
��is integer valued, all hysteresis 

steps ��1 7 34�5+
��are identical for��0� 7 "�@� A � ��.  

Case 2: Real-Time Services (RT) 
 

For RT services much stronger conditions are required which 
can mathematically be expressed by response time percentiles D� 
derived from the complementary response time distribution 
function W (>t)/W (>0) of an arriving task which has to wait and 
the response time threshold 3EF�� 

  G�H�4 �� � 3EF��'��4 �� ��I �� � D� (4) 

For negative exponentially distributed service times, the worst-
case response (or waiting) time distribution function (DF) is of the 
type of an Erlang DF of order�J 7 ���1�, namely when the state 
���� ���1� �! "�� is met on the arrival of a new task. This leads to 
the condition 

KH%& � LMN9'%& � �I 7 6O
P�J�� 7 Q ��1R1STU1�V

WX
O>?
WYZ [>�1R1STU1 � D�  

       (5) 
The hysteresis widths ���1��are found successively for xi = 1, 2, 
…, ��  by testing condition (5) for orders j=1,2,… as long as 
condition (5) is still fulfilled. The step sizes of the hysteresis width 
follow again from (3b). 

Notes: 

1. The method is based on the PASTA-Theorem (‘Poisson 
Arrivals see Time Averages’) and on Renewal Theory 
(see, e.g., [21]); it holds exactly only under Markovian 
conditions (exponential arrivals). As long as xi servers are 
busy simultaneously, the worst-case response time delay 
�4� follows as a sum of random phases: 
• 1st phase between arrival instant and the first server 

termination instant, which follows from Renewal 
Theory as the minimum of all residual service times 
of the currently ongoing services; for exponentially 
distributed service times this phase is exponentially 
distributed again. 

• ���1� ! "� phases between successive server 
termination instants which are all negative 
exponentially distributed.  

2. For generally distributed service times (type G) these 
phases are not exactly known even for a queuing system 
of type M/G/n, but can be approximately derived by the 
method of stationary renewal intervals assuming 
independence between the server occupations, which has 
been used for the superposition of renewal point processes 
[22]. 

B. Model Analysis 
Under the model assumptions the queuing models for each 

class of services can be analyzed separately for STDs of the type 
in Figure 2 under Markovian conditions. Contrary to theoretical 
transformation approaches [23, 24] he authors have developed an 
iterative recursion algorithm to solve for the stationary state 
probabilities \���� ��� exactly [19]. The novel algorithm allows the 
analysis of realistic cases of a large number of servers and has been 
published recently for DC models with one class of services and 
homogeneous servers [15]. The model was also extended to 
include server activation overhead, hot and cold stand-by and 
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Dynamic Voltage and Frequency Scaling (DVFS) [16], but will 
not be repeated here. 

2� 7 
� ) 
�  Offered traffic 

]� 7 �2�+� Traffic load  

�̂  Average number of occupied servers 

��  Average queue length 

_	�  Activation /deactivation rate of servers 

Bi  Probability of loss or migration for arrivals 
   which don’t meet the SLA 

�̀  Probability of delay 

34�  Mean response time (delay) 

G�H�4 � 3I+ �̀ Compl. response time DF of delayed tasks 

a��� a  Class specific and total power-saving  
   efficiency, expressed by the fraction of  
   power saved by consolidation referred to  
   permanent power consumption 

 

IV. DC CAPACITY ENGINEERING AND CASE STUDIES 
The principle of engineering the capacity of a DC Server 

Cluster for NRT and RT services and two case studies are 
considered to show numerically how the proposed method works 
and how it can be interpreted: 
 
SC Capacity Engineering: Resource Sizing for NRT and RT 
Case Study 1: Economy of Scale effect under given SLAs 
Case Study 2: Load balancing between service classes 

A. SC Capacity Engineering: Resource Sizing for NRT and RT 
The SC performance behaves differently for the response 

time and for the loss of jobs dependent on the offered traffic load. 
If both criteria have to be met as SLAs simultaneously, that will 
turn the problem into a Multi-Objective Optimization Problem. In 
this paper we will solve this problem by fixing the hysteresis 
parameters at first according to delay criteria of the SLA. After 
having fixed these parameters, we will calculate the average 
response times 34+
 and the loss probabilities B dependent on the 
traffic load ] from which conditions for the offered load A and for 
the bundle size n are derived. To meet a certain target value for 
the offered traffic A the number of servers can then be found. 

