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Propagating Spatial Events
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Abstract—Rapid detection of spatial events that propagate
across a sensor network is of wide interest in many modern applica-
tions. In particular, in communications, radar, IoT, environmental
monitoring, and biosurveillance, we may observe propagating fields
or particles. In this paper, we propose Bayesian sequential single
and multiple change-point detection procedures for the rapid de-
tection of such phenomena. Using a dynamic programming frame-
work we derive the structure of the optimal single-event quickest
detection procedure, which minimizes the average detection delay
(ADD) subject to a false alarm probability upper bound. The
multi-sensor system configuration is arbitrary and sensors may be
mobile. In the rare event regime, the optimal procedure converges
to a more practical threshold test on the posterior probability of the
change point. A convenient recursive computation of this posterior
probability is derived by using the propagation characteristics of
the spatial event. The ADD of the posterior probability threshold
test is analyzed in the asymptotic regime, and specific analysis
is conducted in the setting of detecting random Gaussian signals
affected by path loss. Then, we show how the proposed procedure
is easy to extend for detecting multiple propagating spatial events
in parallel in a multiple hypothesis testing setting. A method that
provides strict false discovery rate (FDR) control is proposed. In
the simulation section, it is demonstrated that exploiting the spatial
properties of the event decreases the ADD compared to procedures
that do not utilize this information, even under model mismatch.

Index Terms—Sensor network, Bayesian spatial change-point
detection, change propagation, average detection delay, false
discovery rate, multiple hypothesis testing.

I. INTRODUCTION

S EQUENTIAL change-point detection, often referred to as
quickest detection, is a fundamental statistical inference

task [1], [2], [3], [4], [5], [6], [7], [8]. It is encountered in
numerous applications, such as Internet of Things, environ-
mental monitoring, biosurveillance, finance, radar, and wireless
communications. Sensor networks are commonly used to rapidly
detect a disruption or an event in the monitored physical environ-
ment [9], [10], [11], [12], [13], [14], [15]. Usually, in these sensor
networks the sensors communicate with a fusion center (FC) or
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a cloud that performs statistical inference tasks based on the data
or local statistics from the sensors. The network setting can be
centralized [9], [10] where the FC has access to all the data from
the sensors or decentralized [11], [12], [13], [14], [15], [16],
[17] where the sensors perform local computations/inferences
and may only send the results, e.g. some sufficient statistic, to
the FC. Recently, quickest detection of multiple change points
in parallel has gained wide interest [10], [18], [19], [20], [21].
Parallel multiple change points can be caused, for example,
by multiple active radio transmitters, multiple sound sources,
multiple radar targets, or multiple emitters of polluting particles.

In many cases, the event causing the change in the environ-
ment has some spatial properties. The event can be a moving
target that appears in a surveillance system, propagating radio
frequency or audio signals impinging distributed sensors, pol-
lution emanating from a malfunctioning device, or the onset of
an epidemic. The effect of the spatial event on a specific area of
the network can be modeled in different ways depending on the
underlying physical phenomenon of interest and parameters of
the sensor system observing it, such as the sensor system config-
uration and sampling rate. For example, the event may instanta-
neously affect the sampling distributions of all the sensors in the
vicinity of the event [8], [11]. Alternatively, the disruption may
propagate across the sensors in the network or in some cluster of
the network over a short time period [9], [14], [22]. Examples are
propagation of polluting particles in environmental monitoring,
seismic activity in earthquake monitoring, propagation of radio
waves through space in communication or radar systems, and
epidemic traveling wave in biosurveillance.

Several works have considered quickest detection while incor-
porating spatial information. In [9], Bayesian quickest detection
was considered where the sensors are numbered and located with
regular geometry and uniform displacements. The initial origin
of the disruption was known to be at the first sensor and the dis-
ruption propagates through all the sensors as a Markov process
in an order determined by the numbering. Extension of [9] to the
case where the first sensor experiencing the initial change is un-
known was proposed in [23]. Given the sensor observing the dis-
ruption first, a predetermined change propagation trajectory was
assumed across the sensors. The work in [14], [15]1 considered
a similar setting to [9], [23], with the difference that the change
propagation pattern is assumed to be unknown. In addition, both

1The basic idea of a change that propagates through an array with an unknown
first sensor was considered in V. Raghavan, “Multi-sensor Change Propagation:
Near-optimal Procedures and Applications,” Proc. Intern. Workshop on Seq.
Methodologies, Rouen, France, 2017.
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Fig. 1. Source wavefront propagation: Phenomenon emanating from the

source O towards the sensors A(1)
n and A

(2)
n where n is the current time slot.

centralized and decentralized settings were considered. In [22],
Bayesian continuous-time single change-point detection with
sensor networks was studied. The event was assumed to occur
at a random time instant in a random location and gradually
propagate through the sensor network with unknown velocity
triggering interdependent change points. A numerical proce-
dure was proposed to approximate the optimal but intractable
Bayesian solution based on the approximated posterior proba-
bilities. Non-Bayesian change-point detection with spatial infor-
mation under different setups has been studied in [24], [25], [26],
[27], [28], [29], [30], [31], [32], [33]. In [27], a setting where
a moving anomaly affects one sensor at a time was considered.
As the disruption moves over the network, the affected sensor
changes with time according to either a known or an unknown
probability model. Rapid detection of propagating phenomena
has recently also been studied within the learning and adaptation
framework [34]. In [34], a fully-flat network without a central
unit is deployed for monitoring. Sensors must exchange infor-
mation with their neighbors in order to accurately estimate the
true state of nature in their vicinity. Due to the more complex net-
work communication topology and interaction and information
exchange among the neighboring sensor nodes, obtaining strong
performance guarantees in terms of detection delay and false
alarm rate, as is the goal under a quickest detection formulation,
is difficult. Moreover, the delays in exchanging information
among sensors may be significant compared to the propagation
speed of the monitored phenomenon. Nonetheless, an infor-
mation diffusion scheme that results in each sensor detecting
changes faster than sensors working in isolation was derived.

In this paper, we propose a Bayesian method for the detection
of a propagating spatial event. A discrete-time model is used in
acquiring observations. It is assumed that the event propagates
in a two-dimensional plane with area radius that increases either
randomly or deterministically based on the laws of physics.
This wavefront propagation model is illustrated in Fig. 1. It is
relevant, for example, in wireless communications where radio
waves that carry information are emitted from a transmitter,
propagate through space with velocity equal to the speed of
light, and detected by a receiver [35, Ch. 3]. The considered
propagation model and change detection setup are also relevant
in radar and seismic monitoring and localization applications
where, for example, a point source or a target is generating or
reflecting waveforms that propagate across a sensor array as a
plane wave [36], [37]. Another application is in biosurveillance
applications that attempt to detect outbreaks of epidemics [22],
[38], [39], [40], [41], [42].

