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Abstract—Multiple antennas arrays combined with high carrier
frequencies play a key role in wireless networks for communications
but also for localization and sensing applications. To understand
the fundamental limits of electromagnetically large antenna arrays
for localization, this paper combines wave propagation theory
with estimation theory, and computes the Cramér-Rao Bound
(CRB) for the estimation of the source position on the basis of the
three Cartesian components of the electric field, observed over a
rectangular surface area. The problem is referred to as holographic
positioning and it intrinsically depends on the radiation angular
pattern of the transmitting source, which is typically ignored in
standard signal processing models. We assume that the source is a
Hertzian dipole, and address the holographic positioning problem
in both cases, that is, with and without a priori knowledge of its
orientation. To simplify the analysis and gain further insights, we
also consider the case in which the dipole is located on the line
perpendicular to the surface center. Numerical and asymptotic
results are given to quantify the CRBs, and to quantify the effect
of various system parameters on the ultimate estimation accuracy.
It turns out that square surfaces with side comparable to the
distance are needed to guarantee a centimeter-level accuracy
in the mmWave bands. Moreover, we show that the CRBs with
and without a priori knowledge of the source dipole orientation
are numerically the same. The provided CRBs are also used
to benchmark different maximum-likelihood estimators (MLEs)
derived on the basis of a discrete representation of different models
of the electric field. The analysis shows that, if the standard models
are used (neglecting the radiation angular pattern), the MLE
accuracy is far from the CRB. On the other hand, it approaches the
CRB when the more detailed electromagnetic model is considered.

Index Terms—Cramér-Rao bound, wave propagation theory,
source localization, planar electromagnetic surfaces, holographic
positioning.

I. INTRODUCTION

THE estimation accuracy of signal processing algorithms for
positioning is fundamentally limited by the quality of the
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underlying measurements. For time-based measurements, high
resolution and high accuracy can only be obtained when a large
bandwidth is available. Improvements can be achieved by using
multiple anchor nodes, located in known positions. Antenna
arrays have thus far only played a marginal role in positioning
since the small arrays of today’s networks provide little benefit.
With future networks, the situation may change significantly.
Indeed, the 5G technology standard [2] is envisioned to operate
in the mmWave bands [3], while 6G research is already focusing
on the so-called sub-terahertz (THz) bands, i.e., in the range
100–300 GHz. The small wavelength of high-frequency signals
makes it practically possible to envision arrays with a very large
number of antennas, as never seen before. The advent of large
spatially-continuous electromagnetic surfaces interacting with
wireless signals pushes even further this vision. From the tech-
nological point of view, metamaterials represent appealing can-
didates toward the creation of software-controlled metasurfaces,
which can lead to a viable way of realizing spatially-continuous
electromagnetic surfaces [4]. Research in this direction is taking
place under the names of Holographic MIMO [5], [6], large
intelligent surfaces [7], [8], and reconfigurable intelligent sur-
faces [9], [10]. All this opens new dimensions and brings new
opportunities for communications but also for localization and
sensing [11].

A. Motivation and Contribution

A side-effect of using large arrays or surfaces combined with
high carrier frequencies is to push the electromagnetic propa-
gation towards the regime in which the wavefront associated
to the signal transmitted by the source cannot be approximated
by a plane wave. In this regime, also the distance information,
not only the angle of arrival can be inferred from it. This
concept is not new [12] and it has been widely used to develop
signal processing algorithms that exploit the spherical wavefront
properties to communicate in low rank propagation channels
(e.g., [13], [14], [15]) and to pinpoint the position of the source
with high accuracy [8], [16], [17], [18], [19], [20], [21], [22],
[23], [24]. In this latter context, the question arises of the ultimate
accuracy that can be achieved in localization operations. This
is important in order to provide benchmarks for evaluating the
performance of actual estimators.

Motivated by the above consideration, in this paper we com-
bine electromagnetic propagation concepts with estimation the-
ory, and compute the Cramér-Rao Bound (CRB) for source local-
ization. In doing so, we consider the three Cartesian components
of the electric vector field, observed over a rectangular surface,
situated in the Fraunhofer radiation region of the source [25,
Ch. 15]. In general, the three Cartesian components depend on
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the radiation vector [25, Ch. 15], which is in turn determined
by the current distribution inside the source. This functional de-
pendence is typically overlooked in standard signal processing
models used for CRB computations and may lead to estimation
algorithms with less accuracy than those based on the complete
model. Note that similar considerations can be found in [12]
where standard models are compared to the so-called analytic
model, based on electromagnetic theory. Particularly, [12] ob-
serves that the former typically ignore the nature of the source
whose physical characteristics have a profound impact on the
generated electromagnetic fields. We will elaborate further on
the differences between what we call analytic model and what we
collectively denote as standard models later on, after introducing
the necessary mathematical machinery.

The first objective of this paper is to compute and analyze the
CRB for the localization of a source on the basis of the analytic
model, which stems from first principles of electromagnetic
theory. In doing so, we assume that the source is an elementary
Hertzian dipole and make use of all the three cartesian compo-
nents of the electric field for estimating its position. This allows
us to derive a fundamental limit to the accuracy of estimators
that may possibly exploit the entire electric field. This is what
we call holographic positioning where the holographic term
dates back to the ancient greek and literally means “describe
everything” [4]. The concept is often connected with metasur-
faces, which are two-dimensional surfaces consisting of arrays
of reconfigurable elements of metamaterial. We refer to [26] for
a recent survey on the implementation aspects for metasurfaces.
The main results of our CRB analysis can be summarized as
follows.
� We show how the ultimate estimation accuracy for the

localization of a source depends on its orientation. To the
best of authors’ knowledge, such a dependence has never
been pointed out before, and comes from considering the
radiation vector in the expression of the received electric
field.

� The orientation of the source can be assumed known or
unknown to the receiver. A second interesting contribution
of this paper is to show that, under practical conditions, the
CRB computed assuming that the orientation is unknown
coincides with that computed assuming that it is perfectly
known. This does not mean that we can ignore the effect
of dipole orientation in the estimation process but only that
the joint estimation of orientation and position ultimately
provides the same localization accuracy as if the orientation
were known.

� To gain insights about the impact on the estimation accu-
racy of different system parameters (such as wavelength,
size of the receiving surface), we assume that the dipole is
located on the line perpendicular to the surface center. In
this case, closed-form expressions can be computed that
show that the CRB scales quadratically with the wave-
length. This is in line with the results in [8] where a
standard model was used. Also, we show that the accuracy
in the estimation of some components of the position vector
improves unboundedly as the ratio between the size of the
receiving surface and its distance from the source increases.
This is a new result that cannot be found in prior works.

A second important objective of this paper is to use the CRB
analysis to understand whether or not positioning algorithms
based on the analytic model can provide gains, compared to those
based on standard models. To partially answer this question,
we consider a planar array made of Hertzian dipoles (filling
the receiving surface) and we analyze the performance of three
different maximum-likelihood estimators (MLEs) of the source
position, which are derived on the basis of three different models
of the electric field. In particular, the first estimator makes use of
the analytic model adopted in this paper, the second one is based
on the model from [8], and the third one relies on the common
planar approximation of the received electromagnetic wave.
Numerical results are used to compare the different estimators.
It turns out that the estimation accuracy of the MLE based
on the analytic model is very close to the theoretical limits
provided by the CRB. Moreover, we show that it outperforms
the other two estimators as it takes into account the orientation
of the transmitting dipole. Finally, we show that the estimation
accuracy depends on the source orientation, but not on its a priori
knowledge. This is exactly in line with the behavior predicted
by the CRB analysis.

Compared to the conference version [1], this paper provides a
more detailed derivation and discussion of the electromagnetic
vector model and computes the CRBs in both cases, that is, with
and without a priori knowledge of the source dipole orientation.
Also, it provides all the derivations that were omitted in [1], and
analyzes the performance of MLEs based on different electric
field models.