Applying the analysis method for one SC according to the 
FSM - based operating algorithm [18-19] the principal results for 
the two SLA performance criteria for the average response 
time�34+
   and for the loss probability B   are illustrated in the 
Figures 3a, b for the case of NRT services for a given number of 
servers n dependent on the offered traffic load factor�] 7 2+�. In 
both Figures the SLA - prescribed upper performance bounds 

�34Z+
 and bZ as well as the decreasing behavior of delay �34+
 
and loss B for increasing n are also indicated. The intersections 
between the performance curves and the boundary values define 
the maximum allowable load factors ]�?�  and�]�c� . We get the 
allowable load factor from ��
�
����]de� 7 fgh�H]�?�� ]�c�I           (6) 
 

The mathematical problem of the resulting multi-objective 
optimization problem in order to find the required number of 
servers � 7 �5iS  for a prescribed offered traffic j 7 ] ) h  and 
corresponding load factor ] 7 2+� can be found by an iterative 
algorithm as the functions for 34+
 and B cannot be inverted with 
respect to ] mathematically. A given target triple �2Z� bZ� 3kZ+
�  
of prescribed quantities can only be reached by adapting the 
number of servers n accordingly. The iterative algorithm starts 
with an optimistic number n = floor (A) and initial load factor 
thresholds �]�?�� ]�c� . Then we increase n stepwise by 1 and 
determine the thresholds ]�?�� ]�c�� until ]  crosses the first time 
the value of ] � fghH]�?�� ]�c�I at��5iS. 

 

 
Figure 3a. Average Response Time lm+n vs. Traffic Load Factor � 

 
Figure 3b. Probability of Loss B vs. Traffic Load Factor � 
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Capacity Engineering for RT services follows in principle the 
same way when the upper average delay criteria 3kZ  is 
complemented by the response time percentiles D�   acc. to Eq. (5); 
this set of conditions satisfies the response time SLAs for an 
arriving job for each possible number ��   of occupied servers at 
their arrival instant by changed (i.e., smaller) hysteresis widths 
���1�  and, thus, for all arrival cases. Then, we can proceed to 
optimize the number of servers n for the offered load ] as in case 
of NRT services. 
 

B. Case Study 1: Economy of Scale effects under given SLAs 
      The “Economy of Scale” (or bundling gain) is a well-known 
effect in teletraffic theory and describes the economic gain 
expressed by the increase of server utilization ^+�  with 
increasing server group (bundle) size n for a given constant 
performance level. The most popular case is the classical loss 
system, expressed by the fraction of the carried traffic per server 
Y/n at a given probability of loss B, i.e. ^+�� 7 �o����� b� 7
�pq��3r�3� derived from the Erlang-B formula [21]. 

The present case is more sophisticated as the number of servers 
is automatically controlled by the server consolidation strategy of 
parallel hystereses and by consideration of the SLA parameters as 
bounds on the average values 34+
 or percentiles D� of the delay 
distribution  

G��4 � 3EF�'�4 � ��+G���4 � �� � D� 

for the delay threshold 3EF�  , respectively, and the resulting 
probabilities of loss (or migration) b�  for all those arriving jobs 
which cannot be served under these SLA restrictions. The effect of 
loss/migration is a consequence out of the fact that only those 
arriving tasks will be served which will meet the SLA delay 
requirements. 

To show the corresponding economy of scale effect, Figure 4a 
provides the server utilization �̂+��  as a function of the server 
group size �� for a fixed average delay bound: 

    34�5 � �st 
� 

for �=1 and different load parameters�]� 7 
� ����u . In Figure 4b 
the corresponding probabilities of loss (or migration) �b� are 
plotted vs. the server group size ��t 

The power saving efficiency a�  is defined as the fraction of 
saved power by server consolidation and the full power required 
without server consolidation (‘always-on’ case). It amounts to 
a� 7 " ! �̂ ��u  and can directly be read-off from Figure 4a. 

Discussion: 

Figure 4a underlines the general wisdom of increasing server 
utilization gain �̂+��  with increasing bundle size ���for a given 
average delay SLA. However, in contrast to the experience from 
pure loss systems, the full gain is already reached after a few 
servers, which allows for small group sizes in case of a high variety 
of SLA requirements. The probability of loss (or migration) decays 

with the bundle size, but increases, naturally, with the load. If a 
simultaneous SLA exists with respect to delay and loss, bundle 
size ��  which had been found through the algorithm above, can 
also be verified from Figure 4b to meet both requirements 
accordingly.  

 

Figure 4a. Server Utilization �̂+�� vs. Server group size �� for constant average 
delay bounds. Parameter: Offered traffic 2� 

 
Figure 4b. Probability of Loss/Migration b� vs. Server group size �� for 

constant average delay bounds. Parameter: Offered traffic 2� 

Figures 5a, b provide the corresponding results for the 
percentile bound of delays 

G��4� � 3EF�'�4� � �� � D� 

for 

3EF�+
� 7 v =5 and D�=0.01 

The percentile SLA criterion results generally in smaller and 
heterogeneous hysteresis widths ���1�  which increase with the 
number of occupied servers���; the latter effect results out of the 
bundling gain which allows for an increasing buffering for 
increasing values of ��  and from the fact that with increasing 
queue lengths, the Erlangian tail components of the delay 
distribution function become less variant with increasing order. 

If SLAs exist simultaneously for both delay and loss/migration, 
Figures 4b or 5b can be used to derive a lower bound for the 
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required number of servers���5: the delay criterion is automatically 
met by the algorithm; to meet a prescribed loss/migration 
level�b�5, the lower bound ��5 can also be read off from Figures 
4b or 5b, respectively. 