At each time slot, sensors that are located outside the dis-
ruption area obtain observations that follow a common null

distribution (no signal present). Sensors that are located within
the disruption area obtain observations that obey alternative dis-
tributions that may be different among the exposed sensors. We
are interested in detecting the initial event as quickly as possible
subject to statistical constraints on the rate of false alarms. We
assume that the number of sensors and their locations are known
at each time slot but may change in time, e.g. a mobile wireless
sensor network [43] where the sensors might correspond to e.g.
smart phones or drones. Since the main focus of this work is
on detection of spatially localized events, it is assumed that all
sensors are able to communicate individually with a common FC
or cloud. The FC could be a base station (BS) serving different
users and sensors in its coverage area. Modern wireless systems
such as 5G have reasonably small coverage areas because of
the higher frequencies they are using. Separate mobile access
points that traverse the network and collect information from
the sensors, as in the SENMA framework [44], [45], [46], are
not required. Obviously, there exists a wide area of applications
where such access points are useful, however, proving optimality
properties may be difficult in settings where both the event
and the access point are moving. To reduce the communication
burden between the FC and the sensors, ideas from [47] could
be considered as a future direction.

The related works described earlier do not explicitly and
jointly take into account the sensor locations, the displacement
between the sensor location and the location of the disruption
source, and potential sensor mobility. In particular, to the best
of our knowledge, the problem of quickest detection in discrete
time in the practically relevant scenarios where the change is
caused by a gradually expanding spatially localized event(s) has
not been addressed earlier. The most related previous work [9],
[14], [15], [23], [27], [28], [29] focuses on settings where the
dynamics of the change-event are modeled as movement from
sensor(s)-to-sensor(s). The particular assumed sensor network
topology (e.g. an array [9] or a graph [27]) results jointly from the
spatial properties of the event, and the placement of the sensors.
The event is then assumed to affect the sensors according to
a model specified by this topology. In contrast, in this paper
we consider potentially mobile sensor systems with completely
arbitrary displacements and no regular sensing geometry. There-
fore it is not in general possible to describe the propagation of
the event with any fixed network topology or model. Whether a
particular sensor is affected depends on its location relative to
the source of the physical event, and the sensor locations may
be arbitrary and change over time. Hence, the previous works
cannot directly be applied to quickest detection of spatially
phenomena emanating from a distinct and potentially unknown
location, especially when sensor locations can vary in time.

The contributions of this paper are:
� We propose a dynamic programming framework for de-

riving a stopping time that exploits the spatial information
and minimizes the average detection delay (ADD) under
a constraint on the false alarm probability. An optimal
detection procedure that minimizes the associated Bayes
risk is derived.

� As the optimal procedure is hard to implement in practice,
we propose a more practical detection procedure based
on thresholding the posterior probability of the change
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point having occurred. To theoretically justify the use of
this simpler procedure, it is shown that the procedure is a
limiting form of the optimal procedure in the rare event
regime. A convenient recursive formula for computing
the posterior probability is developed by using the radial
change propagation pattern of the spatial event.

� The probability of false alarm (PFA) control of the thresh-
olding procedure is established and its ADD is analyzed in
the asymptotic regime. Conditions under which the thresh-
old procedure achieves asymptotic optimality are provided.
Furthermore, we analyze the procedure in the specific
setting of quickest detection of attenuating random signals.
An approximation for asymptotic ADD is provided, and
asymptotic optimality is established.

� We extend the single-event detection procedure to the de-
tection of multiple statistically independent spatial events
in parallel by combining the developed posterior probabil-
ity threshold procedure with a Multiple Hypothesis Testing
(MHT) setup. The rate of false alarms is controlled using
the False Discovery Rate (FDR) criterion, which is widely
used for MHT [10], [48], [49]. This is highly relevant in
many modern applications where high dimensional data
must be processed in parallel and there may be multiple
events taking place at the same time [10], [18], [21]. It is
shown that the proposed parallel procedure strictly controls
the FDR level.

� Simulations are conducted to verify the theoretical find-
ings. It is clearly demonstrated that exploiting the spatial
properties of the event decreases the ADD compared to
procedures that do not utilize this information in both single
and multiple cluster settings. This benefit is achieved even
under model mismatch. It is demonstrated that the gain
in performance is the largest when the event propagates
sufficiently slowly compared to the sampling rate, or when
the sensor displacements are large, and/or when the pre-
and post-change probability models are different enough.

Preliminary results of this paper appear in conference pa-
pers [50] and [51]. This paper is organized as follows. In
Section II, we formulate the quickest detection problem. A dy-
namic programming framework for the detection is formulated
in Section III. Under the radial change propagation setup, a
change-point detection procedure and its extension to multiple
parallel change-point detection are presented in Sections IV
and V, respectively. Our simulations and conclusions appear
in Sections VI and VII, respectively.

Notation: Scalar random variables are denoted by normal font
capital letters, with the exception of the change point t, which is
also a random variable. Scalar constants, such as realizations of
random variables, are denoted by normal font lowercase letters,
with the exception of L, M , N , K and R, which are constant
integers, andUn,m,r which denotes an event. Boldface uppercase
and lowercase letters are used for vector random variables and
constants, respectively. For an integer K, we use [K] to denote
the set {0, 1, . . .,K − 1} of cardinality K.

II. MODEL AND PROBLEM FORMULATION

We begin by describing the model for a single spatial change-
point detection problem. The model, relevant terms, and no-
tations for multiple change-point detection in parallel will be

described in Section V. Let (Ω,F ,P) denote a probability space,
where Ω is the sample space, F is the σ-algebra generated by Ω,
and P is a probability measure. The expectation operator with
respect to P is denoted by E.

At each time slot we have sensors in known locations but
with arbitrary configuration within a domain of interest,S ⊂ R

2.
The set of sensor locations at time slot n is denoted by An and
the corresponding number of sensors is |An|. If |An| = 0, then
there are no observations received by the FC at time slot n.
Unless otherwise stated, in this paper the sensor locations are
considered known and deterministic.

We consider a centralized setting where every sensor com-
municates its observations or local decision statistics to the FC.
At time slot n, the data transmitted by the sensors and received
by the FC are random variables X(a)

n , a ∈ An. The realization
of X

(a)
n is denoted by x

(a)
n . In mobile scenarios, the location

information a is communicated to the FC in addition to the
observation value. Alternatively, the FC can have a capability
to reliably estimate the locations of the sensors. Uncertainty in
the location estimate could be represented as a probability distri-
bution, which could be averaged over in a Bayesian framework.
However, for the purposes of this paper we assume for simplicity
that reliable point-estimates of the sensor locations exist. We
define the |An| × 1 data vector Xn that contains all the observa-
tions transmitted at time slot n, including the locations at which
the observations were obtained by mobile sensors. It is assumed
that at time slot n the FC has access to the current and past

observations, In
�
= (X1, . . . ,Xn), where I0 is the empty set.

At a random time instant, t, a source becomes active and starts
emitting a propagating signal/event from an unknown origin, O,
causing a disruption in the domain of interest. It is assumed that
the initial event time, t, has a geometric prior distribution with
parameter, ρ ∈ (0, 1), i.e.

P(t = m) = ρ(1− ρ)m, m ∈ N0, (1)

where N0
�
= N

⋃{0} and N is the set of positive integers. The
geometric prior distribution is very common in change-point
detection because it is a mathematically convenient memoryless
distribution, which is also relevant in a variety of practical
applications [7], [8], [9], [14].

We want to discover the initial event time, t, with minimal
delay while controlling the PFA. In a multiple change-point
setup, as will be described in Section V, the PFA is replaced
by the FDR criterion in a MHT framework. Hereafter, we refer
to t as the change point even though it may not cause an
instantaneous change in the received observations as in classic
change-point detection, due to the fact that the sensors are in
distinct locations and displaced from the signal source.