B. Paper Outline and Notation

The paper is organized as follows. In Section II, we start
from first principles of wave propagation theory and provide
the most general form of the electric field, which is then used
to compute the CRB for the estimation of the position of the
transmitting source. We also briefly describe how simplified
models can be obtained from the general form. In Section III, we
simplify the analysis by assuming that the transmitting source
is an elementary dipole pointing in an arbitrary direction. The
CRBs for the estimation of the dipole position are computed
for both cases, i.e., with and without a priori knowledge of its
orientation. To gain insights into the CRBs, in Section IV we
assume that the dipole is located in the central perpendicular
line (CPL) and is vertically oriented. Insightful closed-form
expressions are provided to quantify the ultimate estimation
accuracy. In Section V, we provide some numerical results
as a function of system parameters, e.g., distance, array size,
carrier frequency. To quantify the impact of the electric field
model on the estimation accuracy, in Section VI we analyze the
performance of three different MLEs. The first is based on the
adopted analytic model while the other two are based on models
adopted in the literature. The major conclusions are drawn in
Section VII.

The following notation is used throughout the paper. In the
R3 Euclidean space, an arbitrary spatial vector r is represented
as r = (α, β, γ), where (α, β, γ) are the components of r along
the directions of three given orthonormal vectors û1, û2, û3.
Equivalently, we write r = αû1 + βû2 + γû3. The length of r
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Fig. 1. Geometry of the considered system.

is ||r|| =
√
α2 + β2 + γ2, and r̂ = r/||r|| is a unit vector that is

parallel to r. We use a× b and a · b to denote, respectively, the
cross and the dot product between a and b. An arbitrary point
P in R3 is described by its three coordinates with respect to a
reference system (cartesian or spherical). A point P can also be
represented by a vector r. In such a case, P is the endpoint of r,
whose starting point is fixed.

C. Reproducible Research

The Matlab code used to obtain the simulation results
is available at: https://github.com/lucasanguinetti/CRB-for-
Holographic-Positioning.

II. SIGNAL MODEL AND PROBLEM FORMULATION

Consider the system depicted in Fig. 1 in which an electric
current density j(s, t), inside a source region Rs, with s being
a spatial vector identifying a generic point in Rs, generates an
electric field e(r, t) at a generic point P , identified through the
spatial vector r. We consider only monochromatic sources and
fields of the form

j(s, t) = Re
{
j(s)e jωt

}
(1)

and

e(r, t) = Re
{
e(r)ejωt

}
(2)

where ω is frequency in radians/second. In this case, Maxwell’s
equations can be written only in terms of the current and field
phasors, j(s) and e(r) [27, Ch. 1].

We call C the centroid of the source region Rs and assume
that the electric field e(r), produced by j(s), is measured over
an observation region Ro outside Rs. The electromagnetic field
propagates in a homogeneous and isotropic medium with neither
obstacles nor reflecting surfaces. In other words, there is only a
line-of-sight link between Rs and Ro.

A. Signal Model

The measured field is the sum of e(r) and a random noise
field n(r), i.e.,

ξ(r) = e(r) + n(r) (3)

where n(r) is generated by electromagnetic sources outside
Rs. In an unbounded, homogeneous and isotropic medium, the
electric field e(r) can be written as [27, Ch. 1]

e(r) = −jkZ0

∫
Rs

G(r− s) · j(s)ds (4)

where k = 2π/λ is the wavenumber, λ = 2πc/ω is the wave-

length, Z0 is the intrinsic impedance of the medium, and G(p)
is the dyadic Green’s function, given by [28]

G(p)=g(p)

[(
1−j

1

kp
− 1

k2p2

)
I−

(
1−j

3

kp
− 3

k2p2

)
p̂p̂

]
(5)

where I is the unit dyad, p = ‖p‖, p̂ = p/p, and g(p) is the
scalar Green’s function, i.e.,

g(p) =
e−jkp

4πp
. (6)

Consider a cartesian coordinate systemCX ′Y ′Z ′ with the origin
in the centroid C in Fig. 1, and let x̂, ŷ and ẑ, unit vectors in the
X ′, Y ′ and Z ′ directions, respectively. We make the following
assumption.

Assumption 1 (Fraunhofer radiation region of the source):
Let ro be the minimum distance of C from Ro and denote by
ls the largest dimension of Rs. We assume that ro � ls and
ro � 2l2s/λ. These conditions define the so-called far-field or
Fraunhofer radiation region of the source [25, Ch. 15].

Under Assumption 1, the electric field e(r) can be approxi-
mated as [25, Ch. 15]:

e(r) = G(r) [̂r×R(θ, φ)]×r̂ (7)

where

G(r) = −jkZ0g(r) (8)

and (r, θ, φ) are the spherical coordinates (with respect to
CX ′Y ′Z ′) of a generic point r ∈ Ro, i.e., r = r cosφ sin θx̂+
r sinφ sin θŷ + r cos θẑ. Also, r̂ is the unit vector in the radial
direction and R(θ, φ) is the radiation vector. This is related to
the source current distribution j(s) as follows [25, Eq. (15.7.5)]

R(θ, φ) =

∫
Rs

j(s)ejk(θ,φ)·sds (9)

where k(θ, φ) = kr̂ is the wavenumber vector. Denote by
Rr(θ, φ),Rθ(θ, φ) andRφ(θ, φ) the components of the radiation
vector R(θ, φ) along the r̂, θ̂ and φ̂ directions. Then, we may
write:

R(θ, φ) = Rr(θ, φ)r̂+Rθ(θ, φ)θ̂ +Rφ(θ, φ)φ̂ (10)

where

r̂ = sin θ cosφx̂+ sin θ sinφŷ + cos θẑ (11)

θ̂ = cos θ cosφx̂+ cos θ sinφŷ − sin θẑ (12)

φ̂ = − sinφx̂+ cosφŷ. (13)

Plugging (10) into (7) yields

e(r) = G(r)
[
Rθ(θ, φ)θ̂ +Rφ(θ, φ)φ̂

]
(14)

https://github.com/lucasanguinetti/CRB-for-Holographic-Positioning
https://github.com/lucasanguinetti/CRB-for-Holographic-Positioning
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since r̂× r̂ = 0, (r̂× θ̂)× r̂ = θ̂ and (r̂× φ̂)× r̂ = φ̂.1 No-
tice that e(r) in (14) is completely determined by the transverse
component

R⊥(θ, φ) = Rθ(θ, φ)θ̂ +Rφ(θ, φ)φ̂ (15)

of the radiation vector R(θ, φ) [25, Ch. 15]. Similar to [12], in
what follows we refer to (7) as the analytic model.

Denote by ξx(r), ξy(r) and ξz(r), the cartesian components
of ξ(r) along the x̂, ŷ and ẑ directions, respectively. From (3),
we have

ξx(r) = [e(r) + n(r)] · x̂ = ex(r) + nx(r) (16)

ξy(r) = [e(r) + n(r)] · ŷ = ey(r) + ny(r) (17)

ξz(r) = [e(r) + n(r)] · ẑ = ez(r) + nz(r) (18)

where ex(r), ey(r) and ez(r) are obtained from (14) by us-
ing (11)–(13). This yields

ex(r) = G(r) [Rθ(θ, φ) cos θ cosφ−Rφ(θ, φ) sinφ] (19)

ey(r) = G(r) [Rθ(θ, φ) cos θ sinφ+Rφ(θ, φ) cosφ] (20)

ez(r) = −G(r)Rθ(θ, φ) sin θ. (21)

B. Problem Formulation

We aim at computing the CRB for the estimation of the
position of the centroidC in Fig. 1 based on the noisy vector ξ(r)
over the observation regionRo, whose cartesian components are
given by (16)–(18). For this purpose, the following assumptions
are further made.

Assumption 2: The observation region is a square domain
parallel to the Y ′Z ′ coordinate plane. In particular, assume that

Ro={(x,′ y,′ z′) : x′=x′o, |y′−y′o|≤L/2, |z′−z′o|≤L/2}
where (x′o, y

′
o, z

′
o) are the cartesian coordinates of the center O

of Ro in the system CX ′Y ′Z ′.
Assumption 3 (Random noise field modelling): Follow-

ing [29]–[30], we model n(r) as a spatially uncorrelated zero-
mean complex Gaussian process with correlation function

E
{
n(r)n†(r′)

}
= σ2Iδ(r− r′) (22)

where I is the identity matrix, δ(·) is the Dirac’s delta function,
and σ2 is measured in V2, where V indicates volts [30].