 

C. Case Study 2: Load Balancing between Service Classes 
The initial assignment of processing resources by the CC is 

based on fuzzy estimates which can change during execution and 
should be subjected to revision by the DC runtime management. 
Re-assignment decisions can be of either type: 

1. to re-assign the number of servers to service classes, or 

2. to migrate jobs of tenants between classes or CDCs. 

 
Figure 5a. Server Utilization �̂+�� vs. Server group size �� for delay 

percentile bounds. Parameter: Offered traffic 2� 
 

 
Figure 5b. Probability of Loss/Migration b� vs. Server group size ��for delay 

percentile bounds. Parameter: Offered traffic 2� 
 

 In the first case idling servers are blocked and can be re-
scheduled after their assignment to the new service class. In the 
second case waiting jobs (including their memory assignments) 
are moved to another SC or even DC, to become scheduled if 
there is capacity available (job migration). Load Balancing was 
not the main topic of this paper and will be addressed in a 
forthcoming paper [20]. Here, we will just use this case study to 
demonstrate what can be achieved by dynamic load balancing. 

For this example two service clusters1 and 2 are considered 
whose fixed (static) server assignment was  �? = �c = 10 servers. 
Service cluster 1 is subjected to a current overload of ]? 7

?+��? ) �?� 7 "t@� while service cluster 2 runs at load ]c 7

c+��c ) �c� 7 �tw� and is able to accept additional load through 
job migration from cluster 1.  As the percentile delay SLA is still 
maintained through our dimensioning of the hysteresis for 
automatic server consolidation, the difference lies in the SLA 
violation for the loss probability in class 1:  As can be read-off 
from Figure 5b the current loss probabilities for classes 1 and 2 
are about 0.2 and 0.007, respectively. Re-distributing the load to 
a balanced value of  ]� 7 "t�� for both clusters shows that the 
SLA of   b� �  0.05 can be reached for both. 

 

V. CONCLUSION AND OUTLOOK 
Based on previous work by the authors on modeling of 

hystereses-based server consolidation algorithms for automatic 
activation/deactivation of DC servers, a methodology has been 
developed in this paper for the performance evaluation of multi-
tier CDCs with an arbitrary number of different service clusters 
(classes) and cluster-specific SLA values for averages or 
percentiles of response times and bounded quantities for service 
blocking (loss) or job migrations to other server clusters within or 
between CDCs. The theoretical analysis is based on Markovian 
traffic assumptions under which the system parameters are 
determined for prescribed SLA delay boundaries; the 
performance evaluation is executed for arbitrarily large server 
group sizes by a fast recursive numerical algorithm which had 
been reported in previous publications [18, 19]. 

The suggested method allows the parametric analysis for the 
probabilities of state, probabilities of delay and loss/migration, 
server utilization, queue lengths, average delays, distribution of 
delays and the power-saving efficiency by an automatic server 
consolidation algorithm based on a novel multiple hysteresis 
server consolidation mechanism. The method of capacity 
engineering for the resulting optimized system parameters of the 
Server Cluster queuing models has been derived and outlined in 
Section IV A. Two case studies were reported in Sections IV B, 
C which show the principal effects of economy of scale and the 
applicability to load balancing as a reaction to unbalanced load or 
overload to maintain agreed SLA requirements for the arriving 
jobs. 

The paper shows that quite complex systems can be analyzed 
by the method of modeling and performance evaluations, from 
which a principal understanding of the parametric influences is 
supported, and multi-objective optimizations of the system 
operation can be achieved. Modeling requires, however, certain 
simplifications which have to be validated by either simulations 
of more realistic system models through system simulators or by 
experimental benchmarks and measurements. A short overview 
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on modeling methodologies has also been provided, for a more 
detailed review on the state-of-the-art it is referred to [13]. 

Our ongoing current work is directed towards the validation 
of our system models by simulation studies using standard 
simulation tools as OMNeT and the cloud simulation Framework 
CloudSim. For Markovian traffic assumptions our analyses 
methods are exact and need not be verified by simulations. 
Simulations, however, are adequate for performance studies with 
more general arrival and service time distribution functions to 
find out parametric sensitivities with respect to stochastic process 
variations and for more detailed models which are beyond the 
capabilities of theoretical performance evaluations; simulation 
studies are less adequate for extensive parametric studies 
compared to analytical model evaluations. 

Cooperating SCs or even DCs are currently under study for 
two novel models for static and dynamic load balancing strategies 
LSSF (by the principle of job migration through mutual buffer 
overflow) and SRTF (by the principle of job migration through 
SC assignment by CC scheduling prior to job processing or even 
during ongoing job processing ("Life Migration") to be reported 
in a forthcoming paper [20]. 

     Finally, lab experiments have been taken based on a small 
Cloud Lab at the GUC in Cairo which has been sponsored by the 
Cairo Competence Center of the company EMC² where 
experiments and measurements are performed within student 
theses and research projects. 
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