In order to reduce the complexity of the problem, we initially

assume that O ∈ O ⊂ S where O �
= {o0, . . . , oM−1} is a finite

set of possible source or emitter locations in S with cardinality
|O| = M . We assume that the initial event can occur in any of
the possible locations, om ∈ O, with equal probability

P(O = om) =
1

M
.

The assumption of a uniform probability distribution is made
for simplicity and is not necessary for the following derivations.
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In practical settings it may not be realistic to expect that the
source location can only appear within a known finite set of
points. However, choosing the set O to be a sufficiently dense
discretization of the 2D-plane can allow one to approximate
the continuous field well and reduce the complexity, as is
demonstrated in the simulation section. In this work the true
location is initially assumed to lie within a known finite set in
order to facilitate a dynamic programming solution. Additional
signal processing may be applied to obtain point estimates of
the location. That thoroughly studied source localization topic
is outside the scope of this paper.

The chosen sampling rate and duration of the discrete time slot
used in acquiring the observations can highly affect the sensi-
tivity of the network to the spatial event, and the time resolution
and delay of detecting the change. Generally, the time-domain
sampling rate should be selected so that one can distinguish
among differences in the disruption arrival times at different
sensors. In the considered model, if the event propagates with a
constant radial velocity, we model the sampling rate such that
during each time slot the radius of the disruption area increases
by a fixed unit, e.g. some fraction or multiple of the wavelength.
In order to take a variety of random propagation effects into
account, we allow some randomness in the propagation of the
spatial event. For example, epidemic spread may have a high de-
gree of stochasticity due to random movements and interactions
among individuals [22]. Generally, propagation randomness can
be due to randomness in the velocity [22, Eq. (6.8)], due to timing
jitter [52], or due to reflections, non-homogeneous medium,
scattering, and multipath [35].

Let Rn denote the area radius of the propagating event at time
slot n. For simplicity, we assume that the area radius can have
only discrete integer values corresponding to a fixed distance
unit. Let R ∈ N denote the smallest disruption area radius that
covers the entire domain of interest, S , regardless of the actual
point of origin, O ∈ O. Thus, we assume that Rn ∈ [R+ 1]. It
is assumed that Rn = 0 when n < t, and Rt = 1, i.e. only when
the initial change occurs, the event area radius expands by one
unit. In addition, we assume that

P(Rn=r + 1|Rn−1=r) = 1− P(Rn = r|Rn−1 = r)=ρ1,
(2)

∀r ∈ [R]\{0}, n ∈ N. At each time slot after the initial change
the radius of the disruption increases by one radius unit with
probability ρ1 ∈ (0, 1] and stays the same as in the previous
time slot with probability 1− ρ1. As R is the maximum radius
of the affected region, if Rn = R then Rm = R for m ≥ n.
Using (1), we obtain

P(Rn = 1|Rn−1 = 0) = 1 − P(Rn = 0|Rn−1 = 0)

= P(t = n|t ≥ n) = ρ, n ∈ N. (3)

In addition, we obtain P(R0 = 0) = 1− ρ and P(R0 = 1) = ρ.
At each sensor location it is assumed that the sensor observes

the disruption only if the disruption is present in this location, i.e.
the distance between the sensor location and the source location
is smaller than the current area radius of the disruption. Assume
that the disruption is emanating from a source at O = om. Then,
if a sensor at location a ∈ S is not exposed to the disruption, it
acquires a noise-only observation coming from a known null

probability density function (pdf), f0. Otherwise, if this sensor
is exposed to the disruption, it receives an observation with
known pdf, f (a,om)

1 , that may depend on a ∈ S and om ∈ O. For
example, the power of the received signal can affect the param-
eters of the alternative pdf, and due to path loss may depend on
the displacement between the sensor and the source [35], [53].
In many applications, the f0 density represents random noise
only, the statistical properties of which can be either known
from theory, or estimated from training data even locally for
each sensor in the absence of signal. On the other hand, the
exact f1 distribution, influenced by the appearing signal, may
not always be known in practice. The issue of dealing with
uncertainty in the f0 and f1 distributions has been an active
topic of research in the field of quickest detection, see for
example [54], [55] and references therein. Therefore, in this
work we consider the probability models to be known, and refer
to the existing literature for solutions on handling any model
uncertainty. Moreover, it will be observed in Section IV that
for the PFA control it suffices to know only the f0 distribution.
In many detection problems, controlling the false positives is
crucial so that the system is not overwhelmed with detections and
subsequent tasks. Conditional on the true system state and the
sensor locations, the observations at each time slot are assumed
to be independent across the sensors, as well as independent
of all previous observations. Since the individual sensors are
distributed and in distinct locations, the sensor noise present in
any physical measurement can be considered independent.

At each time slot, the FC decides whether the initial event
has taken place or not based on the information, In, which is
available at time slot n. To this end, it uses a stopping time, T ,
according to a predefined stopping rule. The delay in detection
is quantified by the ADD,

ADD(T )
�
= E[(T − t)+], (4)

where x+ �
= max{0, x}. The PFA is defined as

PFA(T )
�
= P(T < t). (5)

III. DYNAMIC PROGRAMMING FOR OPTIMAL STOPPING TIME

In a similar manner to classic Bayesian change-point detec-
tion [8], our goal is to derive the stopping time

Topt = arg inf
T∈Δα

ADD(T ), (6)

where Δα
�
= {T : PFA(T ) ≤ α}. Put into words, we want to

find a stopping time with the smallest ADD among stopping
times for which the PFA is not larger than α, where α ∈ (0, 1)
is a predefined tolerated level of false alarms. In this section, we
take a dynamic programming approach for solving (6).

A. Finite Horizon

We begin by restricting the stopping time to a finite horizon
[0, N ]. Solving the constrained optimization problem in (6) can
be approached by formulating a Lagrangian relaxation problem
that minimizes the Bayes risk

B(T, c)
�
= P(T < t) + c · E[(T − t)+] (7)
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over all admissible stopping times. The state of the system at time
n is denoted by Sn ∈ {(m, r) : m ∈ [M ], r ∈ [R+ 1]} ∪Υ,
with Sn = (m, r) meaning that at time n the event originating
from O = om has radius Rn = r. The term Υ represents the
terminal state that the system goes into after a change is declared.
In case Rn = 0, the spatial event has not occurred yet. From the
description in Section I it is clear that the system stateSn evolves
as a Markov process. Moreover, conditional on the system state
and sensor locations, the observations are i.i.d. As such, the
problem lends itself to a dynamic programming [56] solution.

Since {T < t} ⇔ {RT = 0}, the Bayes risk in (7) can be
expressed in additive form as [9], [14]

B(T, c) = P (RT = 0) + c · E
[
T−1∑
n=0

P (Rn ≥ 1)

]
. (8)

In a finite horizon, we denote the minimum expected cost-to-go
from n to N by JN

n (In), which is in general a function of all
available information In at time n. The cost-to-go function [56]
obeys the backwards recursion

JN
n (In) = min {P(Rn = 0|In), c · P(Rn ≥ 1|In)

+E[JN
n+1(In+1)|In]

}
, (9)

with

JN
N (IN ) = P(RN = 0|IN ). (10)

In (9) the first term inside the minimum corresponds to the
expected cost of stopping at n, and the second term denotes the
expected cost of continuing the monitoring process. We denote
the posterior probability of the event {Sn = (m, r)} given In
by pn,m,r. That is,

pn,m,r
�
= P(O = om, Rn = r|In), (11)

and

pn
�
= [pn,0,0, . . ., pn,1,R, pn,2,0, . . ., pn,2,R, . . ., pn,M−1,R]

(12)
is a M · (R+ 1) dimensional vector that collects all of the
probabilities of time n. In the next subsection, we present a
recursive update formula for pn that will be used in the dynamic
programming solution.