The cartesian system OXY Z in Fig. 1 is obtained by
CX ′Y ′Z ′ through a pure translation. The position of C in
the system OXY Z is given by the cartesian coordinates
(xC , yC , zC). Accordingly, we have that x′ = x− xC , y′ =
y − yC and z′ = z − zC .

Let u = (xC , yC , zC) denote the vector collecting the un-
known coordinates of C. The CRB for the estimation of the ith
entry of u, say ui, is (e.g., [31])

CRB(ui) =
[
F−1

]
ii

(23)

where F is the Fisher’s Information Matrix (FIM). The latter is
a 3× 3 hermitian matrix, whose elements are computed as [31,

1Notice that r̂× θ̂ = −φ̂, −φ̂× r̂ = θ̂, r̂× φ̂ = −θ̂ and −θ̂ × r̂ = φ̂.

Appendix 15C]

[F]mn =
2

σ2
Re

{∫∫ L
2

−L
2

fmn(y, z)dydz

}
(24)

where

fmn(y, z)=
∂ex(r)

∂um

∂e∗x(r)
∂un

+
∂ey(r)

∂um

∂e∗y(r)
∂un

+
∂ez(r)

∂um

∂e∗z(r)
∂un

(25)
and the integration is performed over the observation region
Ro, as defined in Assumption 2. The functional dependence of
ex(r), ey(r) and ez(r) onu is hidden in the spherical coordinates
(r, θ, φ). Indeed, we have

r = ||r|| =
√
x2C + (y − yC)2 + (z − zC)2 (26)

cos θ =
z − zC
r

(27)

tanφ = −y − yC
xC

. (28)

Accordingly, we can write

∂ev(r)

∂ui
=
∂ev(r)

∂r

∂r

∂ui
+
∂ev(r)

∂θ

∂θ

∂ui
+
∂ev(r)

∂φ

∂φ

∂ui
(29)

with v ∈ {x, y, z} and i ∈ {1, 2, 3}. The derivatives of r, θ and
φ with respect to ui can be easily computed from (26)–(28),
whereas the partial derivatives of ev(r) with respect to r, θ and
φ can be obtained from (19)–(21).

It is clear that the computation of (29) requires knowledge of
the components Rθ(θ, φ) and Rφ(θ, φ) of the radiation vector
R(θ, φ). In other words, the evaluation of (29) implicitly as-
sumes that the current distribution inside the source region Rs

is a priori known. However, this is not always the case in practical
applications. When it is not a priori known, the problem must
be reformulated to take into account this lack of information.
In the remainder of this paper, we consider a specific scenario
in which the current source is an elementary (i.e., short) dipole
with an arbitrary orientation and address the estimation problem
in both cases, that is, with and without a priori knowledge of the
current distribution.

C. Discussion on Prior Adopted Electromagnetic Models

The expression in (14) provides the electric field e(r) in a
point r lying in the Fraunhofer radiation region of the source
(i.e., under Assumption 1). We see that e(r) is the product of
the two terms: G(r) and R⊥(θ, φ) = Rθ(θ, φ)θ̂ +Rφ(θ, φ)φ̂.
The first term is given in (8) and represents a scalar spherical
wave, which accounts for the distance r between the source and
the point, as given in (26). The second term is defined in (15)
and takes into account the vector nature of e(r) as well as its
dependence on the current distribution inside the transmitting
volume. In general, such a dependence is overlooked in the
literature. To the best of our knowledge, [12] is the only paper in
which it is recognized that the commonly adopted models do not
consider the characteristics of the source (transmit antenna type,
size, orientation, etc.), although it may significantly affect the
structure of the received electric field. In general, the standard
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models for CRB computation and position estimation have the
following form [12]:

η(r) = s(r) + n(r) (30)

where

s(r) = f(e(r)) (31)

is some scalar function f(·) of the received electric field and
n(r) is additive noise. The vast majority of models is obtained
as a further simplification of (30) in which only the spherical
wave term G(r) is considered, e.g., [24]. This leads to:

s(r) = αG(r) (32)

where α is a scaling parameter independent of the observation
point. The analyses provided in [17], [18], and [21], are based
on the above model. A more accurate scalar model is considered
in [8]. Here, the authors assume that the received signal can be
written as [8, Eq. (2)]

s(r) = βG(r)

√
xC
r

(33)

where the additional factor
√
xC/r accounts for the angle-of-

arrival of the transmitted signal. The same model is adopted
in [16].

D. The Planar Wave Approximation

In the region Ro, we have that r = rC + d, where rC =
−xC x̂+ yC ŷ + zC ẑ is the vector from C to O and d = yŷ +
zẑ is the vector from O to P . Accordingly, (26) reduces to

r = ‖rC + d‖ = rC

√
1 + 2(r̂C · d̂) d

rC
+
d2

r2C
(34)

with rC = ‖rC‖ and d = ‖d‖. In the case rC � d, we can
replace r with rC in the denominator of (6) and obtain the
following approximation:

G(r) ≈ −jkZ0
e−jkr

4πrC
. (35)

As for the exponent e−jkr, approximations may be obtained by
considering the Taylor series expansion

√
1 + x ≈ 1 + x/2−

x2/8, valid for small values of x. Applying this approximation
to (34) yields

r ≈ rC + (r̂C · d̂)d+ [1− (r̂C · d̂)2]d2/2rC (36)

and (35) thus reduces to

G(r) ≈ −jkZ0
e−jkrC

4πrC
e−jk[d cosψ+sin2 ψ(d2/2rC)] (37)

where cosψ = (r̂C · d̂). This expansion is called the Fresnel
approximation [12]. In the case rC � L2/λ, we can retain only
the first-order term in the exponent of (37) and thus obtain

G(r) ≈ −jkZ0
e−jkrC

4πrC
e−jkd cosψ (38)

which represents the well-known planar approximation of the
spherical wave in (8).

Fig. 2. Illustration of an elementary dipole pointing in an arbitrary direction
t̂ = txx̂+ tyŷ+ tz ẑ. The centroid of the dipole has cartesian coordinates
(xC , yC , zC). The CPL case in which the dipole is located in the central
perpendicular line (CPL) and is vertically oriented is also reported.

III. CRB COMPUTATION WITH AN ELEMENTARY SOURCE

DIPOLE

To simplify the analysis, we make the following assumption
about the source, as shown in Fig. 2.

Assumption 4: The source is an elementary dipole of length
ls pointing in an arbitrary direction t̂ = txx̂+ tyŷ + tz ẑ.

In the case of an elementary dipole, the current density j(s)
has the following expression (e.g., [27, Sec. 2.3.1])

j(s) = Iinlsδ(s)̂t (39)

where Iin is the uniform current level in the dipole. Plugging (39)
into (9) yields

R(θ, φ) = Iinlst̂ (40)

from which, using (7), we have

e(r) = G(r)Iinls[
(
r̂×t̂

)×r̂]. (41)

By using the identity (r̂ × t̂)×r̂ = t̂− (r̂ · t̂)r̂, (41) can be
written in the equivalent form

e(r) = G(r)Iinls [̂t− (r̂ · t̂)r̂]. (42)

From (8) and (42), it thus follows that

ex = −jχ
e−jkr

r
[tx − (rxtx + ryty + rztz)rx] (43)

ey = −jχ
e−jkr

r
[ty − (rxtx + ryty + rztz)ry] (44)

ez = −jχ
e−jkr

r
[tz − (rxtx + ryty + rztz)rz] (45)

where (rx, ry, rz) are the cartesian components of r̂, and

χ =
Z0Iin
2

ls
λ

(46)

is measured in volts, V. For the sake of simplicity, we have
dropped the dependence of ex, ey and ez on r. The above
expressions depend on (tx, ty, tz) and the cartesian coordinates
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(xC , yC , zC) of the centroid C, which are related to (rx, ry, rz)
through the following equations:

rx = −xC
r
, ry =

y − yC
r

, rz =
z − zC
r

(47)

where r is given by (26).
We aim at evaluating the CRBs for the estimation of

(xC , yC , zC) on the basis of (43)–(45). We first consider the
case in which the parameters (tx, ty, tz) are unknown and thus
must be considered as nuisance parameters. This corresponds to
the case of having partial information about the source current
distribution. This first case is not only more general but also
instrumental to obtain the CRBs with full information, i.e., the
parameters (tx, ty, tz) are a priori known.