B. Posterior Probabilities Computation

At any time slot, n, the sample space of the considered setup,
Ω, can be partitioned as

Ω =

M⋃
m=1

R⋃
r=0

Un,m,r, (13)

where

Un,m,r
�
= {O = om, Rn = r} = {Sn = (m, r)} (14)

are pairwise disjoint events and the events {O = om} and
{Rn = r} are independent. In the following, we derive a conve-
nient recursive formula for computing pn,m,r = P(Un,m,r|In).

Repeated use of the Bayes rule allows us to write pn,m,r as

pn,m,r =
f(xn|Un,m,r)P(Un,m,r|In−1)∑M

l=1

∑R
r̃=0 f(xn|Un,l,r̃)P(Un,l,r̃|In−1)

. (15)

Given the conditional independence of the observations we have
the factorization

f(xn|Un,m,r)

=
∏

a∈An:‖a−om‖<r

f
(a,om)
1 (x(a)

n )
∏

a∈An:‖a−om‖≥r

f0(x
(a)
n ).

(16)

In addition, according to the assumed propagation model, Rn−1

can only be equal to Rn or less than Rn by one. Therefore, by
the law of total probability, Bayes rule, and (2)–(3), we can write

P(Un,m,r|In−1) = P(Un,m,r|Un−1,m,r−1)pn−1,m,r−1

+ P(Un,m,r|Un−1,m,r)pn−1,m,r. (17)

The conditional probabilities that the radius increases by one
radius unit during one time slot for different radius values are

P(Un,m,r|Un−1,m,r−1) = ρ1, r ∈ [R+ 1]\{0, 1},
andP(Un,m,1|Un−1,m,0) = ρ. The conditional probabilities that
the radius stays the same during one time slot for different radius
values are P(Un,m,R|Un−1,m,R) = 1,

P(Un,m,r|Un−1,m,r) = 1− ρ1, ∀r ∈ [R+ 1]\{0,R},
and P(Un,m,0|Un−1,m,0) = 1− ρ. At n = 0, we obtain

P(U0,m,r) = 0, ∀r ∈ [R+ 1]\{0, 1},
P(U0,m,1) =

1
M ρ, and P(U0,m,0) =

1
M (1− ρ). In particular, it

is seen that P(Un,m,r|Un−1,m,r−j), j = 0, 1, is independent of
n. It should be noted that the radius of the area of the spatial
event can reach a radius r no earlier than time slot n = r − 1.

At time n, the probabilities pn can be updated using only the
probabilities at the previous time step pn−1, current observation
vectorxn, and prior information. Thus, even as data accumulates
with time, the amount of computations required for computing
pn remains constant per time slot. In particular, at time slot n
the amount of computations required for computing pn,m,r is
O(MR).

It is observed that pn depends on In−1 only through pn−1

and by (10) we have JN
N (IN ) = JN

N (pN ). Then, a simple
induction argument shows that pn is a sufficient statistic for the
program, i.e. the minimum expected cost-to-go from n to N can
be expressed as a function of pn, and thus JN

n (In) = JN
n (pn).

We denote the posterior probability of the event having radius r
at time n by

πn,r
�
= P(Rn = r|In) =

∑
m∈[M ]

pn,m,r. (18)

The Bellman equations from (9) and (10) can then be expressed
as

JN
n (pn) = min(πn,0, c(1− πn,0) +DN

n (pn)), (19)
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and

JN
N (pn) = πN,0, (20)

where

DN
n (pn)

�
= E[JN

n+1(pn+1)|In], (21)

can be expressed as a function of pn similarly to [9], [14].

C. Extension to Infinite Horizon

In this subsection, we remove the upper bound on T ,

and consider the case N → ∞. We write Jn
�
= limN→∞ JN

n

for the cost-to-go function in the limit and similarly Dn
�
=

limN→∞ DN
n . The limits are well defined, since 0 ≤ JN

n (pn) ≤
1 andJN

n (pn) ≥ JN+1
n (pn) for allpn, n andN . Therefore, we

obtain

Jn(pn) = min(πn,0, c(1− πn,0) +Dn(pn)) n ∈ N0, (22)

where Dn and Jn are non-negative functions on the M × (R+
1)-dimensional simplex. It is then seen that the optimal stopping
time Topt is of the form

Topt = inf {n ∈ N0 : πn,0 < c(1− πn,0) +Dn(pn)} , (23)

where the change is declared the first time the posterior proba-
bility of the event not being present drops below c(1− πn,0) +
Dn(pn). In general, the structure of Dn is not explicitly known,
hence no closed-form optimal solution exists. Furthermore a
numerical approximation of the optimal stopping time is com-
putationally challenging and may be hard to analyze.

An interesting special case is the regime where the initial
disruption is a rare event, i.e. ρ → 0. The following result
establishes that in this scenario the optimal test Topt converges
in probability to a simple threshold test on πn,0 which provides
an attractive solution for practical use.

Theorem 1: The optimal stopping rule in (23) converges in
probability to a threshold test

TQ
�
= inf{n ∈ N0 : πn,0 ≤ Q}, (24)

for a properly chosen Q as ρ → 0.
Proof: See Appendix A. �
In the following section, we propose a procedure denoted as

the radial propagation (RP) procedure for single change-point
detection, which is based on the threshold test from (24).

IV. SINGLE CHANGE-POINT DETECTION PROCEDURE FOR

RADIAL PROPAGATION

In the previous section, it was observed that in the limit ρ →
0, the optimal Bayesian stopping rule converges to a simple
threshold rule TQ, defined in (24). In this subsection, we study
the performance of this stopping rule for any ρ.

The following proposition provides an upper bound for the
false alarm of probability of TQ.

Proposition 1: The false alarm probability of TQ from (24)
can be upper bounded with PFA(TQ) ≤ Q.

Proof: By combining (5) and (8), one obtains

PFA(TQ) = P(RTQ
= 0) = E

[
P(RTQ

= 0|ITQ
)
]

= E[πTQ,0|ITQ
] ≤ Q,

where the second equality is obtained using the law of iterated
expectations, the third equality is obtained from the definition
of πn,0 in (18) and the inequality from the definition TQ. �

Remark: It should be noted that the PFA upper bound of
Proposition 1 is valid even if many of the model assumptions
are violated. As T is a stopping time, {T < t} ∈ It−1. As all
observations in It−1 are generated from the pre-change model,
it is clear from the definition of the probability of false alarm
in (5) that the PFA depends only on the pre-change observa-
tions. Violations of the assumed post-change behavior, such as
a misspecified f1 or departures from the assumed propagation
model do not impact the PFA. This is a useful property, since the
post-change distributions (usually generated by signal + noise)
are often more difficult to characterize than the pre-change (noise
only), as training data may be available from the pre-change
probability model only.

From here on, we refer to the stopping time TQ as the radial
propagation (RP) procedure, where the stopping threshold is
chosen to equal the false alarm upper bound α,

TRP
�
= inf{n ∈ N0 : πn,0 ≤ α}. (25)

A. Asymptotic Optimality

In full generality, the ADD of the RP procedure is tedious to
analyze due to the unknown source origin point, the potential
mobility of the sensors and their arbitrary locations at each time
slot. In order to shed some light on the ADD of the RP procedure,
we provide sufficient conditions under which the RP procedure
is asymptotically optimal in the vanishing PFA regime α → 0.

In the asymptotic analysis we consider the case where the
disruption propagates in a deterministic fashion with constant
velocity, i.e. ρ1 = 1, so that its area radius increases by one
unit in each time slot up to the maximum radius, R. The
observations Xn are conditionally independent with pre-change
pdf f0 and post-change pdf f (a,om)

1 , respectively, where f (a,om)
1

may depend on the sensor location a and source location om. To

proceed, let us define for all n the set η(n, k,m)
�
= {a ∈ An :

‖a− om‖ < n− k + 1} that contains the locations of sensors
that observe the event at time n assuming it took place at time k
at originm. Since the event propagates with constant velocity, on
{t = k,O = om}, the joint density of the observations received
at time n ≥ k by the FC is

f1,k,m(xn)
�
=

∏
a∈η(n,k,m)

f
(a,om)
1 (x(a)

n )
∏

a/∈η(n,k,m)

f0(x
(a)
n ),

(26)
with the factorization given is a result of the conditional in-
dependence of the sensor data. For {t = ∞}, at time n the

joint pdf of the observations received by the FC is f0(xn)
�
=∏

a∈An
f0(x

(a)
n ). The log-likelihood ratio of the hypotheses

{t = k,O = om} and {t = ∞} at time n is:

Zk,m
n

�
=

n∑
i=k

log
f1,k,m(xi)

f0(xi)
, k ≤ n. (27)
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In order to analyze the asymptotic detection delay, some con-
ditions on the long-term behaviour of the log-likelihood ratio
process Zk,m

n are required. It is assumed that there exists some
qm such that for every k and m, on {t = k,O = om}

1

n
Zk,m
k+n −→ qm almost surely. (28)

Note that if the post-change distribution is independent of lo-
cation, i.e. f (a,om)

1 = f1, and the number of sensors remains
constant over time |An| = L, it follows from the strong law
of large numbers, the i.i.d. assumption and finiteness of R that
qm = L ·D(f1||f0) for all m. The following Lemma provides
an asymptotic lower bound for the ADD for any procedure T
that fulfills PFA(T ) ≤ α.

Lemma 1: Suppose that ρ1 = 1 and that (28) applies for all

m ∈ [M ]. Let Δα
�
= {T : PFA(T ) ≤ α}. Then,

inf
T∈Δα

ADD(T ) ≥ 1

M

M−1∑
m=0

| logα|
qm + | log(1− ρ)| (1 + o(1)),

(29)
where o(1) → 0 as α → 0.

Proof: From the definition of ADD we have that

ADD(T ) =
1

M

M−1∑
m=0

ADDm(T ), (30)

where ADDm(T )
�
= E[(T − t)+|O = om] is the detection de-

lay when the true source location is om. Conditional on the
source location om being known, the problem reduces to a stan-
dard Bayesian quickest detection formulation with a non-i.i.d.
post-change distribution given by (26). A lower bound for the
asymptotic detection delay of any procedure in the class Δα in
this setting was derived in [8]. Specifically, by [8, Thm. 1]

inf
T∈Δα

ADDm(T ) ≥ | logα|
qm + | log(1− ρ)| (1 + o(1)). (31)

The Lemma follows from combining (30) and (31). �
It should be noted that the asymptotic lower bound from (29)

is identical to the lower bound for the case of instantaneous
change, where all the sensors are affected at the same time [11].

The almost sure converge of Zk,m
n , as required in (28), is not

sufficient for proving the asymptotic optimality of the threshold
rule TRP. Therefore, in the following theorem we impose some
mild additional assumptions on the rate of convergence of Zk,m

n

to qm and show that TRP is asymptotically optimal and attains
the lower bound from (29). To this end, we define for ε > 0 the
random variable,

Q(k,m)
ε = sup

{
n ∈ N :

∣∣∣∣ 1nZk,m
k+n−1 − qm

∣∣∣∣ > ε

}
,

which is the largest value of n for which the absolute difference
between 1

nZ
k,m
k+n−1 and qm is larger than ε. It is required that

∞∑
k=1

P(t = k)E[Q(k,m)
ε |t = k] < ∞, ∀ε > 0,m ∈ [M ]. (32)

Similarly to [8, Eq. (3.22)], the condition in (32) is a joint
condition on the convergence rates of 1

nZ
k,m
k+n for each t = k

and the prior distribution of the change point t. In particular, it is
analogous to complete convergence [57] of 1

nZ
t,m
t+n to qm under

the distribution of t.
Theorem 2: Suppose the conditions of Theorem 1 are satis-

fied and assume that (32) is satisfied. Then TRP is first-order
asymptotically optimal in the limit α → 0, i.e.

lim
α→0

inf
T∈Δα

ADD(T )

ADD(TRP)
= 1, (33)

where

inf
T∈Δα

ADD(T ) =
1

M

M−1∑
m=0

| logα|
qm + | log(1− ρ)| (1 + o(1)).

(34)
Proof: The proof is given in Appendix B. �

B. Detection of Attenuating Signals

In this subsection, we show how the obtained asymptotic
results can be used to accurately approximate the expected detec-
tion delay in practically relevant settings. We consider the case
of detecting an attenuating random Gaussian signal in additive
noise. This model is highly relevant in a variety of practical
applications in e.g. wireless communications and radar [58].
Prior to the change, only zero-mean i.i.d. Gaussian noise with
variance σ2 is observed. At an unknown time t, a signal source
becomes active somewhere in the field. If the signal does not
have any known structure, it can be modelled as zero-mean
Gaussian with variance γ2, where γ2 is the signal transmit
power. In free space, radio wave power decreases as the inverse
square of distance d between the source and the receiver [35]. In
most practical wireless settings, the path loss exponent, denoted
here by θ, is usually greater than 2 due to obstacles, reflec-
tors and scatterers. Therefore, for a sensor at distance d away
from the source excluding antenna and frequency dependent
factors, the observed signal is of the form N (0, γ2/d̃θ), where
d̃ = max(d, 1). Denoting f

(d)
1 as the post-change distribution

at distance d from the source, we have f0 = N (0, σ2) and
f
(d)
1 = N (0, σ2 + γ2/d̃θ). Suppose for analysis purposes that

the signal source location is known, that the domain of interest
is a disk with large radius R centered at the signal source, and
that at each time step there are L sensors located independently
and uniformly at random within the disk. The following result
establishes that TRP is asymptotically optimal in this setting, and
provides a first order approximation of the asymptotic detection
delay.

Proposition 2: Under the conditions described in Sction
IV-B, TRP is first-order asymptotically optimal. Moreover, in
the free-space conditions of path-loss exponent θ = 2

ADD(TRP) =
| logα|

Lqφ + | log(1− ρ)| (1 + o(1)), (35)

where qφ = 1
2R2 [φ+ φ log(φ+ 1)− (φ+R2) log(1 + φ

R2 )]
and φ = γ2/σ2 is the SNR in linear scale.