A. Unknown Orientation of the Dipole

When (tx, ty, tz) are unknown, we cannot use (23)–(25)
but we must compute the FIM for all the unknown param-
eters, which are collected into the 6-dimensional vector p =
(tx, ty, tz, xC , yC , zC). Therefore, the FIM is a 6× 6 symmetric
matrix with entries given by

[F]mn =

2

σ2
Re

{∫∫ L
2

−L
2

[
∂ex
∂pm

∂e∗x
∂pn

+
∂ey
∂pm

∂e∗y
∂pn

+
∂ez
∂pm

∂e∗z
∂pn

]
dydz

}

(48)

where pm denotes the mth element of p and Re{·} is the real
part of the enclosed quantity. The derivatives involved in [F]mn
are computed in Appendix A. The matrix F can be partitioned
as [31]

F =

[
Ftt Ftc
Fct Fcc

]
(49)

where the 3× 3 blocks Ftt and Fcc contain the partial deriva-
tives with respect to (tx, ty, tz) and (xC , yC , zC), respectively,
whileFtc andFct contain the mixed derivatives. SinceF is sym-
metric, we have Ftt = FTtt, Fcc = FTcc and Ftc = FTct. Based
on (49) and well known formulas on the inverse of partitioned
matrices [31, Sec. A1.1.3], we can immediately show that the
CRBs for the estimation of xC , yC and zC , are given by the
diagonal elements of the matrix (Fcc − FTtcF

−1
tt Ftc)

−1, i.e.,

CRBu(xC) =
[(
Fcc − FTtcF

−1
tt Ftc

)−1
]
11

(50)

CRBu(yC) =
[(
Fcc − FTtcF

−1
tt Ftc

)−1
]
22

(51)

CRBu(zC) =
[(
Fcc − FTtcF

−1
tt Ftc

)−1
]
33

(52)

where the subscript u is used to stress that the above results refer
to the case of unknown dipole orientation.

Remark 1: Notice that the electromagnetic model in (43)–
(45) can also be used to compute the CRBs for the cartesian
components (tx, ty, tz) of t̂. Evaluating these bounds is out
of the scope of this work whose focus is the estimation of
the source position. However, we point out that estimating the
orientation may be useful in practice, e.g., for the deployment
and orientation of receiving surfaces.

B. Known Orientation of Dipole

When the arbitrary parameters (tx, ty, tz) of the dipole are
perfectly known, we have a complete description of the source
current distribution. This means that the functions Rθ(θ, φ) and
Rφ(θ, φ) are known, and we can compute the CRB following
the general2 procedure outlined in Section II-B. The Fisher’s
information matrix obtained in this way coincides with the
matrix Fcc computed previously. It thus follows that the CRBs
for the estimation ofxC , yC and zC , can be found as the diagonal
elements of the matrix F−1

cc , i.e.,

CRB(xC) =
[
F−1
cc

]
11

(53)

CRB(yC) =
[
F−1
cc

]
22

(54)

CRB(zC) =
[
F−1
cc

]
33
. (55)

C. Relationship Between CRBs With and Without Knowledge
of the Dipole Orientation

By applying the matrix inversion lemma,3 we obtain[(
Fcc − FTtcF

−1
tt Ftc

)−1
]
ii

=
[
F−1
cc

]
ii
+
[
F−1
cc F

T
tc

(
Ftt − FtcF

−1
cc F

T
tc

)−1
FtcF

−1
cc

]
ii

(56)

for i = 1, 2, 3. Notice that (Ftt − FtcF
−1
cc F

T
tc)

−1 is positive
semi-definite, since it is the 3× 3 block in the upper left corner
of the semi-positive definite matrix F−1. As a result, the second
matrix F−1

cc F
T
tc(Ftt − FtcF

−1
cc F

T
tc)

−1FtcF
−1
cc in (56) is positive

semi-definite as well. Hence, from (56) it follows that[
F−1
cc

]
ii
≤

[(
Fcc − FTtcF

−1
tt Ftc

)−1
]
ii
. (57)

By exploiting this result, we have that

CRB(xC) ≤ CRBu(xC) (58)

CRB(yC) ≤ CRBu(yC) (59)

CRB(zC) ≤ CRBu(zC) (60)

as it should be since the Cramér-Rao bound worsens in the
presence of unknown nuisance parameters [31, Example 3.7].
However, numerical results will show that the loss in estima-
tion accuracy between the two cases in which the parameters
(tx, ty, tz) are unknown and known may be negligible under
certain conditions. More details will be given in Section V.

IV. A CASE STUDY

The elements of the matrices needed for the computation
of F in (49) can be obtained by numerically evaluating the
integrals (48) for any arbitrary position of the dipole. Although
possible, this makes it hard to gain insights into the CRBs. Next,
we show that closed-form expressions can be obtained when the
dipole is located in the central perpendicular line (CPL) and is

2Here, by general we mean that it is valid irrespective of the particular current
distribution, as long as the latter is known.

3(A+UCV)−1 = A−1 −A−1U(C−1 +VA−1U)−1VA−1
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vertically oriented; see Fig. 2. The following assumption is thus
made.

Assumption 5: The center C of the dipole is on the line
perpendicular toRo passing through the pointO (known as CPL
case), as shown in Fig. 2, and the dipole is vertically oriented.

Under the CPL assumption, we have that yC = zC = 0,
whereas the vertical orientation of the dipole implies that tx =
ty = 0 and tz = 1. For convenience, we call

SNR � 2|χ|2
σ2

(61)

the signal-to-noise ratio (SNR) with χ given by (46) and define

ρ � L

xC
. (62)

The following result is obtained.
Proposition 1: Under Assumption 5, we have that:
1) The matrix Fcc becomes diagonal with entries

[Fcc]11 = SNR · [k2I1(ρ) + x−2
C I2(ρ)

]
(63)

[Fcc]22 = SNR · [k2I3(ρ) + x−2
C I4(ρ)

]
(64)

[Fcc]33 = SNR · [k2I5(ρ) + x−2
C I6(ρ)

]
(65)

where Ii(ρ) for i = 1, . . . , 6 are given in Appendix B.
2) The matrix Ftt becomes diagonal with entries

[Ftt]11 = SNR · I7(ρ) (66)

[Ftt]22 = [Ftt]33 = SNR · I8(ρ) (67)

where Ii(ρ) for i = 7, 8 are given in (108)–(109) in
Appendix B.

3) The elements of Ftc are all zero except for [Ftc]13 and
[Ftc]31 which can be computed as

[Ftc]13 = x−1
C SNR · I9(ρ) (68)

[Ftc]31 = −x−1
C SNR · I10(ρ) (69)

where I9(ρ) and I10(ρ) are given, respectively, by (112)
and (113) in Appendix B.

Proof: The proof is given in Appendix B.
Based on the results in Proposition 1, the following corollaries

are obtained for both cases with unknown and known dipole ori-
entation. Notice that the dependence on ρ is omitted to simplify
the notation.

Corollary 1 (Unknown dipole orientation): Under Assump-
tion 5, the CRBs for the estimation of xC , yC and zC when the
dipole orientation is unknown are given by

CRBu(xC) =
SNR−1

k2I1 + x−2
C (I2 − I−1

8 I210)
(70)

CRBu(yC) =
SNR−1

k2I3 + x−2
C I4

(71)

CRBu(zC) =
SNR−1

k2I5 + x−2
C (I6 − I−1

7 I29)
. (72)

Proof: The proof follows from (50)–(52) by using the re-
sults of Proposition 1 from which we have FTtcF

−1
tt Ftc =

diag([Ftc]231/[Ftt]33, 0, [Ftc]
2
13/[Ftt]11).