Proof: The proof is provided in Appendix C. �
Observe, that the expression for Lqφ in (35) further simplifies

in the limit R2, L → ∞. When R2, L → ∞ such that L/R2 →
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Fig. 2. Sources wavefront propagation: Phenomena emanating in two distinct
clusters of sensors from the sources O(1) and O(2) towards the sensors at
locations A(1,1)

n , A
(2,1)
n and A

(1,2)
n , A

(2,2)
n , respectively.

λ, we have

Lqφ
R,L→∞−→ λ

2
φ log(φ+ 1), (36)

where λ represents the average number of sensors per unit area.

V. EXTENSION TO MULTIPLE CHANGE-POINT DETECTION

In this subsection, we briefly describe how the simple struc-
ture of the RP stopping rule allows its use in settings when one is
monitoring multiple separate fields and signal sources at once.
This is a very relevant case in practice since in IoT, wireless
networks or radar systems there may be multiple active signal
sources, abrupt events or targets simultaneously and there is a
need to strictly control the false positives in decision making
while detecting changes rapidly. Suppose that there are K ≥ 2
distinct clusters of sensors. For each cluster, k ∈ [K], there may
exist a random initial event (change point), at time t(k), that
propagates and affects the sensors in the cluster according to the
model in Section II. We allow the probability of no event in a
cluster to be non-zero, where no event implies an infinite change
point. The spatial events and sensor observations of the different
clusters are assumed to be independent. This assumption, while
restrictive in general, is reasonable in cases where the sensor
clusters exist in spatially dispersed locations, and the events are
spatially localized. The assumed setup is illustrated in Fig. 2.
We would like to derive multiple stopping rules, T (k), k ∈
[K], in order to discover all the change points, t(k), k ∈ [K],
respectively, while strictly controlling Type I errors. We employ
a sequential multiple hypothesis testing framework for this
purpose.

A practical assumption for any sequential detection procedure
is that it must be stopped at some finite time instance. Thus, we
allow the existence of a deadline Nmax for the multiple change-
point detection. If a change point in the kth cluster has not been
declared before time slotNmax, we declare that there is no spatial
event in the kth cluster and setT (k) = ∞. For detecting multiple
change-points in parallel, the False Discovery Rate (FDR) is a
relevant false alarm rate criterion [10], [21]. This criterion is
defined as

FDR
�
= E

[
V

max(R, 1)

]
. (37)

The term V is the number of false discoveries (false alarms)
under deadline, i.e. the size of the subset of [K] s.t. T (k) < t(k)

andT (k) < Nmax. The termR denotes the number of discoveries
under deadline, i.e. the size of the subset of [K] s.t.T (k) < Nmax.
We would like to control the FDR s.t. it will be no higher than a
predefined tolerated level α ∈ (0, 1).

Taking into account the possibility of infinite change points,
we denote by Kf the random number of finite change points and
define the overall ADD as

ADD
�
= E

⎡
⎣ 1

Kf

∑
k,t(k)<∞

(T (k) − t(k))+

⎤
⎦ , (38)

where for Kf = 0 the argument of the expectation in (38) is
zero. In case the no change-point probabilities are zero we can
rewrite the ADD as

ADD
�
=

1

K

K∑
k=1

E[(T (k) − t(k))+]. (39)

For the considered multiple statistically independent clusters,
we will implement the following K parallel stopping rules:

T
(k)
RP

�
= inf

{
n ∈ N0 : π

(k)
n,0 ≤ α

}
, k ∈ [K], (40)

where π(k)
n,0 is the posterior probability of a cluster change point

having occurred in cluster k. A cluster change point is the time
of an initial event in the cluster. The threshold choice in (40)
guarantees FDR control under upper bound α, in accordance
with the parallel version of the IS-MAP procedure in [21].

In each cluster it is assumed that there is no change point
with probability p∞ and with probability 1− p∞ the prior
distribution of the initial change point, t(k), is geometrically
distributed with parameter ρ. Under the above assumptions, the
change-point posterior probability update is similar to the one
described in Section III-B and implemented for each cluster
separately. However, some expressions for probabilities need to
be re-derived. For simplicity of presentation, we omit the cluster
index, k ∈ [K], in the following expressions. For a specific
cluster, by using (1) and the no change-point probability, p∞,
we obtain

P(Rn = 1|Rn−1 = 0) = P (t = n|t ≥ n)

= ρ
(1− p∞)(1− ρ)n−1

p∞ + (1− p∞)(1− ρ)n−1
, (41)

n ∈ N, where we recall that P (Rn = 1|Rn−1 = 0) = 1−
P (Rn = 0|Rn−1 = 0). In addition to (41), the following ex-
pressions are rewritten to take into account the no change-point
probability:

P(R0 = 0) = p∞ + (1− p∞)(1− ρ),

P(R0 = 1) = (1− p∞)ρ,

P(Un,m,1|Un−1,m,0) = ρ
(1− p∞)(1− ρ)n−1

p∞ + (1− p∞)(1− ρ)n−1
,

P(Un,m,0|Un−1,m,0) =
p∞ + (1− p∞)(1− ρ)n

p∞ + (1− p∞)(1− ρ)n−1
,
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P(U0,m,1) =
1

M
(1− p∞)ρ,

and

P(U0,m,0) =
1

M
(p∞ + (1− p∞)(1− ρ)),

for m ∈ [M ].

VI. NUMERICAL SIMULATIONS

In this section, we evaluate the performance of the RP proce-
dure in terms of PFA and FDR control and ADD performance
under different radial propagation models and different multi-
sensor configurations. In order to better understand the behavior
of the RP procedure, we compare its performance to other pro-
cedures that either know the unobservable true source location,
or deploy a more simplistic propagation model. Robustness to
misspecification is tested by implementing a misspecified RP
procedure that incorrectly assumes the event to propagate much
faster than it does.

A. Simple Gaussian Observation Model

We begin by considering a single cluster and a simple Gaus-
sian observation model where f0 = N (0, 1) and f1 = N (0, 1 +
γ2), no matter the sensor location and the event origin point. In
all experiments L = 100 sensors are randomly placed on the
field at each time instance. The true source location is selected
randomly from a uniform distribution over the field. Observe,
that this is in contrast to the design-stage assumption that the
true source locations lies in the finite set O. The RP procedure
is compared against two other procedures. The first one is an
Oracle version of the RP procedure that knows the exact source
location. The Oracle procedure is a special case of the RP
procedure with |O| = 1. The other procedure implemented for
comparison purposes assumes that the event, once it appears,
affects all sensors instantly [11]. We refer to this procedure as
the Instant procedure. The Instant procedure is also a particular
special case of the RP procedure, where one assumes Rn = R
forn ≥ t andRn = 0 forn < t. It is to be expected that this pro-
cedure will provide inferior performance to the RP procedure,
as it does not take the dynamic nature of the propagation into
account. However, the comparison will provide insight into to
the behavior of the RP procedure by highlighting the scenarios in
which the performance gap between the properly specified and
misspecified procedures is significant, and where the difference
in performance is smaller.

We start by setting ρ = 0.02, ρ1 = 0.25, γ2 = 1 and consider-
ing a square spatial field S = [0, 10]× [0, 10] where the sensors
and sources are located. The set O used by the RP procedure
is taken to be an equally spaced grid of M points which covers
the field of interest. In addition to the properly specified RP
procedure, we implement a mismatched RP stopping rule (with
M = 50), which correctly assumes that radius increases with
probability ρ1 but with increments of 5 times the true radius
increment (1 unit). It corresponds to a setting where the real
event propagates slower than assumed by the RP procedure.