Corollary 2 (Known dipole orientation): Under Assump-
tion 5, the CRBs for the estimation of xC , yC and zC when
the dipole orientation is known are:

CRB(xC) =
SNR−1

k2I1 + x−2
C I2

(73)

CRB(yC) =
SNR−1

k2I3 + x−2
C I4

(74)

CRB(zC) =
SNR−1

k2I5 + x−2
C I6

. (75)

Proof: It easily follows from Proposition 1 by using
(53)–(55).

The above corollaries clearly show the effects of the wave-
length λ = 2π/k and xC for fixed values of ρ or, equivalently,
of the functions {Ii}. Particularly, we see that the estimation
accuracy increases as λ or xC decrease for fixed values of SNR.
Similar results were already observed in [8]. Also, from (71)
and (74) it follows that, under Assumption 5, CRBu(yC) =
CRB(yC).

A. Analysis for xC � λ

Assumption 5 leads to a considerable simplification since
the matrices Fcc and FTtcF

−1
tt Ftc become diagonal. Further

simplifications can be obtained when xC � λ. This condition is
always satisfied in systems operating at frequencies in the range
of GHz or above.

Proposition 2: Under Assumption 5 and xC � λ, CRBs
reduce to

CRBu(xC) ≈ CRB(xC) ≈ SNR−1

I1
· λ

2

4π2
(76)

CRBu(yC) = CRB(yC) ≈ SNR−1

I3
· λ

2

4π2
(77)

Proof: See Appendix C.
Proposition 2 shows that, when xC � λ, the accuracy in the

estimation of xC and yC solely depends on the values of λ and
ρ. In particular, keeping ρ fixed, the CRBs for xC and yC scale
with the square of λ. On the other hand, for a given value of
λ, if xC increases by a factor α, we must scale L by the same
factor in order to keep ρ, and hence the estimation accuracy,
unchanged. This means that the area of the observation region
must be increased by a factor α2. The same conclusions do
not hold for the estimation of zC . Indeed, under Assumption 5
and xC � λ it can be shown that the terms x−2

C (I6 − I−1
7 I29)

and x−2
C I6, appearing in the denominator of the expressions

for CRBu(zC) and CRB(zC) in Corollaries 1 and 2, are not
negligible with respect to k2I5. Hence, the CRBs cannot be
simplified and continue to depend on both xC and λ.

B. Asymptotic Analysis for ρ→ ∞
Starting from the results given above, in order to understand

the ultimate performance and to obtain insightful closed form
expressions, it is useful to analyze the behaviour of the CRBs
in the asymptotic regime ρ = L/xC → ∞. The main results are
summarized in the following proposition.
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Proposition 3: Under Assumption 5 and xC � λ, in the
asymptotic regime ρ→ ∞ we have

lim
ρ→∞ CRBu(xC) = lim

ρ→∞ CRB(xC) =
SNR−1

3π3
λ2 (78)

lim
ρ→∞ CRBu(yC)ln ρ = lim

ρ→∞ CRB(yC)ln ρ =
SNR−1

3π3
λ2 (79)

lim
ρ→∞ CRBu(zC)ln ρ = lim

ρ→∞ CRB(zC)ln ρ =
SNR−1

π3
λ2. (80)

Proof: See Appendix D.
Proposition 3 shows that, for sufficiently large values of

ρ = L/xC , the estimation accuracy is the same in both cases
of unknown or known dipole orientation. This means that, even
though t̂ is unknown, we can achieve the same accuracy in the
estimation of the source position as in the case of known dipole
orientation. Clearly, this requires in general the joint estimation
of t̂ and (xC , yC , zC). It is interesting to note that the CRBs
for the estimation of yC and zC goes to zero as ρ increases
unboundedly. This is in contrast to the results in [8, Eq. (26)]
where it is shown that the asymptotic CRBs are identical for all
the three dimensions and depend solely on the wavelength λ.
This difference is a direct consequence of the different radiation
and signal models used for the computation of CRBs. Indeed,
in [8] the bounds are derived on the basis of the scalar field (33).

V. NUMERICAL ANALYSIS OF CRAMÉR-RAO BOUNDS

The effect of the various system parameters on the estimation
accuracy is now analyzed by numerically evaluating the CRBs
according to the general expressions given in (50)–(52) or in
(53)–(55) for the unknown or known dipole orientation cases,
respectively. We assume that the dipole is located at a distance
xC = 6m, the signal-to-noise ratio is SNR = |χ|2/σ2 = 10 dB,
and the wavelength is λ = 0.01 m (corresponding to fc =
30 GHz), unless otherwise specified. When needed to validate
the asymptotic analysis, numerical results are given for surfaces
of extremely large side length, e.g., up to L = 103 m. Clearly,
this does not mean that we advocate the use of such practically
infinite surfaces. Indeed, most of the conclusions and insights
will be given for values in the range 1m ≤ L ≤ 10m.

A. Analysis for the CPL Case

Fig. 3 shows the square root of the CRB (RCRB), measured in
meters [m], for the three components xC , yC and zC , as a func-
tion of the surface side length L, for a vertically oriented dipole
located in CPL, i.e., under the hypotheses of Assumption 5.
Both cases of unknown and known orientation are considered in
Fig. 3(a) and Fig. 3(b), respectively. We see that all the RCRBs
decrease fast with the surface side length, at least for values
of L of practical interest, i.e. in the range 1m ≤ L ≤ 10m.
The results in Fig. 3(a) and Fig. 3(b) show that, for a vertically
oriented dipole in CPL, the estimation accuracy is virtually the
same with both known and unknown orientation - see also Fig. 4.
We see that RCRB(xC) is much lower than RCRB(yC) and
RCRB(zC) in the range 1m ≤ L ≤ 10m, and the asymptotic
limit is achieved for L ≈ 20 m. Also, as predicted by (79)
and (80), RCRB(yC) and RCRB(zC) decrease unboundedly as
L increases. Notice that an accuracy on the order of tens of

Fig. 3. RCRBs as a function of the surface side length for a vertically oriented
dipole in CPL at a distance xC = 6 m.

Fig. 4. Loss due to the lack of knowledge of dipole orientation.

centimeters in all the three dimensions (as required for exam-
ple in future automotive and industrial applications, e.g., [32])
is achieved only for L ≈ 3m, both with known or unknown
orientation.

To quantify the difference between the CRBs with and without
knowledge of dipole orientation, Fig. 4 plots the quantity

[
ΔRCRB

RCRB

]
ii

�

√√√√[(
Fcc − FTtcF

−1
tt Ftc

)−1
]
ii
− [F−1

cc ]ii

[F−1
cc ]ii

(81)

as obtained from (56). Notice that yC is not reported as it is
below the numerical precision of Matlab, as expected from the
fact that, under Assumption 5, CRBu(yC) = CRB(yC). We see
that the loss, due to the lack of knowledge of dipole orientation,
is negligible for all the considered values of L. This conclusion
does not hold true in general. In fact, the role of the dipole
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Fig. 5. RCRBs as a function of the surface side length for two different
(unknown) dipole orientations.

orientation in position estimation depends on the operating
conditions, and should be verified on a case-by-case basis. In
general, having or not knowledge of the dipole orientation has
a negligible impact when one of the two (or both) conditions is
satisfied: 1) the orientation is well estimated; 2) there is a weak
interaction between orientation and position parameters, i.e., the
FIM has a nearly block-diagonal structure. In the simulation
setting of Figs. 3 and 4, the negligible impact is mainly due to a
weak interaction between them.

B. Impact of Dipole Orientation

To quantify the impact of dipole orientation, Fig. 5(a) and
Fig. 5(b) show the RCRBs for two different values of t̂, namely
t̂ = (1, 0, 0) and t̂ = (1/

√
3, 1/

√
3, 1/

√
3). In both cases, the

dipole is in CPL and its orientation is unknown. Compared to
Fig. 3(a), a sensible loss is evident only when t̂ = (1, 0, 0) and
for small values of L. For example, with L = 3 m the accuracy
in the estimation of xC decreases from 10 cm to 1 m. Notice
that, for both t̂ = (1, 0, 0) and t̂ = (1/

√
3, 1/

√
3, 1/

√
3), the

accuracy in the estimation of yC and zC is the same. Similar
conclusions hold when the dipole orientation is known.

Fig. 6 shows the RCRBs in the case of unknown orientation,
respectively, as a function of yC and zC when xC = 6 m. The
dipole is oriented vertically and L = 3 m. The value of the
RCRB corresponding to a point (yC , zC) is measured by the
color of that point. More precisely, the RCRB values are first
normalized to their minimum, which is achieved when the dipole
is in CPL (yC = zC = 0), and then the normalized values (in dB)
are mapped into a colour: higher values are associated to warm
colours, lower values to cool ones. This means, for example, that

Fig. 6. RCRBs in the case of unknown orientation as a function of yC and zC
when xC = 6 m. The dipole is oriented vertically and L = 3 m.

the blue zones in each figure correspond to the best estimation
accuracy. Fig. 6 clearly shows the different behaviours of various
RCRBs when the dipole moves away from the CPL position.
For example, we see that RCRBu(xC) increases faster than
RCRBu(yC) andRCRBu(zC)whatever the direction of motion
is. On the other hand, RCRBu(yC) and RCRBu(zC) have a
similar behavior. The same conclusions hold when the dipole
orientation is known.

From the above analyses, we conclude that the CRBs are
approximately the same whether or not the orientation of the
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Fig. 7. RCRBs as a function of xC for a vertical dipole in CPL and L = 3 m,
with λ = 0.1, 0.01 or 0.001 m.

transmitting dipole is known. However, this does not necessarily
mean that we can ignore the effect of dipole orientation in the
estimation process. It only means that the joint estimation of t̂
and u ultimately provides the same localization accuracy as if
t̂ were known. The impact of the orientation knowledge will be
quantified in Section VI where MLEs will be considered.

C. Impact of Carrier Frequency

Fig. 7 shows the RCRBs as a function of xC for three different
values of the wavelength, namely λ = 0.1 m (corresponding to
fc = 3 GHz), λ = 0.01 m (corresponding to fc = 30 GHz) and
λ = 0.001 m (corresponding to fc = 300 GHz). The dipole is in
CPL and is oriented vertically. Its orientation is unknown to the
receiver. The surface side length is L = 3 m. As expected, the
estimation accuracy reduces as the distance between the source
and the observation region increases. In particular, we see that
RCRB(xC) increases slower thanRCRB(yC) andRCRB(zC).
Notice that the RCBRs depend linearly on λ, at least in the range
of values of xC (and hence ρ) considered in Fig. 7. Indeed,
reducing the wavelength by a factor of 10 reduces the RCBRs of
the same factor. This can easily be derived analytically for xC
and yC by considering the results in Proposition 2. This holds
true also for zC , as it is shown in Fig. 7. Notice that the same
dependence on λ was already observed in [8]. Similar results
(not shown due to space limitations) can be obtained if the dipole
orientation is known. Marginal differences are only observed for
λ = 0.1 m and small values of L, i.e., L ≤ 0.1 m.

VI. EVALUATING THE IMPACT OF DIFFERENT MODELS

To show how different electric field models impact the esti-
mation accuracy, we now use the derived CRBs to benchmark
different MLEs derived on the basis of a discrete representation
of misspecified models. Particularly, we consider a practical
scenario in which the observation region is filled with vertically-
oriented short dipoles. The analysis is carried out under the
hypotheses of Assumption 1 for ls = λ/4 and λ = 0.1. Since
2l2s/λ = λ/8 = 0.0125 m, this means that it is valid for all
distances of practical relevance.

Remark 2: When the assumed model differs from the true
one, the estimation problem is said to be misspecified or
mismatched [33], [34]. In these circumstances, fundamental

limits can be computed by resorting to the mismatched esti-
mation theory, which allows to derive the CRBs under model
mismatching. This is without any doubt an interesting extension
of our theoretical analysis, which is left for future work. A
comprehensive review on the subject can be found in [35].

A. Discrete Signal Model

We assume that the observation region is filled with short
dipoles of length lr = λ/10, vertically oriented and placed on
a square grid. The centers of the dipoles are the set of points
of Ro given by {(x, y, z) : x = 0, y = mλ/2, z = nλ/2}, with
1 ≤ |m|, |n| ≤ Nr andNr = L/λ�. The voltageVmn observed
at the output of the (m,n) receive dipole is obtained by integrat-
ing over the antenna length the vertical component given by

ξz(r) = ez(r) + nz(r). (82)

Since the Hertzian dipole is electrically small, i.e., lr � λ, it
follows that Vmn can be approximated as

Vmn =

∫
lr

ξz(r)dz ≈ hmn + νmn (83)

where

hmn = lrez(rmn) (84)

with rmn = xC x̂+ (ym − yC)ŷ + (zn − zC)ẑ, and {νmn} are
independent zero-mean gaussian random variables, with vari-
ance σ2

ν = 2σ2lr/λ.

B. Maximum-Likelihood Estimation Under Misspecified
Models

The log-likelihood function for the estimation of t̂ =
(tx, ty, tz) and u = (xC , yC , zC) on the basis of the observa-
tions {Vmn; |m|, |n| = 1, . . . , Nr} is given by [31, Ch. 7]

Λ(t̃, ũ) = −
∑∑

|m|,|n|=1,...,Nr

|Vmn − h̃mn|2 (85)

where t̃ = (t̃x, t̃y, t̃z) and ũ = (x̃C , ỹC , z̃C) are trial values for
t̂ andu, respectively, and h̃mn is obtained accordingly. Different
MLEs can be obtained if different models are assumed for h̃mn
in (85). Specifically, we consider the following three.

1) The first MLE (MLE1) relies on the model provided in (42)
and assumes that:

h(1)mn = lrez(rmn). (86)

2) The second MLE (MLE2) makes use of the signal model
adopted in [8]. Hence, we have that:

h(2)mn = lrG(r)

√
xC
r
. (87)

3) The third MLE (MLE3) is based on the standard planar
approximation (38) under which:

h(3)mn = lrG(rC)e
−jk(r̂C ·dmn) (88)

with dmn = ymŷ + znẑ. Notice that with the standard
planar wave model, the amplitude of the received signal is
proportional to 1/rC . Such a dependence can effectively
be exploited for the estimation of rC provided that the
proportionality factor is exactly known.
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Fig. 8. Comparisons between MLEs when t̂ = (0, 0, 1).

The first MLE takes the form

t̂(1),u(1) = argmax
t̃,ũ

Λ(1)(t̃, ũ) (89)

where

Λ(1)(t̃, ũ) = −
∑∑

|m|,|n|=1,...,Nr

|Vmn − h̃(1)mn|2. (90)

In case of known orientation, the maximization of (89) is carried
out only over ũ, after replacing t̃ with the true value t̂ in h̃(1)mn.

The MLEs derived from (87)–(88) are in the following form:

u(i) = argmax
ũ

Λ(i)(ũ) (91)

where

Λ(i)(ũ) = −
∑∑

|m|,|n|=1,...,Nr

|Vmn − h̃(i)mn|2 (92)

for i = 2, 3. Notice that (91) needs to be optimized only with
respect to ũ. This is becauseh(2)mn andh(3)mn do not account for the
dependence of the received signal on the orientation of the source
dipole. This will have a profound impact on the estimators’
performance.