TABLE I
OBSERVED FALSE ALARM PROBABILITIES FOR DIFFERENT

THRESHOLD VALUES α

Fig. 3. Top: Average detection delay as a function of the PFA bound α for
all procedures. Middle: ADD evaluated for different values of propagation
parameter ρ1, while keeping other parameters fixed. Bottom: ADD as a function
of the SNR.

In Table I, observed false alarm probabilities of all procedures
for different stopping thresholds α are displayed. It is confirmed
that the theoretical PFA upper bound derived in Proposition 1
holds in all cases. In the top plot of Fig. 3, the PFA-ADD trade-off
curves are plotted for the procedures, with the RP procedure
implemented using source location grids of density M = 10,
50, and 100. For this small field, the performance of the RP
procedure is comparable to the Oracle procedure. Furthermore,
it is observed that increasing the density of the location grid in
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the RP procedure improves performance. However, under this
configuration forM = 50 andM = 100 the gap in performance
is already indistinguishable. All versions of RP procedure, in-
cluding the misspecified one, outperform the Instant procedure.
In the middle plot of Fig. 3, the procedures are compared for
varying values of the propagation parameter ρ1, with α = 0.01
fixed. For small values of ρ1, the Instant procedure experiences
performance loss in comparison to the others. This is because
when ρ1 is small the event will expand slowly with respect to the
discrete-time sampling rate and thus remain spatially localized
for a longer time, making it harder to detect for the Instant
procedure. In general there is an inverse relationship between
ADD and ρ1 for all procedures, as a larger ρ1 implies that the
event will be visible to more sensors quicker. The RP and Oracle
procedures provide near identical performance for all ρ1. The
mismatched RP procedure achieves lower ADD than the Instant
procedure for all ρ1 values. In the bottom plot of Fig 3, we fix
ρ1 = 0.25, α = 0.1 and vary the signal power parameter γ2.
For unit noise variance, we have SNR (dB) = 10 log10(γ

2).
It is observed that at low SNR regime the difference between
the RP and Instant procedures is smaller, but for moderate
and and high SNRs a clear gap in performance in favor of
the RP procedure again emerges. Moreover, the difference in
performance between the RP and Oracle procedures is small, and
the size of the performance gap is relatively independent of SNR.

B. Detection of Attenuating Radio Signals

In this subsection, we implement the attenuating signal model
introduced in Section IV-B. To demonstrate the extension of the
RP procedure to the detection of multiple events in parallel,
we consider a setting with K = 20 distinct, independent sensor
clusters each with 100 sensors as described in Section V. Prior
to the change in a given cluster, all sensors observe noise only,
so that f0 = N (0, 1). When a signal source appears in the kth
cluster at time t(k), it starts emitting an i.i.d. random signal mod-
eled as N (0, γ2). Due to path loss, the received signal strength
attenuates according to a path-loss exponent θ of the distance d
from the source. The signal and noise are considered additive,
hence for a sensor at distance d from the signal source we
have f

(d)
1 = N (0, 1 + γ2/d̃θ), where d̃ = max(d0, d/d0) with

d0 being a reference distance where the received signal power
equals γ2. In the case of radio waves, the signal propagates at
the speed of light c. The sensors take discrete time samples with
some common sampling rate fs. Therefore, the signal area radius
expands in a deterministic manner (i.e. ρ1 = 1) by c/fs meters
in a single time step. We take each cluster area Sk, k ∈ [K]
to be a square field with side length 5 km. The time at which
the signal appears, t(k), is considered to have an exponential
prior distribution with a mean (in seconds) of β = 10 in all
sensor clusters. A routine computation utilizing the properties of
the exponential and geometric distributions then shows that the
sample index at which the emitted signal first appears obeys a
geometric distribution with parameter ρ = 1− exp(−1/(βfs)).
The RP procedure is again compared against an Oracle proce-
dure that knows the true signal source location in each cluster,
and the exact propagation dynamics. Additionally, two versions
of the Instant procedure are implemented. The first one (called

Fig. 4. Top: ADD evaluated for different values of propagation parameter fs
in the attenuating signal and multiple cluster setting.

Instant-Oracle) knows the true and unobservable source location
in each cluster, but assumes that the event reaches all sensors
in the cluster immediately. The other one (Instant) assumes
similarly to the RP procedure that the source location in each
cluster belongs to a finite setO, and that the change is immediate
everywhere in the cluster. Note that in the setting of Section
VI-A knowledge of the true source location is not utilized in the
Instant procedure since the appearance of the event was assumed
to immediately change all sampling distributions from f0 to
f1 no matter the source location. However, in this setting, the
post-change sampling distribution f

(d)
1 depends on the distance

of the sensor from the source. Therefore, knowing the true source
location has value even if the propagation is assumed immediate.
Consequently, we obtain an interesting comparison between the
RP and the Instant-Oracle procedures, as the RP procedure is
aware of the propagation dynamics, but the Instant-Oracle has
knowledge of the true source location.

In all clusters, we set the signal power γ2 = 2 at a reference
distance of 500 m from the source, α = 0.01 and the path loss
exponent θ = 2. The true source location of each cluster is
sampled uniformly at random from Sk. The sensor locations
are also random and uniform, and assumed to remain stationary
during the monitoring process. In Fig. 4, the procedures are
compared for different values of the sampling rate fs. The
detection delay decreases for all procedures as the sampling
rate increases, and the difference in ADD (in microseconds)
between the RP and Oracle procedures shrinks as the sampling
rate increases. It is observed, that for sufficiently high sampling
rates the RP procedure achieves smaller detection delay than
the Instant-Oracle procedure. When the sampling rate is high,
accounting for the propagation dynamics is more valuable than
theoretical knowledge of the source location, and vice versa
when the propagation is rapid in comparison to the sampling
rate. In Table II, the observed FDR values are displayed for
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TABLE II
OBSERVED FALSE DISCOVERY RATES FOR DIFFERENT THRESHOLD VALUES α

different choices of the stopping threshold α when fs = 1 MHz.
It is demonstrated that the RP procedure controls the FDR below
the prespecified level α.

VII. CONCLUSION

In this paper, we proposed a method for Bayesian quickest
detection of spatial events with radial propagation patterns using
a mobile sensor network. First, we considered a single spatial
event. A dynamic programming framework was used to derive
the structure of the optimal stopping time in terms of ADD
under upper bound constraint on the PFA. The optimal procedure
has a complicated structure and implementing an approxima-
tion is computationally challenging and infeasible to analyze.
Therefore, utilizing a limiting form of the optimal procedure
we proposed the simpler RP procedure that employs a stopping
threshold on the posterior probability of the change point of
interest. It was shown both analytically and experimentally
that the RP procedure controls the PFA under a prespecified
upper bound, even if the post-change probability models are
misspecified. In addition, we showed that under some conditions
the proposed RP procedure coincides with an asymptotically
optimal procedure in terms of ADD as the PFA upper bound
α → 0. Then, we proposed an extension to parallel detection of
multiple spatial events occurring in distinct clusters. The pro-
posed method stems from a multiple hypothesis testing problem
formulation and strictly controls FDR criterion while taking
into account the spatial nature of the observed phenomena or
fields. A posterior probability update expression for multiple
change-point detection which takes into account a probability
that no event appears was derived.

In the simulations it was observed that for phenomena that
propagate slowly with regard to the sampling rate, the RP
procedure vastly outperforms a procedure that assumes that the
effect takes place instantly everywhere in the field. Similarly, in
the high SNR regime the RP procedure provided significantly
better performance than the Instant procedure. When the event
propagates very quickly in relative to the sampling rate, or
alternatively the SNR is very low, the performance gap was
smaller, although still in favor of the RP procedure.

Topics for future research include the derivation of spatial
procedures for multiple change-point detection and localization,
where the locations of the signal sources are estimated using
the observations. Additionally, extending the RP procedure to
a non-Bayesian framework and studying its possible optimality
properties is an interesting direction of future work.

APPENDIX A
PROOF OF THEOREM 1

Stemming from [9, Th. 2], our proof proceeds by showing
that the optimal stopping time Topt can be written as

Topt = inf

{
n ∈ N0 : πn,0 <

c+Ψn

c+ ρ

}
, (42)

where Ψn is a function such that Ψn

ρ → 0 as ρ → 0. The desired
threshold test structure from (24) is then obtained in the limit
ρ → 0. Let us define

Ψn
�
= Dn(pn)− (1− ρ)πn,0. (43)

Substituting this definition into (23) and rearranging gives (42).
Then, the convergence of Ψn

ρ → 0, as ρ → 0, can be shown by
introducing the transformation

qn,r =
πn,r

ρπn,0
⇐⇒ πn,r =

qn,r∑R
r̃=0 qn,r̃

.

This expression allows for using the steps in [9, Th. 2] to
complete the proof.

APPENDIX B
PROOF OF THEOREM 2

The proof is in two parts. First we define a set of M stopping
times T (0), . . ., T (M−1), such that

T (m) �
= inf{n : W (m)

n ≥ ν}, (44)

for some threshold ν, where W (m)
n

�
= P(t ≤ n|In, O = om). In

Lemma 2 below, we show that a stopping time defined as the
minimum of these M stopping times with thresholds ν = 1−
α/M achieves the asymptotic ADD lower bound. Then, it is
shown that ADD(TRP) ≤ ADD(T ∗), and the Theorem follows.

Lemma 2: Let T ∗ = inf{T (0), . . ., T (M−1)} and ν = 1−
α/M . Then

ADD(T ∗) ≤ 1

M

M−1∑
m=0

| logα|
qm + | log(1− ρ)| (1 + o(1)), (45)

i.e. T ∗ achieves the asymptotic ADD lower bound in (29).
Proof: Observe first from the definition of ADD that

ADD(T ∗) =
1

M

M−1∑
m=0

ADDm(T ∗), (46)

where ADDm(T ∗)
�
= E[(T ∗ − t)+|O = om]. When om is the

true source location, the problem reduces to a Bayesian quick-
est detection task with a non-i.i.d. post-change distribution. It
is shown in [8], that T (m) with a properly chosen stopping
threshold isasymptotically optimal for minimizing ADDm, so
that

ADDm

(
T (m)

)
≤ | log(1− ν)|

qm + | log(1− ρ)| (1 + o(1)). (47)

Since | log(1− ν)|= | logα|+ logM= | logα|(1 + o(1)), and
by definition T ∗ ≤ T (m) for all m, combining (46) and (47)
yields (45). �
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By Proposition 1, PFA(TRP) ≤ α. Therefore, in order to prove
Theorem 2, it is sufficient to show that ADD(TRP) ≤ ADD(T ∗).
We have

1− πn,0 =
M−1∑
m=0

W (m)
n P(O = om|In), (48)

and

P(O = om|In) = P(O = om, t ≤ n|In)
+ P(O = om, t > n|In)

= W (m)
n P(O = om|In) + πn,0

M
. (49)

The second equality in (49) follows from the fact that given
t > n, the event {O = om} is independent of In. Rearranging,
one obtains P(O = om|In) = πn,0/(M(1−W

(m)
n )). Hence,

1− πn,0 =
πn,0

M

M−1∑
m=0

W
(m)
n

1−W
(m)
n

, (50)

πn,0 =
M

M +
∑M−1

m=0
W

(m)
n

1−W
(m)
n

. (51)

Since the function h(x) = M/(M + x) is decreasing in x for
x > 0, and W

(m)
T ∗ ≥ ν = 1− α/M for some m by definition of

T ∗, we obtain

πT ∗,0 ≤ M

M + 1−α/M
α/M

=
Mα

Mα+M − α

= α+
α2 −Mα2

Mα+M − α
, (52)

where the first equality is obtained by rearrangement, and the
second equality by adding and subtracting α and rearrang-
ing. Since M ≥ 1 and α ∈ [0, 1], the second term on the last
line of (52) is non-positive, and hence πT ∗,0 ≤ α. As TRP =
inf{n : πn,0 ≤ α} and πT ∗,0 ≤ α, we obtain TRP ≤ T ∗ and
ADD(TRP) ≤ ADD(T ∗).

APPENDIX C
PROOF OF PROPOSITION 2

We would like to use Theorem 2 to establish asymptotic
optimality of TRP for quickest detection of the propagating
signal, and approximate the detection delay in this setting.

To compute the constant q defined in (28) and appearing in
(34), observe that we have the partitioning

Zk
k+n =

k+R−1∑
i=k

log
f1,k(xi)

f0(xi)
+

k+n∑
i=k+R

log
f1,k(xi)

f0(xi)
, (53)

where R is the number of time steps needed for the event to
cover the entire region. On {t = k} when i ≥ k +R, the signal
reaches all sensors, no matter where they are located within the
domain. Therefore, for i ≥ k +R

E

[
log

f1,k(xi)

f0(xi)

]
= LE

f
(d)
1

[
log

f
(d)
1 (x)

f0(x)

]
, (54)

where the latter expectation is over both the random location (in
particular the random distanced from the source) and the random
observation generated from the post-change f

(d)
1 distribution.

Since R is a finite constant, by the strong law of large numbers
and (53)–(54)

1

n
Zk
k+n −→

n→∞ LE
f
(d)
1

[
log

f
(d)
1 (x)

f0(x)

]
a.s. (55)

By iterated expectation and a direct computation of the KL-
divergence between two Gaussians we get

E
f
(d)
1

[
log

f
(d)
1 (x)

f0(x)

]
=

1

2
Ed

[
φ

d̃θ
− log

(
1 +

φ

d̃θ

)]
�
= qφ,

(56)

where φ
�
= γ2/σ2 is the SNR in linear scale. As the sensor

locations are uniform on the disk, P(d ≤ s) = (s/R)2, for 0 ≤
s ≤ R. Therefore,

qφ =
1

2R2

∫ R

0

φ

s̃θ−1
− s log

(
1 +

φ

s̃θ

)
ds. (57)

Evaluating the integral in (57) for a general path loss exponent
θ is possible, but leads to convoluted results. In the commonly
considered free-space conditions of θ = 2, we have

qφ =
1

2R2

[
φ+ φ log(φ+ 1)− (φ+R2) log

(
1 +

φ

R2

)]
.

(58)
To apply Theorem 2, it remains to check that the joint

convergence condition of both the observations and the prior
distribution in (32) is satisfied. This is straightforward, since on
{t = k}, Zk+R

k+n is a sum of i.i.d. random variables such that
n−1Zk

k+n converges almost surely to (36), and R is a finite
constant. Therefore, following [8, Sec. 4], (32) is established.
The Proposition then follows from Theorem 2.
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