C. Numerical Analysis

The accuracy of the above three MLEs is now quantified in
terms of the square root of the MSE (RMSE), measured in meters
and given by

RMSE(υ) =
√
E(υ − υ̂)2 (93)

Fig. 9. Comparisons between MLEs when t̂ = (0, 1, 0).

where υ stands for xC , yC or zC , and υ̂ is the corresponding
ML estimate. The estimation accuracy of the three MLEs is
compared with the provided CRBs. Since Vmn is obtained by
integrating ξz , we also report CRBz , which is derived from the
observation of the only z-component of the electric field.

Fig. 8(a) shows RMSE(xC) as a function of L, measured in
meters. The transmitting dipole is in CPL, with xC = 6 m, and
is vertically oriented, i.e., t̂ = (0, 0, 1). The wavelength is λ =
0.1m, andSNR = 30 dB. The following interesting conclusions
can be drawn from the results in Fig. 8(a):
� A negligible difference is observed betweenCRB(xC) and
CRBz(xC). This means that, when the transmit and receive
dipoles have the same orientation, the component of the
electric field along the dipoles’ orientation provides almost
all the information about the source position.

� MLE1 performs closely to the CRB in both cases of known
and unknown orientation. This confirms the results from
Section V, in which it has been shown thatCRB andCRBu
are practically the same.

� When the transmit dipole is vertically oriented, the estima-
tion accuracy achieved with MLE2 is the same as that with
MLE1.

� MLE3 has poor performance and its estimation accuracy
worsens as L grows. This is due to the fact that the un-
derlying planar model in (88) becomes more and more
inaccurate as the surface side length gets larger.

The same observations are valid for yC and zC . For example,
Fig. 8(b) shows RMSE(zC) in the same setting of Fig. 8(a). We
see that MLE1 and MLE2 have similar behaviors, and are very
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close to CRBz(zC), while MLE3 is far from the bound. A slight
difference is observed between CRB(zC) and CRBz(zC), for
L > 5 m.

Fig. 9(a) illustrates RMSE(xC) assuming that the transmit-
ting dipole is oriented along the y-direction, i.e., t̂ = (0, 1, 0).
The other parameters are the same as in Fig. 8(a). Compared
to Fig. 8(a), we observe two fundamental differences. First,
CRB(xC) and CRBz(xC) differ significantly. This means that,
in general, to achieve the best estimation accuracy all the com-
ponents of the electric field should be considered. Secondly,
MLE2 has poor performance, because it ignores the dependence
of the received signal on the orientation of the transmit dipole.
This confirms the importance of the term [̂r×R(θ, φ)]×r̂ in
(7), which is not considered in the standard models adopted
in literature. Thirdly, the estimation accuracy with both MLE2
and MLE3 get worse as the surface side length gets larger due
to the increasing inaccuracy of the underlying wave models in
(87) and (88), respectively. Similar conclusions can be drawn
from the plots in Fig. 9(b), which show the accuracy in the
estimation of zC . In this case, we see that the performance of
MLE1 differs from CRBz(xC) only for L > 10 m, where the
estimation accuracy is anyway better than 1 cm.

VII. CONCLUSION

Large antenna arrays and high frequencies opens up oppor-
tunities for new signal processing algorithms for positioning.
Motivated by the need of establishing ultimate bounds, we
provided a general model for the electric vector field over a
spatially-continuous rectangular region. Unlike standard models
in signal processing, the functional dependence on the radiation
vector at the source is intrinsically captured by the model. The
electric vector field model was used to compute the CRBs for
the three-dimensional (3D) spatial location of a Hertzian dipole,
with and without a priori knowledge of its orientation. Further
simplifications and insights were obtained by assuming that the
dipole center is located on the line perpendicular to the surface
center. Numerical results showed that a centimeter-level accu-
racy in the mmWave and sub-THz bands can only be achieved
with surfaces of size in the range of a few meters. Asymptotic
expressions were also given in closed-form to show the scaling
behaviors with respect to surface area and wavelength. To show
how different electric field models impact the estimation accu-
racy, we used the derived CRBs to benchmark different MLEs.
The analysis showed that the standard model neglecting the
radiation angular pattern of the transmitting source may provide
low estimation accuracy in the presence of large surfaces.

The statements above do not want to mean that the standard
model is not useful. Only that its limitations need to be clearly
acknowledged and understood, and its performance carefully
evaluated on a case-by-case basis. The standard models may be
sufficiently accurate in some situations and inadequate in others.
It is essential to evaluate the performance of algorithms based
on the standard model against data generated using the analytic
model.

APPENDIX A

We compute the derivatives of the cartesian components
of the electric field with respect to the unknown parameters

(tx, ty, tz, xC , yC , zC). Starting from (43)–(45), after lengthy
but standard calculations we have

∂eα
∂tβ

= − jχ
e− jkr

r
·
{
1− r2α per β = α,

−rαrβ per β �= α
(94)

with α, β ∈ {x, y, z} and rα being defined in (47),

∂ex
∂xC

=
− jχe− jkr

r4

{
j kx̄

[
tx(ȳ

2 + z̄2)− x̄(ty ȳ + tz z̄)
]

+
3txx̄(ȳ

2 + z̄2)− (ty ȳ + tz z̄)(2x̄
2 − ȳ2 − z̄2)

r

}
(95a)

∂ex
∂yC

=
− jχe− jkr

r4

{
j kȳ

[
tx(ȳ

2 + z̄2)− x̄(ty ȳ + tz z̄)
]

− txȳ(2x̄
2 − ȳ2 − z̄2)− tyx̄(x̄

2 − 2ȳ2 + z̄2) + 3tzx̄ȳz̄

r

}
(95b)

∂ex
∂zC

=
− jχe− jkr

r4

{
j kz̄

[
tx(ȳ

2 + z̄2)− x̄(ty ȳ + tz z̄)
]

− txz̄(2x̄
2 − ȳ2 − z̄2) + 3tyx̄ȳz̄ − tzx̄(x̄

2 + ȳ2 − 2z̄2)

r

}
(95c)

∂ey
∂xC

=
− jχe− jkr

r4

{
j kx̄

[
ty(x̄

2 + z̄2)− ȳ(txx̄+ tz z̄)
]

− tyx̄(2ȳ
2 − x̄2 − z̄2)− txȳ(ȳ

2 − 2x̄2 + z̄2) + 3tzx̄ȳz̄

r

}
(96a)

∂ey
∂yC

=
− jχe− jkr

r4

{
j kȳ

[
ty(x̄

2 + z̄2)− ȳ(txx̄+ tz z̄)
]

+
3ty ȳ(x̄

2 + z̄2)− (txx̄+ tz z̄)(2ȳ
2 − x̄2 − z̄2)

r

}
(96b)

∂ey
∂zC

=
− jχe− jkr

r4

{
j kz̄

[
ty(x̄

2 + z̄2)− ȳ(txx̄+ tz z̄)
]

− ty z̄(2ȳ
2 − x̄2 − z̄2) + 3txx̄ȳz̄ − tz ȳ(x̄

2 + ȳ2 − 2z̄2)

r

}
(96c)

∂ez
∂xC

=
− jχe− jkr

r4

{
j kx̄

[
tz(x̄

2 + ȳ2)− z̄(txx̄+ ty ȳ)
]

− tzx̄(2z̄
2 − x̄2 − ȳ2) + 3tyx̄ȳz̄ − txz̄(z̄

2 + ȳ2 − 2x̄2)

r

}
(97a)

∂ez
∂yC

=
− jχe− jkr

r4

{
j kȳ

[
tz(x̄

2 + ȳ2)− z̄(txx̄+ ty ȳ)
]

− tz ȳ(2z̄
2 − x̄2 − ȳ2)− ty z̄(z̄

2 − 2ȳ2 + x̄2) + 3txx̄ȳz̄

r

}
(97b)
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∂ez
∂zC

=
− jχe− jkr

r4

{
j kz̄

[
tz(x̄

2 + ȳ2)− z̄(txx̄+ ty ȳ)
]

+
3tz z̄(x̄

2 + ȳ2)− (txx̄+ ty ȳ)(2z̄
2 − ȳ2 − x̄2)

r

}
.

(97c)

For convenience, we have set x̄ = −xC , ȳ = y − yC e z̄ =
z − zC .

APPENDIX B

In this appendix, we prove the results of Proposition 1. We
start by observing that, under Assumption 5, the derivatives
needed for the computation of FIM in (49) are obtained from
the equations in Appendix A by simply setting yC = zC = 0,
tx = ty = 0 and tz = 1.

We first computate the elements of Fcc given by

[Fcc]mn =
2

σ2
Re

{∫ L
2

−L
2

∫ L
2

−L
2

f (cc)mn (y, z)dydz

}
(98)

where

f (cc)mn (y, z)=
∂ex(r)

∂am

∂e∗x(r)
∂an

+
∂ey(r)

∂am

∂e∗y(r)
∂an

+
∂ez(r)

∂am

∂e∗z(r)
∂an

(99)
with a1 = xC , a2 = yC and a3 = zC . In this case, it can be
shown that, for m �= n, f (cc)mn (y, z) in (99) is an odd function of
y and z, i.e.,

f (cc)mn (y, z) = −f (cc)mn (−y, z) = −f (cc)mn (y,−z).
As a result, due to the symmetry of the integration domain,
the off-diagonal elements of Fcc are zero, meaning that Fcc
is a diagonal matrix. As for the diagonal elements, standard but
lengthy calculations show that they can be written as in (63)–(65)
where

I1 � ρ

(4 + ρ2)

[
(14 + 3ρ2)√

4 + ρ2
arctan

ρ√
4 + ρ2

+
ρ

(2 + ρ2)

]

(100)

I2 �
∫ ρ/2

−ρ/2

∫ ρ/2

−ρ/2

1 + u2v2 + v4

(1 + u2 + v2)4
dudv (101)

I3 �
∫ ρ/2

−ρ/2

∫ ρ/2

−ρ/2

u2(1 + u2)

(1 + u2 + v2)3
dudv (102)

I4 �
∫ ρ/2

−ρ/2

∫ ρ/2

−ρ/2

u2(1 + u2) + v2(1 + v2)− u2v2

(1 + u2 + v2)4
dudv

(103)

I5 �
∫ ρ/2

−ρ/2

∫ ρ/2

−ρ/2

v2(1 + u2)

(1 + u2 + v2)3
dudv (104)

I6 � ρ

2(4 + ρ2)2

[
(9ρ4 + 76ρ2 + 136)√

4 + ρ2
arctan

ρ√
4 + ρ2

+
ρ(3ρ4 + 4ρ2 − 8)

(2 + ρ2)2

]
(105)

with ρ = L/xC . Now, we consider the computation of Ftt with
elements

[Ftt]mn =
2

σ2
Re

{∫ L
2

−L
2

∫ L
2

−L
2

f (tt)mn (y, z)dydz

}
(106)

where

f (tt)mn (y, z)=
∂ex(r)

∂bm

∂e∗x(r)
∂bn

+
∂ey(r)

∂bm

∂e∗y(r)
∂bn

+
∂ez(r)

∂bm

∂e∗z(r)
∂bn
(107)

with b1 = tx, b2 = ty and b3 = tz . Again, it can easily be shown

that, for m �= n, f (tt)mn (y, z) in (107) is an odd function of y or
z, and hence the off-diagonal elements of Ftt are zero, meaning
that Ftt is diagonal. The diagonal elements can be written as in
(66)–(67) where

I7 �
∫ ρ/2

−ρ/2

∫ ρ/2

−ρ/2

u2 + v2

(1 + u2 + v2)2
dudv (108)

I8 �
∫ ρ/2

−ρ/2

∫ ρ/2

−ρ/2

1 + u2

(1 + u2 + v2)2
dudv. (109)

Consider now the matrix Ftc with elements given by

[Ftc]mn =
2

σ2
Re

{∫ L
2

−L
2

∫ L
2

−L
2

f (tc)mn (y, z)dydz

}
(110)

where

f (tc)mn (y, z)=
∂ex(r)

∂bm

∂e∗x(r)
∂an

+
∂ey(r)

∂bm

∂e∗y(r)
∂an

+
∂ez(r)

∂bm

∂e∗z(r)
∂an
(111)

andan, bm have the same meaning as before. It can be shown that
f
(tc)
13 (y, z) and f (tc)31 (y, z) are even functions of y and z whereas

the others are odd functions of y or z. As a consequence, the
only non-zero entries of Ftc are [Ftc]13 and [Ftc]31 given by
(68) and (69), respectively, where

I9 � 2ρ

4 + ρ2

[
2 + ρ2√
4 + ρ2

arctan
ρ√

4 + ρ2
− ρ

2 + ρ2

]
(112)

I10 �
∫ ρ/2

−ρ/2

∫ ρ/2

−ρ/2

(1 + 2 u2)

(1 + u2 + v2)4
dudv. (113)

APPENDIX C

The proof of Proposition 2 is given. We start by deriving (76).
As a first step, we show that k2I1 � x−2

C I2, for xC � λ. To this
end, observe that

I1 =

∫ ρ/2

−ρ/2

∫ ρ/2

−ρ/2

1 + v2

(1 + u2 + v2)3
dudv. (114)

Comparing (114) and (101) yields I1 > I2 since

1 + v2

(1 + u2 + v2)3
≥ 1 + u2v2 + v4

(1 + u2 + v2)4
. (115)

Since 0 ≤ I2 − I−1
8 I210 < I2 (notice that I2 − I−1

8 I210 must nec-
essarily be non-negative and I−1

8 I210 > 0), for xC � λ we have

4π2λ−2I1 � x−2
C I2 > x−2

C

(
I2 − I−1

8 I210
)
. (116)
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The approximation in (76) derives from (116) immediately.
We now derive (77) by showing that k2I3 � x−2

C I4. Observe
that

0 < I4 <

∫ ρ/2

−ρ/2

∫ ρ/2

−ρ/2

2 u2(1 + u2)

(1 + u2 + v2)4
dudv < 2 I3 (117)

from which we easily obtain

4π2λ−2I3 � x−2
C I4 (118)

for xC � λ. The approximation in (77) follows from (118)
immediately.

APPENDIX D

The analysis of the CRBs in the asymptotic regime ρ→ ∞
requires the computation of the following limits:

1) limρ→∞ I1
2) limρ→∞ I3
3) limρ→∞(k2I5 + x−2

C I6)
4) limρ→∞[k2I5 + x−2

C (I6 − I−1
7 I29)].

We start by evaluating the first. From (100), we have

lim
ρ→∞ I1 = 3π/4. (119)

Consider now I3. Due to the non-negativity of the function
u2(1 + u2)/(1 + u2 + v2)3, we have∫

C−

u2(1 + u2)

(1 + u2 + v2)3
dudv < I3 <

∫
C+

u2(1 + u2)

(1 + u2 + v2)3
dudv

(120)
The two integrals can be computed in closed form. In particular,
we obtain∫

C−

u2(1 + u2)

(1 + u2 + v2)3
dudv =

3π

8
ln(1 + ρ2)− π

16

ρ2(5ρ2 + 6)

(1 + ρ2)2

(121)∫
C+

u2(1 + u2)

(1 + u2 + v2)3
dudv =

3π

8
ln(1 + 2ρ2)− π

4

ρ2(5ρ2 + 3)

(1 + 2ρ2)2
.

(122)

Taking (120) and (121)–(122) into account yields

I3 ∼ 3π

4
ln ρ as ρ→ ∞ (123)

from which (79) is derived straightforwardly.
Now, we focus on the limits

lim
ρ→∞

(
k2I5 + x−2

C I6
)

(124)

and

lim
ρ→∞

[
k2I5 + x−2

C

(
I6 − I−1

7 I29
)]
. (125)

By using similar arguments to those for I3, it can be shown that

I5 ∼ π

4
ln ρ as ρ→ ∞. (126)

and

lim
ρ→∞ I7 = ∞. (127)

As for I6 and I9, from (105) and (112) we have that

lim
ρ→∞ I6 = 9π/8. (128)

and

lim
ρ→∞ I9 = π/2. (129)

By taking (126)–(129) into account, (80) follows easily.
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